
O R I G I N A L  R E S E A R C H

Gephyrin and CYP2C9 Genetic Polymorphisms in 
Patients with Pharmacoresistant Epilepsy

Hamdy N El-Tallawy1 

Sawsan Abuhamdah2,3 

Ahmed Y Nassar4 

Wafaa MA Farghaly 1 

Tahia H Saleem 4 

Sara A Atta4 

Ayat A Sayed4 

Amal M Tohamy1 

Mohammed H Hassan 5

1Department of Neurology and 
Psychiatry, Faculty of Medicine, Assiut 
University, Assiut, Egypt; 2Department of 
Pharmaceutical Sciences, College of 
Pharmacy, Al Ain University, Abu Dhabi, 
United Arab Emirates; 3Department of 
Biopharmaceutics and Clinical Pharmacy, 
Faculty of Pharmacy, University of Jordan, 
Amman, Jordan; 4Department of Medical 
Biochemistry, Faculty of Medicine, Assiut 
University, Assiut, Egypt; 5Department of 
Medical Biochemistry, Faculty of 
Medicine, South Valley University, Qena, 
83523, Egypt 

Purpose: Gephyrin (GPHN) is an essential protein in the regulation of inhibitory postsy-
naptic density and polymorphism in the corresponding gene may have a role in the devel-
opment of pharmacoresistant epilepsy (PRE). For the first time, we aimed to evaluate the 
association of rs928553T/C variants with PRE susceptibility. Moreover, we have analyzed 
the genetic polymorphism affecting CYP2C9 “rs12782374G/A” in the same population to 
detect the effect of SNP on the drug-metabolizing ability of patients with PRE.
Patients and Methods: This case-control study enrolled 100 patients (group A) and 100 
healthy, age and sex-matched controls, unrelated to patients (group B). TaqMan™ assays 
using real-time PCR were run for genotyping of rs928553T/C and rs12782374G/A in all 
participants.
Results: GPHN T>C polymorphism revealed significant risk association with occurrence of 
PRE using dominant, recessive and codominant models as follows: TT vs (TC+CC): OR 
0.23, 95%CI: 0.13–0.43, P<0.001. In addition, (TT+TC vs CC): OR 0.38, 95%CI: 0.18–0.77, 
P<0.001. Also, T vs C (OR 0.34, 95%CI: 0.22–0.51, P=<0.001). Similarly, CYP2C9 G>A 
polymorphism showed a significant increased risk of PRE (GG vs (GA+AA): OR 0.11, 95% 
CI: 0.05–0.23, P<0.001). Furthermore, (GG+GA vs AA): OR 0.18, 95%CI: 0.084–0.39, 
P<0.001. Also, G vs A (OR 0.24, 95%CI: 0.15–0.366, P=<0.001).
Conclusion: Mutation of both GPHN (rs928553) and CYP2C9 (rs1278237) genes may be 
implicated as a genetic mediators of resistance in patients with PRE.
Keywords: pharmacoresistant epilepsy, rs928553T/C, rs12782374G/A, real time-PCR

Introduction
The debilitating health issue of pharmacoresistant epilepsy (PRE) is associated 
with elevated morbidity and mortality, including neuropsychological symptoms, 
and a group of adverse effects associated with antiepileptic drugs (AEDs).1 

Epilepsy affects over 70 million people worldwide. One-third of those patients 
exhibit resistance to pharmacotherapy with the highest percentage in patients 
with focal epilepsies, whereup to 60% of them manifest resistance to AEDs.2,3 

Pharmacoresistant epilepsy defined (according to the International League 
Against Epilepsy, ILAE, 2010) as the failure of responding to adequate trials 
of two tolerated and appropriately chosen AEDs (monotherapy or in 
combination).4,5 Another definition of pharmacoresistant epilepsy by the ILAE 
in 2011, as the presence of seizures in the previous six months, even under 
proper therapeutic regimens (either monotherapy or in combination).5 The pre-
valence of definite intractable epilepsy in Al-Kharga District, New Valley 
(Egypt) was 0.7/1000.6
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The gene variation hypothesis, predictably, proposes 
that abnormalities (mutations or polymorphisms) in genes 
producing enzymes, receptors, ion channels, and other 
critical components may have an essential role in deter-
mining the phenotype of epilepsy.7 CYP2C9 is an isoform 
of phase I drug-metabolizing cytochrome P450 (CYP450) 
enzyme, which plays a major role in the oxidation of both 
xenobiotics and endogenous compounds.8 It is an essential 
source of variability in drug-response and plays a role not 
only in phase I-dependent metabolism of xenobiotics, but 
also in the metabolism of endogenous compounds such as 
steroids, vitamins, fatty acids, and over 90% of drugs with 
a narrow therapeutic index (eg warfarin, phenytoin, and 
valproic acid).9,10 The gene coding for the CYP2C9 
enzyme is clustered in a 500 kb region on chromosome 
10q24 and characterized by being highly polymorphic.11,12 

The CYP2C9 polymorphism alleles in epileptic patients 
range from 4.5 to 13.6%, being less frequent in African 
Americans and Asians.13 Genetic variants in CYP2C9 lead 
to changes in metabolic activity and accordingly low 
enzyme activity that play a major role in the pathogenesis 
of adverse drug reactions and significant differences in 
AED serum concentrations.11,14 For example, because 
CYP2C9 is responsible for 90% of phenytoin metabolism, 
a variation in this gene can reduce phenytoin metabolism, 
increasing the risk of concentration-dependent toxicity and 
other negative side effects.15,16

Gephyrin (GPHN) is an essential core scaffolding pro-
tein responsible for organizing the inhibitory glycine and 
γ-aminobutyric acid type A (GABAA) receptors at post-
synaptic density.17,18 They ensure the accurate accumula-
tion of those receptors in precise apposition to presynaptic 
release sites, also interact with cytoskeletal anchoring ele-
ments to provide a physical platform for maintaining 
receptors at synapses and regulate downstream signaling 
pathways.18 Besides its synaptic function, gephyrin has 
also a role in the biosynthesis of the molybdenum cofactor 
(MoCo),19 which is required for the activity of four 
molybdo enzymes that catalyze redox reactions. 
Mutations in GPHN can cause MoCo deficiency that is 
characterized by untreatable neonatal seizures starting at 
birth.17 So it is not surprising that gephyrin dysfunction 
and deletion can result in the expression of truncated 
gephyrin variants in patients with epilepsy and many 
other neurological disorders such as autism, schizophrenia, 
and seizures.20 The aim of the current study aimed is to 
identify the role of polymorphisms in GPHN as a risk 
factor for development of PRE and genetic variants of 

CYP2C9 enzyme that may play a major role in pathogen-
esis of therapeutic failure to anti-epileptic drugs in patients 
with PRE.

Patients and Methods
Study Design and Participants
This case-control study has been conducted on 200 sub-
jects categorized into two groups: 100 patients with PRE 
(group A) who were selected from the outpatients’ epi-
lepsy clinics and inpatients departments of Neurology and 
Psychiatry, Assiut University Hospital, in addition to 100 
healthy, age and sex-matched controls unrelated to patients 
(group B) who were selected randomly from the same 
population as the patients, with no known personal history 
or family history of epilepsy or any neurological or psy-
chiatric diseases. The study was performed in collabora-
tion with the Medical Biochemistry department of 
Faculties of Medicine, Assiut and South Valley 
Universities, Egypt. The recruitment of patients and con-
trols in the present study was done in accordance with the 
guidelines laid down in the Declaration of Helsinki. The 
study was conducted in the period from March 2016 to 
July 2019 and the protocol was approved by the Ethics 
Committee of the Faculty of Medicine, Assiut University, 
Egypt (code number: IRB00008718). All participants gave 
written informed consent after the purpose and method of 
the study were briefly discussed. Sample size calculation 
was carried out using G*Power 3 software. A calculated 
sample of 98 respondents (cases or controls) was needed, 
with an error probability of 0.05 and 80% power on one- 
tailed test (type I error).

Estimation of serum level of AEDs was done for those 
with probable medically uncontrolled seizures to ensure 
adequate dose compliance at therapeutic drug monitoring 
unit, Assiut University Hospitals, Egypt. Epileptic patients 
with other types of neurological diseases, chronic medical 
diseases (cardiac, hepatic or renal or malignancies, or 
those currently pregnant or breast-feeding) all were 
excluded from the study. None of the controls had 
a history of the cerebrovascular, nervous system, or any 
chronic disease excluded by medical history and classi-
cal EEG.

Clinical Assessments and Data Collection
Diagnosis of PRE is dependent on the presence of uncon-
trolled seizures with an average frequency of one seizure 
per month for two years with the usage of at least three 
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different tolerated and appropriately chosen AEDs (singly 
or in combination),21 in association with video EEG by 
specialized neurologist done at the epidemiological center 
for neurological disease, Faculty of Medicine, Assiut 
University. The medical history and diagnosis of each 
patient were revised by the two qualified neurologists 
participating in the study. Data collected before genotyp-
ing including: patient age and gender, family history of 
epilepsy, and age at the onset of epilepsy.

Genomic DNA Extraction and TaqMan™ 
SNPs Genotyping Assays
Five millimeters of venous blood collected in EDTA tubes was 
obtained from all patients and controls. DNA was extracted 
from whole blood using Qiagen (QIAamp DNA blood mini 
kits for genomic DNA purification, catalogue no. 51104 sup-
plied by Qiagen, Hilden, Germany), according to the guide-
lines of the manufacturer. DNA samples were genotyped by 
Rotor-Gene Q, Applied Biosystems (Foster City, CA, USA) 
using an automated method on purified genomic DNA by 
a TaqMan™ assay specifically designed to distinguish the 
variants of both gephyrin T/C (rs928553) and CYP2C9 G/A 
(rs12782374) polymorphisms using fluorescent-labeled probes 
(VIC/FAM) GCGCTTTCAGTGGGGCGGCCGGCCA[C/T] 
TCCCGAGGGTTGCAAGAGGAGGCCC and GGCTA 
CATACTGTATGATTCCAACC[A/G]TATTACATTTTGGA 
AAAGGCAAAAC respectively with their catalogue 
no. 4351379 and 4351379 respectively, supplied by Thermo 
Fisher Scientific, Waltham, MA, USA. DNA was genotyped 
according to the manufacturer’s protocol. Briefly, the reaction 
components for each genotyping reaction were as follows: 10 
ng of DNA, 5 µL of TaqMan™ Genotyping Master Mix, 0.5 
µL of assay mix, and water to a total volume of 10 µL. The 
thermocycler conditions were as follows: 50°C for 2 min, 95°C 
for 10 min, and 50 cycles of 92°C for 15 seconds and 60°C for 
90 seconds. Randomized sample duplications between plates 
were set to check the accuracy of the genotyping. “No-template 
negative controls” (NTCs) were applied in each PCR run to 
confirm free reaction contamination. The allele distribution 
and amplification plots of rs928553 and rs12782374 were 
demonstrated in (Figure 1A–C).

Statistical Analysis
Date entry and data analysis were done using SPSS ver-
sion 22 (Statistical Package for Social Science). Data were 
presented as number, percentage, mean, standard devia-
tion. Chi-squared test and Fisher's Exact test were used to 

compare qualitative variables. Odds ratio (OR) with 95% 
confidence intervals (CI) was calculated. Pearson's corre-
lation was done to measure correlation between quantita-
tive variables. The following models were used to test 
multiple logistic regression analysis and Fisher’s exact 
test: dominant (major allele homozygotes vs heterozy-
gotes+minor allele homozygotes), recessive (major allele 
homozygotes+heterozygotes vs minor allele homozy-
gotes), and codominant (major allele homozygotes vs het-
erozygote and minor allele homozygotes vs major allele 
homozygotes). P-value considered statistically significant 
when P<0.05. The studied SNPs were followed the 
Hardy–Weinberg (HW) equation.22,23

Results
Demographic and Clinical Data of the 
Study Groups
One hundred patients with PRE, and an equal number of 
healthy unrelated controls were included in the study. The 
mean age of PRE patients and controls were (22.56±9.45, 
and 22.09±6.78 years respectively). There was male pre-
dominance among the included PRE patients with male to 
female ratio 1.8:1. Positive family history of epilepsy was 
present in PRE patients with negative family history 
among the controls.

Regarding to the clinical characteristics of the included 
patients, the age of onset of epilepsy in studied patients 
was highly frequent in adolescence (32%). The majority of 
PRE patients have daily (56%) or weekly (42%) fits. 
Twenty percent have status epilepticus with positive con-
sanguinity in 58% and positive family history of epilepsy 
was present in 40% of patients, (Table 1). The included 
PRE patients received AEDs (Depakine®, Trileptal®, oxa-
leptal, apetryl, oxycarbazine) in different combinations. 
The clinical types of epileptic seizures of the included 
patients were also presented in (Table 1).

Allelic and Genotype Frequencies of 
GPHN T>C in the Study Groups
The genotypic distribution of GPHN T>C (rs 928553) 
polymorphism and allelic frequency of T and C alleles in 
patients and unrelated healthy controls have been 
described in (Table 2). The frequencies of GPHN T>C 
genotypes determined from PRE were 30.2% for TT, 
62.9% for TC and 68.2% for CC, while in unrelated 
healthy controls, the frequency of TT, TC and CC were 
present in a percentage of 69.8%, 37.1%, and 31.8%, 
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respectively (P<0.001), with significantly higher allelic 
frequency for (C) among patients vs unrelated healthy 
controls (52% and 27%, respectively) and significantly 
higher frequency for T allele among the unrelated healthy 
controls vs the patients group (73% and 48% respectively). 
There was significantly higher (TT+TC) frequency among 
unrelated healthy controls compared to the patients with 
PRE (55.1% and 44.9%, respectively, P=0.006) with 

significantly higher frequency of (TC+CC) genotypes 
among PRE patients vs the unrelated healthy controls 
(64.9% and 35.1%, respectively, P<0.001). This indicated 
that GPHN T>C polymorphism is associated with an 
increased risk of PRE (TT vs (TC+CC): OR 0.23, 95% 
CI: 0.13–0.43, P<0.001). In addition, (TT+TC vs CC): OR 
0.38, 95%CI: 0.18–0.77, P<0.001. Also, T vs C (OR 0.34, 
95%CI: 0.22–0.51, P=<0.001).

Figure 1 Allelic discrimination plots for rs928553 (A) where blue dots represent wild homozygous genotype (TT), and green dots represent mutant heterozygous genotype 
(TC) and the red dots represent mutant homozygous genotype (CC), and rs1278237 (B) where blue dots represent wild homozygous genotype (GG), and green dots 
represent mutant heterozygous genotype (GA); amplification plots for both rs928553 and rs1278237 (C), using real time-PCR.
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Genotypes and Alleles Frequencies of 
CYP2C9 G>A in the Study Groups
The genotypic distribution of CYP2C9 G>A (rs2782374) 
polymorphism and allelic frequency of (G) and (A) alleles 
in patients and unrelated healthy controls have been 
described in (Table 3). The frequencies of CYP2C9 G>A 
genotypes determined from PRE were 16.7% for GG, 
56.5% for GA and 79.2% for AA, while in unrelated healthy 
controls, the frequency of GG, GA and AA were present in 
a percentage of 83.3%, 43.5%, and 20.8%, respectively 
(P<0.001), with significantly higher allelic frequency for 
(A) among patients vs unrelated healthy controls (64% and 
30%, respectively) and significantly higher frequency for 
G allele among the unrelated healthy controls vs the patients 
group (70% and 36%, respectively). There was significantly 
higher (GG+GA) frequency among unrelated healthy con-
trols compared to the patients with PRE (59.2% and 40.8%, 
respectively, P<0.001) with significantly higher frequency of 
(GA+AA) genotypes among PRE patients vs the unrelated 
healthy controls (64.3% and 35.7%, respectively, P<0.001). 
This indicated that CYP2C9 G>A polymorphism is asso-
ciated with an increased risk of PRE (GG vs (GA+AA): 
OR 0.11, 95%CI: 0.05–0.23, P<0.001). In addition, (GG 
+GA vs AA): OR 0.18, 95%CI: 0.084–0.39, P<0.001. Also, 
G vs A (OR 0.24, 95%CI: 0.15–0.366, P=<0.001).

Discussion
Although monogenic polymorphism can explain part of 
the mechanism of pharmacoresistance, most genes are 
multifactorial-controlled including gene regulatory 
sequences. So the current study included two gene poly-
morphisms acting on two different proteins gephyrin and 
cytochrome P2C9. Many studies tried to find out the 
genetic and nongenetic causes of PRE due to the continued 
presence of disease despite the usage of many drugs at 
maximum tolerated dose.5 Although any structural lesion 
can lead to pharmacoresistance, its occurrence in the 
absence of a structural lesion could be due to genetic 
cause. Even in presence of structural causes, the course 
of disease and response to treatment is difficult to predict. 
Therefore, mutation of genes encoding proteins responsi-
ble for the health of synaptic transmission as ion channels 
or polymorphism in neurotransmitter receptors is the 
major cause of pharmacoresistance.24

Table 1 Clinical Characteristics of PRE Patients

Variables (N=100) No. (%)

Age at onset of epilepsy Infancy  
(<1 year)

11%

Early childhood  
(1–6 years)

13%

Late childhood  
(6–12 years)

20%

Adolescence  

(12–18 years)

32%

Early adulthood 

(>18 years)

24%

Frequency of fits Monthly (mild) 2%

Weekly 
(moderate)

42%

Daily (severe) 56%

Status epilepticus 20%

Consanguinity 58%

Family history of epilepsy 40%

Clinical types of epileptic seizures

(A) Generalized
● Generalized onset motor tonic- 

clonic

44%

● Generalized motor onset atonic 2%

● Generalized onset motor and 

myoclonus

4%

(B) Focal
Focal impaired awareness motor 
onset tonic

11%

● Focal onset impaired awareness 

non-motor

3%

● Focal impaired awareness motor 

onset tonic-clonic

7%

● Focal to bilateral onset motor 
tonic-clonic

20%

●Focal onset impaired awareness 

non-motor

2%

C)Syndromic
● Syndromic-generalized motor 

onset tonic-clonic
4%

● Syndromic-focal onset impaired 

awareness

3%

Note: Data were expressed in form of frequency (percentage).
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There are many factors affecting neurotransmitter level 
and their impact on neuronal transduction including genes 
responsible for synthesis of neurotransmitter or their recep-
tors. Gephyrin gene is one of scaffolding proteins responsible 
for clustering of those amino acids and neurotransmitters, 
that analyzed in our study and found that the mutant alleles 
T>C and C>C were significantly frequent in patients com-
pared to unrelated healthy controls. A study by Dejanovic 
et al20 showed that stress-induced irregular splicing of GPHN 
results in the expression of abnormal gephyrin variants with 
defective function as identified in epilepsy, autism, and schi-
zophrenia that go with the results of our study.

It was found that CYP2C9 genetic polymorphism can 
lead to a significant change in metabolic activity and so 
differences in metabolism of AEDs especially, valproic 
acid.25 These findings are consistent with our results 
where there is a significant increase in mutated genotypes 
G>C and C>C in patients compared to controls. Change in 
phenotype within and between different individuals may 

be due to change in genotype both in regulatory and 
exonic sequences. Furthermore, accelerated metabolism 
of valproic acid and other AEDs may occur with concur-
rent administration of other drugs that leads to displace-
ment of the first from protein binding and decrease blood 
concentration.26

Conclusion
This study revealed that the genetic variation of GPHN 
“rs928553T/C” and CYP2C9 “rs12782374G/A” could be 
molecular determinants for increased risk of PRE patients. 
Further larger scale studies are required to confirm the 
significant association of the studied variants with PRE 
susceptibility and to clarify the role of these polymorph-
isms as potential biomarkers of responsiveness to antiepi-
leptic drugs and their molecular mechanisms, and thus 
may help in early expectation and proper management 
strategies of such patients.

Table 2 Genotypes and Alleles Frequencies of GPHN T>C in the Study Groups

Study Groups Variables

GPHN T>C Genotypes Among the Studied Groups GPHN T>C Alleles

TT TC CC TT+TC CC TT TC+CC T C

N % N % N % N % N % N % N % N % N %

Group A (N=100) 26 30.2 44 62.9 30 68.2 70 44.9% 30 68.2 26 30.2% 74 64.9% 96 48 104 52

Group B (N=100) 60 69.8 26 37.1 14 31.8 86 55.1% 14 31.8% 60 69.8% 40 35.1% 146 73 54 27

P-value (χ2) <0.001* (23.88) 0.006* (7.45) <0.001* (23.58) <0.001* (26.15)

OR (95%CI) 0.38 (0.18–0.77) 0.23 (0.13–0.43) 0.34 (0.22–0.51)

Notes: *Significant P value (P˂0.05). Group A (patients with pharmacoresistant epilepsy); group B (unrelated healthy controls). 
Abbreviations: OR, odds ratio; CI, confidence intervals; χ2, chi-squared.

Table 3 Genotypes and Alleles Frequencies of CYP2C9 G>A in the Study Groups

Study Groups Variables

CYP2C9 G>A Genotypes Among the Studied Groups CYP2C9 G>A Alleles

GG GA AA GG+GA AA GG GA+AA G A

N % N % N % N % N % N % N % N % N %

Group A (cases) (N=100) 10 16.7 52 56.5 38 79.2 62 40.8 38 79.2 10 16.7 90 64.3 72 36 128 64

Group B (N=100) 50 83.3 40 43.5 10 20.8 90 59.2 10 20.8 50 83.3 50 35.7 140 70 60 30

P-value (χ2) <0.001* (44.56) <0.001* (21.49) <0.001* (38.09) <0.001* (46.41)

OR (95%CI) 0.18 (0.084–0.39) 0.11 (0.05–0.23) 0.24 (0.15–0.366)

Notes: *Significant P value (P˂0.05). Group A (patients with pharmacoresistant epilepsy); group B (unrelated healthy controls). 
Abbreviations: OR, odds ratio; CI, confidence intervals; χ2, chi-squared.
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Study Limitations
Lack of comparison with other experimental group includ-
ing patients with nondrug-resistant epilepsy was the main 
study limitation that could be included in future studies. 
Another study limitation was the small sample size, which 
impeded further examination of the studied gene poly-
morphisms in relation to the clinical characteristics of the 
patients.
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