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Purpose: Sarcopenia is a symptom in which muscle mass decreases due to decreasing in the 
number of muscle fibers and muscle cross-sectional area as aging. This study aimed to 
develop a machine learning classification model for predicting sarcopenia through a inertial 
measurement unit (IMU)-based physical performance measurement data of female elderly.
Patients and Methods: Seventy-eight female subjects from an elderly population (aged: 
78.8±5.7 years) volunteered to participate in this study. To evaluate the physical performance 
of the elderly, the experiment conducted timed-up-and-go test (TUG) and 6-minute walk test 
(6mWT) with worn a single IMU. Based on literature review, 132 features were extracted 
from collected data. Feature selection was performed through the Kruskal–Wallis test, and 
features datasets were constructed according to feature selection. Three major machine 
learning-based classification algorithms classified the sarcopenia group in each dataset, and 
the performance of classification models was compared.
Results: As a result of comparing the classification model performance for sarcopenia 
prediction, the k-nearest neighborhood algorithm (kNN) classification model using 40 
major features of TUG and 6mWT showed the best performance at 88%.
Conclusion: This study can be used as a basic research for the development of self- 
monitoring technology for sarcopenia.
Keywords: sarcopenia, physical activity, machine learning, inertial measurement unit

Introduction
Sarcopenia is a symptom in which the muscle mass of the skeletal muscles 
decreases due to a decrease in the number of muscle fibers and muscle cross- 
sectional area with aging.1 Sarcopenia affects the physical activity performance 
ability as the muscle function is reduced as the muscle mass decreases due to aging. 
Sarcopenia mainly occurs among the elderly. It can appear in approximately 24% of 
the elderly aged 65 years or older and approximately 50% of the elderly aged 80 
years or older.2 When the physical activity performance ability is reduced, it can 
limit the elderly’s independent performance of the activities of daily living and this 
can have a negative effect on the quality of life of the elderly. With the progress of 
sarcopenia, the possibility of falls increases. Falls can not only cause a bodily 
burden but also an economic burden due to treatment to the elderly.3

The term sarcopenia was first introduced in 1989 by Rosenberg.4 The diagnosis 
criteria for sarcopenia vary by the group. They are based on the reports of the 
European Working Group on Sarcopenia in Older People (EWGSOP2) and the 
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Asian Working Group for Sarcopenia (AWGS).5,6 

According to the diagnosis criteria suggested by these 
two groups, three factors are measured to diagnose sarco-
penia: muscle mass, muscle strength, and physical activity 
performance ability. For muscle mass measurement meth-
ods, bioelectric impedance analysis (BIA), dual energy 
x-ray absorptiometry (DXA), and computed tomography 
(CT) were suggested. Among the muscle mass measure-
ment methods, the measurement of muscle mass using 
DXA is most recommended.6 As the criterion for muscle 
mass measurement, the skeletal muscle index (SMI) is 
derived by dividing the sum of appendicular skeletal mus-
cle mass (ASM) measured by DXA by the square of 
height. The criterion of EWGSOP2 is 7.0kg/m2 for men 
and 5.5kg/m2 for women. The criterion of AWGS is 7.0kg/ 
m2 for men and 5.4kg/m2 for women. For the measure-
ment of muscle strength, the EWGSOP2 suggested the 
method of handgrip strength measurement, which can be 
easily used in clinical settings. After measuring the hand-
grip strength several times, the highest result is used as the 
muscle strength measurement for diagnosis. As the criter-
ion for handgrip strength, the EWGSOP2 suggested 
27.0kg for men and 16.0kg for women, and the AWGS 
suggested 28.0kg for men and 18.0kg for women. For the 
physical activity performance ability, the EWGSOP2 sug-
gested the gait speed measurement, Timed-Up and Go test, 
Short physical performance battery (SPPB), and 400 meter 
walk test. The EWGSOP2 reported the cut-off points as 
0.8m/s or less, 20s or more, 8 point score or less, and 6 
minutes or more, respectively. Additionally, the AWGS 
suggested the 6-meter walk test, 5-time chair stand test, 
and SPPB for the physical activity performance ability 
measurement. The AWGS reported the cut-off points as 
less than 1.0m/s, 12s or more, and 9-point score or less, 
respectively.

Furthermore, the EWGSOP2 defined the sarcopenia 
stages into “sarcopenia probable”, “sarcopenia confirmed”, 
and “sarcopenia severe” according to the three factors for 
diagnosing sarcopenia. “Sarcopenia probable” is a stage 
where the muscle strength is only lower than the muscle 
strength criterion among the three factors of sarcopenia diag-
nosis. The “sarcopenia confirmed” stage is defined when the 
muscle strength and the muscle mass are lower than the 
criterions. “Sarcopenia severe” is a stage where all the three 
factors for sarcopenia diagnosis are lower than the 
EWGSOP2 criterion. Meanwhile, the AWGS defined the 
sarcopenia stages into “sarcopenia”, and “severe sarcopenia” 
as the three factors for diagnosing sarcopenia.5 In the 

“sarcopenia” stage, the muscle mass is lower than the 
AWGS criterion, and the muscle strength or physical activity 
performance ability is lower than the AWGS criterion. 
“Severe sarcopenia” is a stage where all the three factors 
for sarcopenia diagnosis are lower than the AWGS criterion. 
The stage distinction of sarcopenia can assist the selection of 
appropriate treatment according to the sarcopenia stage, and 
can be also used to specify symptoms for each stage of 
sarcopenia.

With the recent development of the micro-electro 
mechanical systems (MEMS), small wearable devices with 
excellent measurement accuracy are being developed. 
Among them, the inertial measurement unit (IMU) is mainly 
used to estimate human body motions. The IMU is com-
posed of a three-dimensional (3D) accelerometer, 
a gyroscope, and a geomagnetic machine, and can measure 
the acceleration, angular velocity, and direction of moving 
objects. Recently, many studies have been actively con-
ducted including the prediction of the physical activity per-
formance ability, fall prediction, prediction of frailty status, 
and the perception of the activities of daily living of the 
elderly based on acceleration and angular velocity signals 
measured by the IMU. Green et al predicted the frailty status 
of the elderly using timed-up-and-go test (TUG) and hand-
grip strength measurement data with IMUs.7 To compare the 
frailty status prediction methods, Coni et al compared 
the prediction results using the standard clinical method 
and the prediction result based on 30-s chair stand test and 
TUG measurement data using IMUs.8 Lepetit et al devel-
oped a physical function assessment tool for the elderly 
through sit-to-stand test using IMUs.9 Buisseret et al con-
ducted TUG and 6-minute walking test (6mWT) with IMUs 
and predicted the fall risk of the elderly.10

To prevent and treat sarcopenia, continuous dietary 
management and regular exercise, and self-management 
of the patients are crucial. However, the conventional 
sarcopenia diagnosis and monitoring methods are difficult 
for regular monitoring by the patients themselves because 
they have to visit a medical institution and it requires 
many procedures and special devices such as DXA, hand-
grip strength measurement, and walking speed measure-
ment. To improve this shortcoming of the conventional 
method, this study implemented a classification model 
for predicting the sarcopenia stage with machine learning 
techniques only using IMU data which are measured when 
assessing the physical activity performance ability used in 
clinical studies of the elderly and compared the perfor-
mances of different models.
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Materials and Methods
Participants and Data Collection
For this study, we recruited 105 elderly women (age: 78.8 ± 
5.7 years). All the participants volunteered. The recruited 
women were in their 70s who could live independently, 
could walk without assistive devices, did not have cardiovas-
cular diseases, and could understand and perform experiments. 
This experiment was approved by the Public Institutions 
Bioethics Committee designated by the Ministry of Health 
and Welfare of the Republic of Korea (P01-201902-13-001).

Instead of recruiting sarcopenia patients, we recruited 
participants among the general elderly and measured their 
muscle mass, handgrip strength, and physical activity per-
formance ability. Then, their sarcopenia stages were distin-
guished through consultation with professional medical staff. 
To measure the muscle mass, the DXA device Prodigy (GE 
Healthcare, USA) was used. For muscle strength, the hand-
grip strength of the dominant hand was measured using an 
electronic handgrip strength measuring instrument (TKK- 
5401, TAKEI, Japan) and used the highest result. 
Regarding the walking speed, the mean walking speed was 
determined after the participants performed 6mWT.

To measure the physical activity performance, one IMU 
(Research PRO, Noraxon, USA) was worn at the second 

lumbar vertebra (L2) of the participants using an elastic band 
(Figure 1). The IMU for measuring the physical activity 
performance consists of a 3D accelerometer, a gyroscope, 
and a geomagnetic machine. The 3D accelerometer can 
measure up to ± 16G and its maximum data-sampling rate 
is 400Hz. The gyroscope can measure up to ± 2000 deg/s in 
three-axis directions and its maximum data-sampling rate is 
400Hz. The data-sampling rate was set to 100Hz. The data 
were collected using MR 3.12 (Noraxon, USA).

For physical activity ability measurement, TUG and 
6mWT were performed, which are mainly used to assess 
the functional performance of the elderly in clinical 
settings.11 TUG is an assessment in which the participant 
stands up from the chair, walks to the return point, turns 
around the return point, walks back to the chair, and sits 
down on the chair.12 The TUG assessment is mainly used 
to assess the balance ability of the elderly in clinical 
settings because it includes various motions that can 
appear during the activities of daily living. 6mWT is an 
assessment in which participants walk in a round trip of 
a straight distance specified by the experimenter for 6 
minutes.13 It is widely used to evaluate aerobic capacity, 
as well as mobility disability in the frailty people.14–16 The 
participants can take a rest when they ask for it during the 

Figure 1 Information of the IMU: (A) 3-axis of IMU and (B) the position of the IMU. 
Abbreviations: IMU, Inertial measurement unit; VT, Vertical; ML, Mediolateral; AP, Anterior-posterior; L2, Second lumbar vertebra.

Clinical Interventions in Aging 2021:16                                                                                             https://doi.org/10.2147/CIA.S323761                                                                                                                                                                                                                       

DovePress                                                                                                                       
1725

Dovepress                                                                                                                                                               Ko et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


assessment. In this study, the distance from the chair to the 
return point for TUG was set to 3m and the round trip 
distance of 6mWT was set to 30m.

The data collection process is illustrated in Figure 2. 
First, we explained the purpose of experiment to the 
participants and asked for their consent to participate 
in this experiment, which was approved by the Public 
Institutions Bioethics Committee designated by the 
Ministry of Health and Welfare of the Republic of 
Korea (P01-201902-13-001) and was performed in 
accordance with the Declaration of Helsinki. All parti-
cipants gave their written informed consent. Next, their 
handgrip strength was measured three times. After hand-
grip strength measurement, they moved to a room in 

which the DXA equipment is installed and their muscle 
mass was measured. After DXA imaging, they moved to 
a place for TUG. They wore an IMU and performed 
TUG three times. When performing TUG, the partici-
pants were asked to perform it as quickly as possible. 
The participants took a rest for 30 seconds before per-
forming the next trial. After finishing the TUG, they 
performed 6mWT one times. The participants were 
allowed to rest in place if they thought it difficult to 
proceed with the 6mWT, and the rest time and number 
of rests were recorded. However, the participants who 
rested during 6mWT were not identified. After comple-
tion of 6mWT, we terminated the experiment. The total 
experiment took approximately one hour.

Figure 2 Experimental set-up for collecting physical data of the elderly. 
Abbreviation: DXA, dual energy X-ray absorptiometry.
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Data Analysis
To implement the sarcopenia prediction model, the data of 
78 persons were used among the data of 105 persons in 
total. The data of 27 persons of which the physical activity 
data were missing or erroneous were excluded from the 
data for implementing the sarcopenia prediction model. 
The SMI, handgrip measurement data, and walking speed 
data of 78 persons were used as the sarcopenia diagnosis 
criteria of the AWGS to distinguish the sarcopenia stage 
which is classified into “sarcopenia” and “severe sarcope-
nia”. It was finally determined through consultation with 
professional medical staff. Sarcopenia was not determined 
for 58 of 78 persons. The number of participants corre-
sponding to the “sarcopenia” stage was 20 persons. 
However, there was no participant who corresponded to 
the “severe sarcopenia” stage (Table 1.).

Figure 3 shows the framework of the sarcopenia pre-
diction model using machine-learning techniques. To carry 
out the total framework, MATLAB R2018a (MathWorks, 
USA) was used.

For raw data, vertical linear acceleration (ACCVT), ante-
rior-posterior acceleration (ACCAP), and mediolateral accel-
eration (ACCML), the resultant acceleration (ACCRES) of the 

3D linear acceleration and 3D angular velocities were used. 
ACCRES is derived using the following equation: 

ACCRES ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ACCVT

2 þ ACCAP
2 þ ACCML

2
p

The 3D angular velocities are distinguished based on 
the rotational axis in each direction, for which vertical axis 
angular velocity (YAW), anterior-posterior axis angular 
velocity (ROLL), and mediolateral axis angular velocity 
(PITCH) were used. All the raw data were filtered using 
a moving average filter to remove data noise.

Table 1 Sarcopenia Stage Grouping, According to AWGS 
Criterion for Female

Stage The 
Number of 
Subject

Mean 
Muscle Mass

Mean 
Muscle 
Strength

Mean Gait 
Speed

– < 5.4kg/m2 < 18kg < 1.0m/s

Normal 50 6.5 ± 1.8kg/m2 26.2 ± 6.3kg 1.4 ± 0.2m/s

Sarcopenia 20 4.9 ± 0.3kg/m2 17.2 ± 0.7kg 1.3 ± 0.1m/s

Severe 

sarcopenia

0 None

Note: Values are mean ± SD.

Figure 3 The framework of identifying the optimal classification model for predicting sarcopenia-stage. 
Abbreviations: ACCVT, vertical linear acceleration; ACCAP, anterior-posterior acceleration; ACCML, mediolateral acceleration; ACCRES, resultant acceleration; YAW, 
Vertical axis angular velocity; ROLL, anterior-posterior axis angular velocity; PITCH, mediolateral axis angular velocity; kNN, k-nearest neighborhood algorithm; SVM, 
support vector machines; NB, Naïve Bayes algorithm.
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Feature Extraction
To develop a classification model for predicting sarcope-
nia-stage groups, we extracted 132 features from the raw 
data collected from IMUs during physical activity. Among 
the 132 features, 111 were TUG-related features and 21 
were 6mWT-related features.

To extract TUG-related features, the sub-tasks included 
in the TUG need to be distinguished based on the raw data 
collected from IMUs. The method for distinguishing the 
sub-tasks of TUG using data collected from one IMU 
suggested by Beyea et al was referenced.17 According to 
the proposed method, among the sub-tasks of TUG, those 
related to chair activity were distinguished using PITCH, 
and the sub-tasks related to turn activity were distin-
guished using YAW (Figure 4). After the sub-tasks of 
TUG were distinguished, the performance time of each 
sub-task was determined and the total TUG performance 
time was estimated. For TUG features, the features related 
to the TUG performance time and the descriptive statistic 
features of the TUG raw data were used (Table 2). The 
number of features related to the TUG performance time 
was 6. For the descriptive statistic features, the Root mean 

square, Min and Max values of the seven raw data 
(ACCVT, ACCAP, ACCML, ACCRES, YAW, PITCH, 
ROLL) measured during the five TUG sub-tasks were 
calculated.

For the features related to 6mWT, the gait parameter 
(GT), gait symmetry parameter (GS), harmonic para-
meter (HR), and approximate entropy parameter (ApEn) 
were used (Table 3). To extract the 6mWT-related fea-
tures, only the 3D linear accelerations and resultant 
acceleration were used among the raw data. GT repre-
sents the spatio-temporal characteristics that appear dur-
ing gait. For GT, the steps were recognized through the 
peak value of ACCVT collected from the IMU during the 
6-minute walking to determine the total number of steps 
during the 6-minute walking. Then the inter-step distance 
was inferred from the height of the participants to finally 
estimate the walking distance for 6 minutes. The walking 
speed was calculated using the estimated walking 
distance.

GS is used to quantify the degree of the gait 
symmetry.18,19 GS is represented by step regularity, stride 
regularity, and symmetry index. Step regularity is defined 

Figure 4 The example of identification the TUG sub-tasks using angular velocity. 
Abbreviations: PITCH, mediolateral axis angular velocity; YAW, Vertical axis angular velocity.
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as the symmetry between steps. Stride regularity indicates 
the symmetry between strides. Symmetry index is an index 
that indicates the overall degree of symmetry of gait. Step 
regularity and stride regularity can be obtained through the 
coefficient derived during unbiased-autocorrelation for the 
vertical acceleration and anterior-posterior acceleration 
signal x. The unbiased-autocorrelation coefficient 
Aunbiased can be calculated using the following equation:

Aunbiased ¼
1

N � mj j
∑N � mj j

i¼1 xixiþm 

where N is the total number of the collected data 
samples, m is the lag parameter, xi is the acceleration at 
i, and xiþm is the acceleration at the time delayed 
by m. Step regularity and stride regularity can be deter-
mined by the peaks of Aunbiased. The first peak of Aunbiased 

after zero lag is defined as the step regularity, and 
the second peak as the stride regularity. The symmetry 
index was derived by normalizing to the maximum value 
between step regularity and stride regularity.20

Symmetry index ¼
Step regularity � Stride regularityj j

max Step regularity; Stride regualrityð Þ

HR is used to evaluate the smoothness and rhythm for 
the pattern of acceleration signals measured during 
gait.21,22 Harmonic coefficients can be derived through 
discrete Fourier transform of acceleration signals for 10 
strides. HR is calculated differently depending on the 
direction of acceleration signals. The HR of the vertical 
acceleration and the anterior-posterior acceleration is cal-
culated by dividing the sum of even harmonic coefficients 
among 20 harmonic coefficients by the sum of odd har-
monic coefficients. In contrast, the HR of the left and right 
acceleration is calculated by dividing the sum of odd 
harmonic coefficients by the sum of even harmonic 
coefficients.

ApEn is used to estimate the regularity of acceleration 
signals collected from the IMU during gait.23 ApEn is one 
of the entropies that measure the complexity of time series 
data. The more regular the gait is, the smaller the calcu-
lated ApEn becomes. ApEn was calculated in accordance 
with the algorithm suggested by Pincus.24

Feature Selection
Among the various features found through literature review, 
main features that influence the classification of sarcopenia 
were screened. Many features that have a small effect on the 
objects to be classified can degrade the performance of the 
classification model.25 The Kruskal–Wallis test was per-
formed for feature selection. The Kruskal–Wallis test is 
one of analysis of variance (ANOVA) techniques used to 
select features when the amount of collected data for each 
data class is not equal or the collected data do not follow 
normal distribution.26 When p-value derived from the 
Kruskal–Wallis test is closer to zero, the feature importance 
coefficient becomes higher. A feature that has a high feature 

Table 2 Features of TUG

Features Definition

Time features Total time Total time on TUG

Sit-to-stand time Time on sit-to-stand for gait

Gait time Average time on forward gait 

and backward gait in TUG

Mid-turn time Time on rotation at return point

End-turn time Time on rotation to sit on a chair

Stand-to-sit time Time on stand-to-sit on a chair

Descriptive 

statistic 
features

Root mean 

square(RMS)

Arithmetic mean of the 

squares of a set of values

Min The smallest values

Max The greatest values

Table 3 Features of 6mWT

Features Definition

GT The number of step Number of steps for 6 minute

Step/s Step per second

Stride length Distance between steps

Gait distance Walking distance for 6 minutes

Average gait speed Average walking speed for 6 minutes

GS Step regularity Symmetry between steps as identified 

by 3-axis acceleration signals for walking

Stride regularity Symmetry between strides as identified 

by 3-axis acceleration signals for walking

Symmetry index Gait symmetry index

HR HR Smoothness & rhythm of acceleration 

signals measured for walking

ApEn ApEn Regularity of acceleration signals 
measured for walking

Abbreviations: GT, gait parameter; GS, gait symmetry parameter; HR, Harmonic 
ratio; ApEn, Approximate entropy parameter.
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importance coefficient is considered a feature that has a great 
effect on the object to be classified.

A feature selection dataset was configured to verify 
the performance of the sarcopenia classification model 
based on the result of the Kruskal–Wallis test (Table 4). 
The feature selection datasets were classified into 
a dataset when all the TUG and 6mWT features were 
used (FALL), a dataset when only TUG features were 
used (FTUG), and a dataset when only the 6mWT fea-
tures were used (F6mWT). Each feature selection dataset 
was configured with top 10, 20, 30, 40, or 50 features 
depending on the feature importance coefficient value, 
and the performance of the sarcopenia classification 
model according to the number of features was 
compared.

Classification
To identify a machine learning classification model algo-
rithm that is most suitable for predicting sarcopenia, the 
performance of the classification model was compared 
using three classification algorithms that are mainly used 
in the analysis of gait and balance of the elderly. For 
classification algorithms, support vector machines 
(SVM), k-nearest neighborhood algorithm (kNN), and 
Naïve Bayes algorithm (NB) were used.

The performance of the classification model was 
compared by calculating the f1-score (F1). F1 is used 
to estimate the performance of a model when imple-
menting a classification model when the amount of 
collected data according to the classification class is 
uneven.27 F1 has a value between 0 and 1, and a value 
closer to 1 indicates a higher performance. F1 is deter-
mined by the harmonic mean of precision and recall 
calculated from a confusion matrix. The procedure for 
deriving F1 is as follows:

Precision ¼
TP

TPþ FP 

Recall ¼
TP

TPþ FN 

F1 ¼ 2 �
Precision � Recall
Precisionþ Recall 

where TP (true positive) is the number of true data that 
were correctly predicted as true, FP is the number of false 
data that were incorrectly predicted as true, and FN is the 
number of true data that were incorrectly predicted as 
false.

Results
For FALL, when 40 features selected by feature selection 
were used, the kNN classification model showed the high-
est performances with F1 values of 0.881. In contrast, 
when all features were used, the NB classification model 
showed the lowest performances with F1 values of 0.648 
(Figure 5A). The performance of the three classification 
models according to the number of features was the best 
with an average F1 of 0.864 ± 0.002 when using 30 
features selected by feature selection, and the lowest with 
an average F1 of 0.777 ± 0.114 when using all features. 
The performance of algorithms for implementing the clas-
sification models showed the best performance in kNN 
(mean F1: 0.844 ± 0.035) and the lowest performance in 
NB (mean F1: 0.780 ± 0.074). SVM showed moderate 
performance (mean F1: 0.815 ± 0.042).

For FTUG, when 40 features selected according to fea-
ture selection were used, the SVM classification model 
showed the highest performance with F1 values of 0.860. 
However, when all features were used, the NB classifica-
tion model showed the lowest performance with F1 value 
of 0.697 (Figure 5B). The performance of the three classi-
fication models according to the number of features was 
the best with an average F1 of 0.845 ± 0.014 when using 
30 features selected by feature selection, and the lowest 
with an average F1 of 0.778 ± 0.030 when using 50 
features selected by feature selection. The performance 
of the algorithm for implementing the classification mod-
els showed similar performance with the average F1 of 
SVM and kNN at 0.810 ± 0.038 and 0.805 ± 0.038 
respectively, and the lowest performance of NB at 0.773 
± 0.047.

For F6mWT, when 15 features were used, the kNN 
classification model showed the highest performance 

Table 4 Feature Selection Datasets

FALL FTUG F6mWT

Datasets 10 features 10 features 5 features
20 features 20 features 10 features

30 features 30 features 15 features

40 features 40 features 21 features(All)
50 features 50 features

132 features(All) 111 features(All)

Abbreviations: FALL, dataset consisted of both TUG features and 6mWT features; 
FTUG, dataset consisted of only TUG features; F6mWT, dataset consisted of only 
6mWT features.
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with F1 values of 0.807. When all features were used, the 
NB classification models showed the lowest performances 
with F1 values of 0.566 (Figure 5C). The performance of 
the three classification models according to the number of 
features was the best with an average F1 of 0.751 ± 0.085 
when using 15 features selected by feature selection, and 
the lowest with an average F1 of 0.658 ± 0.083 when 
using all features. The performance of algorithms for 
implementing the classification models showed the best 
performance in SVM (mean F1: 0.757 ± 0.030) and the 
lowest performance in NB (mean F1: 0.656 ± 0.066). kNN 
showed moderate performance (mean F1: 0.726 ± 0.060).

In summary, the kNN classification model using 40 
features of FALL showed the highest performance with 
a F1 value of 0.881 (Figure 5D). In contrast, the kNN 
classification model using 15 features of F6mWT showed 
the lowest performance with a F1 value of 0.807. The 
SVM classification model using 40 features of FTUG 

showed a moderate performance with a F1 value of 0.860.

Discussion
This study developed a classification model based on 
machine learning techniques for predicting sarcopenia by 
measuring the physical activity performance of female 
elderly using IMUs. When the major features of FALL 

were examined in the feature selection steps performed 
to improve the performance of the classification model, 
top five features that influence the classification of sarco-
penia were all related to TUG features. Top 5 features 
were the minimum YAW of end-turn, the average 
ACCVT of sit-to-stand, the maximum YAW of end-turn, 
the time of end-turn and the minimum ACCAP of gait. This 
result suggests that the decreased muscle function affected 
the sit-to-stand and turning abilities as well as walking 
ability. Gadelha et al reported that sarcopenia patients 
had lower abilities for sit-to-stand and postural balance 
than the general elderly.28 Furthermore, Kurz et al reported 
that sarcopenia patients received lower TUG scores than 
the general elderly.29

Figure 5 Classification models performance depending on feature selection datasets: (A) Results of FALL, (B) Results of FTUG, (C) Results of F6mWT, and (D) Final results. 
Abbreviations: FALL, dataset consisted of both TUG features and 6mWT features; FTUG, dataset consisted of only TUG features; F6mWT, dataset consisted of only 6mWT 
features; kNN, k-nearest neighborhood algorithm; SVM, support vector machines; NB, Naïve Bayes algorithm; FALL40features(kNN), the kNN classification model using 40 
features on FALL; FTUG40features(SVM), the SVM classification model using 50 features on FTUG;; F6mWT15features(kNN), the kNN classification model using 15 features on 
F6mWT.
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This study verified that the kNN classification model 
using top 40 features of FALL is the most appropriate model 
for classifying sarcopenia. The performances of the three 
classification models SVM, kNN, and NB using top 40 
features of FTUG were 0.86, 0.84, and 0.83, respectively, 
showing relatively moderate performances. However, the 
SVM, kNN, and NB classification models using all features 
of F6mWT showed the lowest performances among the three 
datasets at 0.73, 0.68, and 0.57. Greene et al implemented 
a frailty status classification model for the elderly by con-
ducting logistic regression based on the TUG data collected 
using IMUs (Accuracy: 71.2%).7 The performance of the 
classification model of Greene et al was lower than the 
performance of the SVM classification model using 50 
features of FTUG in this study (F1: 86.0%). Coni et al 
distinguished between older individuals with a High and 
Very High Functional Status stratified by the Late-Life 
Function and Disability Instrument, conducting logistic 
regression based on the TUG data and 30-s Chair Stand 
Test data collected by smartphone IMU (Accuracy: 
69.0%).8 The performance of the classification model of 
Coni et al was lower than the performance of our the 
kNN classification model using top 40 features of FALL 

(F1: 88.1%). Compared with previous studies, kNN and 
SVM performed better than logistic regression algorithms 
for classification with frailty of the elderly. In addition, the 
classification models using TUG and 6mWT data showed 
better performance than the classification model using only 
TUG data or TUG combined 30-s Chair Stand Test data.

Kim et al developed a sarcopenia classification model 
by performing SVM algorithm from data collected by 2 
IMU during walking (Accuracy: 95%).30 The sarcopenia 
classification model showed a higher performance than 
that of the sarcopenia classification model developed in 
this study. However, the reason for such performance 
difference is that more IMUs were used for measuring 
physical activity. Bourdenas and Sloman reported that the 
performance of the classification model can be improved 
by using more sensors in the implementation of 
a classification model.31 However, attaching many sensors 
to the body for self-monitoring of sarcopenia in real life 
can cause physical discomfort in the user.

The classification models cannot classify the severe 
sarcopenia due to the failure of recruiting the subjects in 
the severe sarcopenia stage. Therefore, we should recruit 
the subjects in the severe sarcopenia stage for improving 
the classification model. We plan to recruit additional the 
subjects in the sarcopenia stage and the severe sarcopenia 

stage to equalize the number of samples between classes. 
Furthermore, this study cannot predict the sarcopenia of 
men because the sarcopenia classification model of this 
study was developed only for women. In our future study, 
we will develop a sarcopenia classification model for men 
as well. The findings of this study can be useful for 
developing sarcopenia prediction techniques and for sim-
plifying the sarcopenia diagnosis method.

Conclusion
This study aimed to develop a sarcopenia classification 
model for predicting sarcopenia of the elderly based on 
physical activity data measured by IMUs. The major IMU 
data features that affect the classification of sarcopenia 
were verified and a sarcopenia classification model that 
is most suitable for predicting sarcopenia was developed. 
When a sarcopenia classification model is developed, both 
TUG and 6mWT physical activities should be performed 
to improve the performance of the classification model. 
The results of this study can be used as basic data for 
developing sarcopenia self-monitoring techniques.
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