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Background: Paraoxonase-1 (PON1), a glycoprotein associated with serum high-density 
lipoprotein (HDL), has a central role in metabolizing lipid peroxides, exhibiting antiathero-
genic properties. The polymorphism p.Q192R has been previously associated with coronary 
artery disease (CAD) susceptibility and clopidogrel response.
Purpose: We aimed at investigating the association of PON1 p.Q192R with CAD and 
clopidogrel response in Colombian population.
Patients and Methods: The study was conducted among 163 patients diagnosed with CAD 
and treated with clopidogrel. The allele frequencies for the PON1 192Q and 192R alleles were 
determined in cases and Latin-American controls obtained from the public database gnomAD 
(n = 17,711). Response to clopidogrel was determined by assessing the platelet function using the 
INNOVANCE PFA-200 System. We determined the association between PON1 p.Q192R 
polymorphism, increased susceptibility to CAD and high on-treatment platelet reactivity 
(HPR) by using odds ratio (OR) and 95% confidence interval (CI) on four genetic models.
Results: The allele frequencies for the PON1 192Q and 192R alleles were 0.60 and 0.40, 
respectively. The allele distribution was found to be statistically different from the control 
group and other ethnic groups. The allele 192R was positively associated with decreased 
susceptibility to CAD under a dominant model (OR, 0.58; 95% CI, 0.42–0.8; P < 0.01). We 
found no association between the polymorphism and HPR.
Conclusion: We propose that PON1 p.Q192R is a potentially useful marker for CAD suscept-
ibility in the Colombian population and lacks association with HPR under clopidogrel treatment.
Keywords: PON1, genetic risk, cardiovascular disease susceptibility, platelet reactivity, 
clopidogrel

Introduction
Coronary artery disease (CAD) is the most prevalent cardiovascular disease and the 
leading cause of mortality globally, accounting for 16% of deaths worldwide.1 In 2019, 
8.9 million deaths were caused by this disease, representing a major burden on 
healthcare systems, especially in developing countries.2 CAD is almost always due 
to atheromatous vessel narrowing and subsequent impaired blood flow to the heart. 
Blood flow occlusion results in both acute and chronic conditions, such as stable 
angina, acute coronary syndrome (ACS) and chronic ischemic heart disease.3 Non- 
genetic risk factors for atherosclerosis have been thoroughly described and are highly 
prevalent in the Latin-American population.4 Importantly, the complex interaction 
between these factors and genetic factors, including single-nucleotide polymorphisms 
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(SNP), has taken a central role in understanding the patho-
physiology of this disease and the extensive variability sus-
ceptibility observed in populations.5,6 Among the genetic 
factors, paraoxonase-1 (PON1) is one of the most studied 
risk factors. PON1 is a glycoprotein associated with serum 
high-density lipoprotein (HDL) and has a central role in 
metabolizing lipid peroxides, exhibiting antiatherogenic 
properties.7 Previous studies on animal models have shown 
that transgenic PON1 knockout mice developed increased 
lipid oxidation and atherosclerosis.8 Conversely, overexpres-
sion of PON1 showed opposite results.9 Furthermore, meta- 
analysis of clinical studies suggests a link between low levels 
of PON1 in serum and increased risk of CAD.10 The PON1 p. 
Q192R missense variant (c.575A>G, rs662) is the most 
extensively characterized PON1 SNP and has been asso-
ciated with CAD susceptibility in numerous studies.11–19 

Intriguingly, other studies could not replicate this association, 
whereby the role of PON1 Q192R in CAD remains 
controversial.20–22

PON1 is considered a key factor for the bioactivation and 
clinical activity of clopidogrel, an ADP P2Y12 receptor 
antagonist recommended as a first-line treatment for 
ACS.23,24 Likewise, the PON1 Q192R variant has been 
associated with lower PON1 levels in serum, lower serum 
levels of clopidogrel active metabolites and higher platelet 
reactivity.25 Notably, extensive interindividual variability in 
the platelet response to clopidogrel has been observed.26 

Previous studies have shown that approximately 83% of 
clopidogrel response variance can be attributed to genetic 
factors and between 4% and 30% patients develop therapeu-
tic failure.27,28 Noteworthy, most of the studies conducted to 
prove the associations between the PON Q192R variant, 
CAD risk and response to clopidogrel have been performed 
on non-Latin-American populations. The lack of studies on 
this population limits the implementation of pharmacoge-
netic interventions and genetic risk estimation, therefore, 
new studies are required to clarify these relationships.

In this study, we performed a retrospective case–control 
analysis to identify the correlation between the PON1 Q192R 
variant, the risk of CAD and platelet response to clopidogrel in 
a cohort of Colombian patients with ACS. Patients were 
recruited from a previous study where polymorphisms on 
CYP2C19 and clopidogrel responses were assessed.29 The 
present study identified a positive association between the 
PON1 Q192R variant and decreased susceptibility to CAD. 
To our knowledge, this is the first case–control association 
study to assess the association between PON1 Q192R and 
CAD susceptibility in the Colombian population. These results 

provide an insight into the genetic factors involved in CAD 
pathophysiology in the Colombian population.

Patients and Methods
Sampling and Data Collection
The cohort of the present study consisted of 163 patients being 
treated for ACS at the Hospital Universitario Mayor – Méderi, 
Colombia. The study included patients older than 18 years that 
fulfilled the diagnostic criteria of ACS (including unstable 
angina and myocardial infarction with and without ST eleva-
tion) established by the Colombian ACS practice guidelines.30 

All patients received a 300 mg clopidogrel loading dose 
followed by 75 mg daily for at least seven days. Individuals 
with abnormal hematocrit levels (< 25% and > 52%), platelet 
count < 100,000, creatinine < 1.5 mg/dL and/or clinical signs 
of impaired liver and/or platelet function were excluded from 
the study. Eligible patients were invited to participate in the 
study, and after detailed explanation, informed consent was 
obtained prior to sample and data collection. The control group 
was constituted by data from 17,711 Latino/Admixed indivi-
duals obtained from the gnomAD database v2.1.1.31 All 
experimental procedures in this study were approved by the 
Ethics Committee of Universidad del Rosario (Approval 
DVO005 990-CV1018; Institutional review board reference 
IV-FPC015 and ABN062) and followed the Helsinki 
Declaration Principles. The consent was obtained by the 
study participants prior to the study commencement.

Genotyping of the PON1 C. 575 A>G 
Polymorphism
Genomic DNA was obtained from peripheral blood leukocytes 
using the Quick-DNATM MiniPrep Plus Kit (Zymo research). 
The blood samples were collected in EDTA tubes, 5 mL for 
patient, and processed within 24 hours after collection. 
Genomic DNA was quantified using a nanodrop spectrophot-
ometer. The samples were aliquoted and stored at −4°C until 
analysis. Genomic regions flanking the PON1 Q192R (c.575 
A>G) variant located in exon 6 were amplified using poly-
merase chain reaction (PCR). The primers amplification 
sequences were F: 5′-TGT CTA AGG ATT GTA TCG GCA 
GG-3′ and R: 5′-CTT CAT CAC AGT TCC CCC TCT T-3′. 
The PCR conditions were as follows: initial denaturation at 
95°C for 10 minutes; 30 cycles consisting of 95°C for 40 s, 60° 
C for 40 s, and 72°C for 40 s; and final extension at 72°C for 
10 min. The PCR products were visualized on agarose gels 
(1.5%) by ethidium bromide staining. The PCR product length 
was 631 bp (Figure 1A). PCR amplified products were 
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sequenced through Sanger method. The reference sequence 
was obtained from Ensembl (ENSG00000005421). 
Sequences were analyzed with FinchTV v1.5.0 (Geospiza 
Inc.) and aligned with the reference sequence using Clustal 
W v2.1 for comparison (http://www.clustal.org/) (Figure 1B).

Platelet Function Analysis
Platelet function was determined using the INNOVANCE 
Platelet Function Analyzer (PFA)-200 P2Y system 
(Siemens Healthcare) following manufacturer’s instruc-
tions. Briefly, this assay simulates platelet adhesion and 
in vitro aggregation using a membrane covered with 20 ug 
of adenosine diphosphate (ADP), 5 ng of prostaglandin E1 
(PGE1) and 125 ug of calcium. Blood samples were col-
lected at least 24 hours after the loading dose of clopido-
grel, with a maximum of 7 days, stored in citrated tubes 
and processed before 4 hours post-collection. High on- 
treatment platelet reactivity (HPR) was defined as a clo-
sure time of less than 106 seconds as suggested by the 
manufacturer.

Statistical Analyses
Allelic and genotypic frequencies for PON1 Q192R poly-
morphisms were calculated using the SNPStats web tool 
(https://www.snpstats.net/). Hardy-Weinberg equilibrium 
(HWE) was estimated using a χ2 goodness-of-fit test. 
The χ2 test was used to compare allele frequencies 
between the groups. The best-fitting genetic model was 
chosen according to Akaike’s interpretation criterion 
(AIC) using the SNPassoc v2.02 R package.32 According 

to the results of the INNOVANCE PFA-200 P2Y assay, 
patients were classified in either an HPR or a non-HPR 
group. Statistical differences between the two groups were 
calculated using the χ2 test. A Kruskal–Wallis test was 
performed to evaluate the differences between genotypic 
groups according to the PFA-200 P2Y assay exact values. 
Allelic and genotypic frequencies were obtained from 
numerous studies for comparisons.11–22,33–41 The P value 
for significance was set at < 0.05. Analyses were con-
ducted using R v4.0.3 (R Core Team, 2014) or SPSS v26 
208 software (IBM Analytics).

Results
Baseline Characteristics of the Study 
Population
Demographic and clinical characteristics for the study 
cohort are shown in Table 1. The median age at the 
event was 67 years (range 45–87 years) and 63.2% 
patients were male. The most prevalent type of ACS in 
this group was the non-ST segment elevation myocardial 
infarction (63.8%). Among the patients included in our 
cohort 32.5% had previous history of myocardial infarc-
tion, and nearly 30% had at least one cardiovascular 
comorbidity (eg, dyslipidemia, diabetes mellitus, and obe-
sity). The cohort for this study was derived from a pre-
vious study described by Angulo et al.29 The control group 
consisted of 17,711 Latino/Admixed general population 
obtained from the gnomAD database; 7371 individuals 
were reported as female and 10,340 as male.

Figure 1 PON1 c.575A>G genotypification. (A) Agarose gel electrophoresis of amplicon products generated by PCR. (B) Sanger sequencing chromatogram showing the 
PON1 c.575A>G genotypes. 
Abbreviations: bp, base pairs, m, molecular ladder; b, blank (negative control).
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PON1 Q192R Genotypic and Allelic 
Frequencies
A 631 base pairs fragment, containing the PON1 c.575 
A>G polymorphism, was amplified and sequenced in the 
case-cohort. Genotypes were determined by interpretation 
of chromatogram peaks using the FinchTV v1.5 and 
assigned as homozygous for the wild-type allele AA, 
heterozygous AG, and homozygous for the polymorphic 
allele GG (Figure 1). Genotype and allele frequencies for 
the case and controls are shown in Table 2. AA wild-type 
genotype was found in 38.0% of patients, while AG het-
erozygous and GG homozygous individuals were 44.2% 
and 17.8%, respectively. The genotypic distribution for the 
PON1 gene polymorphism assessed in the case–cohort 

was in HWE. The minor allele frequency (MAF) for the 
R192 allele was 0.40 (R allele) compared with 0.49 in the 
control group (P < 0.05).

Allelic frequencies for the Colombian population were 
compared with those of other studies, including 6 popula-
tions of European ancestry, 4 Asian, 4 African, 2 from 
North America, and 6 from Latin-America (Table 3). 
Interestingly, allelic frequencies were significantly differ-
ent from 15 populations (68%). East Asian populations are 
reported to have a higher frequency of the Q192R variant, 
while allele frequencies for Caucasian populations are 
lower (P < 0.05). Regarding other Latin-American popula-
tions, the cohort of Colombian patients showed higher 
allele frequencies than those from Mexico, Peru and 

Table 1 Demographic and Clinical Characteristics of the Cohort

Variable Characteristic Number (n = 163) Percentage (%)

Sex Female 60 36.8
Male 103 63.2

Age (years) 30–49 9 5.5
50–70 88 54

>70 66 40.5

ACS type STEMI 35 21.5
NSTEMI 104 63.8

Unstable angina 24 14.7

Body Mass Index Underweight (< 18.5) 2 1.2
Normal (18.5–24.9) 57 35
Overweight (25–29.9) 62 38

Obese (> 29.9) 42 25.8

Intervention type Medical 43 26.4
PCI 84 51.5

CABG 36 22.1

Antecedent of myocardial infarction Yes 53 32.5

Smoking Yes 12 7.3

Alcohol consumption Yes 5 3.1

Stent placement current event Yes 71 43.6

CAD familiar history Present 64 39.3

Type 2 Diabetes Mellitus Present 45 27.6

Hypertension Yes 111 68.1

Dyslipidemias Yes 55 33.7

Missing data 1 0.6

Statin usage Yes 143 87.7

Abbreviations: ACS, acute coronary syndrome; CABG, coronary artery bypass grafting; CAD, coronary artery disease; NSTEMI, non-ST-segment elevation myocardial 
infarction; PCI, percutaneous coronary intervention; STEMI, ST-segment elevation myocardial infarction.
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Puerto Rico. Moreover, allele frequencies were signifi-
cantly lower than in the Argentinian population. The gen-
otypic frequencies obtained in this study were similar to 
those observed in Brazil.

PON1 Q192R Has a Positive Association 
with CAD Susceptibility but Not with 
Platelet Reactivity
Association analysis was conducted under various genetic 
models including codominant (QQ; QR and RR), dominant 
(QQ vs QR-RR) and recessive (QQ-QR vs RR). All of them 
showed significant differences between cases and controls 
for the PON1 Q192R polymorphism (Table 4). According to 
the AIC, the dominant model was supported the best, 
whereas the least supported was the recessive model. 
Results showed that individuals carrying both a QR genotype 
and an RR genotype had a lower risk of CAD (dominant 
model: OR, 0.58; 95% CI, 0.42–0.8; P < 0.01) (Table 4).

The CT value was assessed by the INNOVANCE PFA- 
200 P2Y system (Siemens Healthcare). According to PFA- 
200 P2Y assay results, patients were assigned to the HPR 
(CT < 106 seconds) and non-HPR groups (CT > 106 
seconds). As shown in Table 5, 56 patients were HPR 
and 107 were non-HPR. We did not observe an association 
between the PON1 genotype and the HPR group under any 
of the genetic models tested, the PON1 genotype or the 
PFA mean range values.

Discussion
HDL particles play a central role in protecting both lipids 
and proteins against free radical-induced oxidation and 
plaque formation, playing a central role in the genesis and 
development of CAD.7 Enzymatic components potentially 
contributing to the antioxidative properties of HDL include 
PON1, platelet-activating factor acetylhydrolase (PAFAH) 
and lecithin-cholesterol acyltransferase (LCAT).42 

Numerous studies have shown that altered levels of PON1 
lead to atherosclerosis and cardiac events, highlighting the 
positive association between the PON1 Q192R variant and 
both CAD susceptibility and 10-year survival.8–19,33 To 
determine this relationship in a Latin-American population, 
we genotyped PON1 p.Q192R in a cohort of patients with 
CAD. Our results illustrate a positive association between 
this variant and susceptibility to CAD in the Colombian 
population, finding that the 192R allele confers a lower risk 
of developing CAD under a dominant genetic model (OR, 
0.58; 95% CI, 0.42–0.8; P < 0.01).

The functional and clinical relevance of PON1 in CAD 
development has been documented in several models. In 
mice, for example, PON1 overexpression demonstrated 
protection against atherosclerosis, whereas Pon1-deficient 
animals showed an increased risk of this phenotype.9,43 

PON1 enzymatic activity is affected by several environ-
mental and genetic factors, and among these, the poly-
morphism PON1 p.Q192R has been characterized as a 
major determinant.44 The 192Q PON1 alloenzyme showed 
a 3-fold lower affinity to HDL particles and, therefore, 
lower molecular stability, lipolactonase activity and mod-
ulatory effect on macrophage cholesterol efflux.45 A recent 
systematic review and meta-analysis conducted by 
Hernandez-Diaz et al, including 64 case–control studies, 
19,715 cases and 33,397 controls, mainly Asian, 
European, and African populations, conclude that the 
192R allele significantly decreased the risk of myocardial 
infarction and coronary artery disease in certain 
populations.44 Despite these findings, genotype analyses 
of PON1 as a predictor of vascular disorders have reported 
mixed results. For example, studies conducted in Turkey, 
India and Spain showed no significant differences in the 
distribution of PON1 Q192R polymorphism and the phe-
notypes assessed.46–48 Other studies have linked allele 
192R and genotype RR as CAD risk factors.12,49 These 
contrasting results may be due to a) heterogeneity across 

Table 2 Allelic and Genotypic Frequencies of PON1 Q192R in Case and Control Groups

Genotype/ 
Allele

Cases  
(n = 163)

Frequency 
(Cases)

HWE P value 
(Cases)

Controls  
(n = 17,771)

Frequency 
(Cases)

HWE P value 
(Controls)

QQ 62 0.380 4659 0.263

QR 72 0.442 8601 0.486

RR 29 0.178 0.31 4451 0.251 < 0.01*
Q 196 0.601 17,919 0.506

R 130 0.399 17,503 0.494

Note: *P value < 0.05. 
Abbreviations: HWE, Hardy–Weinberg equilibrium; Q, glutamine; R, arginine.
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the studied populations, b) impact of strong linkage dis-
equilibrium in several ethnic groups, c) incidence of vas-
cular disease, d) presence of promoter SNPs not analyzed 
in the studies, e) roles of both genetic and environmental 
influences on PON1 activity and f) gene–gene 
interactions.50

Regarding the implications of the PON1 Q192R poly-
morphism in the response to clopidogrel assessed by pla-
telet aggregation, our study suggests that the variants 
assessed do not confer susceptibility to HPR. Bouman 
et al performed an in vitro study identifying PON1 as a 
crucial enzyme that converts 2-oxo-clopidogrel into an 
active thiol metabolite.23 Furthermore, they reported that 

PON1 Q192R was a major determinant of clopidogrel 
efficacy, responsible for about 70% of the variability in 
ADP-stimulated platelet aggregation response after clopi-
dogrel treatment.23 These observations positioned PON1 
as a relevant pharmacogenetic marker and proposed that 
homozygous individuals for the PON1 192Q allele had a 
higher risk of stent thrombosis compared to those carrying 
at least 1 PON1 192R allele. The clinical relevance of this 
finding has generated several studies aiming to replicate 
this association in different populations. Nevertheless, 
similar to our results, numerous studies have not found a 
link between the PON1 Q192R polymorphism and platelet 
reactivity or clinical outcome.51,52 The discrepancy 
between these results has been attributed to methodologi-
cal inconsistencies in Bouman’s work, discussed at length 
by Camps et al, who suggested that at least two factors 
might have influenced the results; a) the measurement of 
PON1 activity was conducted with plasma containing 
EDTA, a strong inhibitor of PON1, b) the influence of 
other proteins in the PON1 enzymatic activity was not 
assessed in the study.53 Murine models have supported 
these observations. A recent study using PON1-deficient 
mice, in which platelet reactivity was assessed by PFA- 
100, showed PON1 deficiency does not influence the anti-
platelet action of clopidogrel in mice.54 These results 
reinforce the hypothesis that the enzyme is not involved 
in clopidogrel bioactivation and may explain the lack of 

Table 4 Association Between PON1 Q192R Polymorphism and Coronary Artery Disease

Model Control % Case % OR Lower Upper P value AIC

Codominant

QQ 4659 26.3 62 38 1 – – < 0.01* 1850
QR 8601 48.6 72 44.2 0.63 0.45 0.89

RR 4451 25.1 29 17.8 0.49 0.31 0.76

Dominant

QQ 4659 26.3 62 38 1 – – < 0.01* 1849
QR+RR 13052 73.7 101 62 0.58 0.42 0.8

Recessive

QQ+QR 13260 74.9 134 82.2 1 – – < 0.01* 1855
RR 4451 25.1 29 17.8 0.84 0.43 0.96

Over-dominant

QQ+RR 9110 51.4 91 55.8 1 - - 0.26 1859

QR 8601 48.6 72 44.2 0.61 0.61 1.14

Note: *P value < 0.05. 
Abbreviations: AIC, Akaike’s interpretation criterion; OD, Odds ratio; Q, Glutamine; R, Arginine.

Table 5 Association Analysis Between Platelet Reactivity and 
Genotype

Model Genotype HPR (n = 
56)

Non-HPR (n 
= 107)

P 
value

Dominant QQ 21 41 0.96
QR+RR 35 66

Codominant QQ 21 41 0.99
QR 25 48
RR 10 18

Recessive QQ+QR 46 89 0.96
RR 10 18

Abbreviations: HPR, high on-treatment platelet reactivity; Q, glutamine; R, 
arginine.
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association between PON1 genotypes and drug response 
observed in our study.

Allele frequencies for the PON1 Q192R polymorphism 
were compared to populations of different ethnic back-
grounds (Table 3) revealing statistically significant differ-
ences between our cohort and specific population of the 
different ancestries (Caucasian, Asian, and some Latin- 
American) (P < 0.05). It has been reported that two poly-
morphisms on PON1, Q192R and L55M, explain a great 
amount of the interindividual variation (up to 13-fold) 
observed in this enzyme and, importantly, both are hetero-
geneously distributed worldwide.55 Previous studies in 
European populations showed higher frequencies for the 
192Q allele (~0.7), while for East Asian populations, the 
192R allele is more common (~0.7). Adding to the wide 
genotypic variation observed worldwide, our results reveal 
that the PON1 192R allele is more frequent in Colombian 
population (~0.4) than in Caucasian populations, but less 
frequent than in East Asians. Colombia has a high degree 
of genetic admixture and amongst Latin American coun-
tries has the highest interpopulation variability.56 These 
findings have potential clinical implications, for example, 
given the positive association between the 192Q allele and 
vascular disease, this polymorphism may be useful as a 
biomarker for cardiovascular risk in specific populations.

Interestingly, the allele frequencies for 192R found in 
our study were similar to those reported in African popu-
lations (~0.4). A previous study assessing genetic admix-
ture in Latin-American populations estimated that the 
highest proportion of African ancestry occurs in Brazil 
(9.3%) and Colombia (9.3%).57 In fact, Brazil was the 
only other Latin American country whose allele distribu-
tion was comparable to our report. PON1 192R allele 
frequencies in other Latin-American countries, such as 
Argentina and Costa Rica, resemble Caucasian popula-
tions in agreement with the strong European ancestry of 
these countries.58 Our study provides new information on 
a no previously characterized population and emphasizes 
the importance of studying potential clinical biomarkers, 
such as PON1 Q192R amongst populations with different 
ethnic backgrounds.55 Importantly, high interindividual 
variability has been observed in PON1 activity due to 
environmental and genetic factors, including ethnic 
differences.59 In this context, it is increasingly necessary 
to conduct analyses assessing genetic risk factors in 
diverse populations. In agreement with this observation, 
Hernandez-Diaz et al found no association between the 
PON1 Q192R polymorphism and heart disease risk, 

nevertheless, in a stratified analysis by specific ethnicity, 
an association was found in Asian and African populations 
but not amongst Europeans or Americans.44 Future studies 
should consider this stratified approach.

Our case–control study involved an association test using 
allele frequencies from control public databases. Recent stu-
dies have highlighted the usefulness of public controls for 
genetic association studies.60,61 Existing genetic resources, 
such as the Genome Aggregation Database (gnomAD) 
(https://gnomad.broadinstitute.org/), enable this approach 
and may increase the power of association testing in a cost- 
effective manner.31,61 From a public database containing 
126,216 exomes and 15,137 genomes from unrelated indivi-
duals, we obtained ancestry-matched controls corresponding 
to 17,711 Latino/admixed American individuals. The impor-
tance of ethnically matched controls relies on the natural 
variability observed among human populations. 
Specifically, for PON1 Q192R we found that allelic frequen-
cies can differ depending on ancestry (Table 3), and if ethni-
cally diverse controls are used in case–control studies it is 
possible to find a false-positive association.62 Surprisingly, 
for the control population a HWE deviation was detected (P 
< 0.05), a phenomenon not observed in the case-cohort (P = 
0.31). A previous report identified HWE deviation for this 
polymorphism produced by an excess of homozygotes.38 

These observations can be explained by the Wahlund effect: 
a reduction in heterozygosity caused by subpopulation struc-
ture. We assume that this effect has no impact on our associa-
tion results since if two or more subpopulations are in HWE 
but have different allele frequencies, the overall heterozyg-
osity is reduced even if the subpopulations themselves are 
in HWE.

Limitation of the Study
First, our sample size represents only a fraction of 
Colombian patients with CAD and may influence statisti-
cal significance. Second, the PFA-200 assay had some 
limitations inherent to the test, for example, we could not 
quantify the exact values for samples that exceeded the 
detection limits (> 300 seconds). Third, even if the control 
population accounted for a large number of individuals, 
the database included a general Latin-American population 
and CAD cannot be discarded during the lifetime of the 
individuals. Furthermore, additional studies are required to 
exclude population-specific differences within Colombian 
population. Fourth, additional factors contributing to CAD 
development were unknown in the control population. 
Finally, despite using a curated public database to obtain 
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genetic information from a large control population, it was 
not possible to match the case and control groups by age 
or gender because this information is not available at the 
individual level. Importantly, this database includes allele 
frequencies for controls-only subjects, with no cases from 
common disorders, including heart disease. While this 
information remains enormously useful for case-control 
and other studies, there are several challenges with using 
public databases as controls, including lack of individual- 
level data and heterogeneity in data collection and 
processing.

Conclusion
Our study found that the PON1 Q192R polymorphism is 
associated with CAD susceptibility in the Colombian 
population and lacks association with HPR under clopido-
grel treatment. To our knowledge, this is the first case– 
control association study between this polymorphism and 
cardiovascular disease risk in the Colombian population. 
Although more studies are required to translate these 
population-specific findings into the clinics, this report 
highlights the utility of genetic markers in pharmacoge-
netics and personalized medicine in the Latin-American 
population.
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