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Purpose: To develop an automatic sleep stage analysis model for children and evaluate the 
effect of the model on the diagnosis of sleep-disordered breathing (SDB).
Patients and Methods: Three hundred and forty-four SDB patients aged between 2 to 18 
years who completed polysomnography (PSG) to assess the severity of the disease were 
enrolled in this study. We developed deep neural networks to stage sleep from electroence-
phalography (EEG), electrooculography (EOG) and electromyogram (EMG). The model 
performance was estimated by accuracy, precision, recall, F1-score, and Cohen’s Kappa 
coefficient (ĸ). And we compared the difference in calculation of sleep parameters among the 
technicians, the model ensemble, and the single-channel EEG model.
Results: The numbers of raw data divided into training, validation, and testing were 240, 36, 
and 68, respectively. The best performance appeared in the model ensemble of which the 
accuracy was 83.36% (ĸ=0.7817) in 5-stages, and the accuracy was 96.76% (ĸ=0.8236) in 
2-stages. The single-channel EEG model showed the classification satisfyingly as well. There 
was no significant difference in TST, SE, SOL, time in W, time in N1+N2, time in N3, and 
OAHI between technician and the model (P>0.05). On the datasets from sleep-EDF-13 and 
sleep-EDF-18, the average classification accuracies achieved were 92.76% and 91.94% in 
5-stages by using the proposed method, respectively.
Conclusion: This research established the model for pediatric automatic sleep stage classi-
fication with satisfying reliability and generalizability. In addition, it could be applied for 
calculating quantitative sleep parameters and evaluating the severity of SDB.
Keywords: sleep-disordered breathing, SDB, deep learning, sleep stage, children

Introduction
Sleep-disordered breathing (SDB) represents a spectrum of breathing disorders 
ranging from primary snoring (PS) to obstructive sleep apnea (OSA) that 
disrupts nocturnal respiration and architecture of sleep, which is highly prevalent 
in children who are at the critical stage of growth and development.1 It is mean-
ingful for early diagnosis and intervention because SDB was verified to be asso-
ciated with the functioning of various organs, including immune responses, 
cardiovascular function, and neurocognitive function.2

The mobility of SDB in children who suffer from snoring, mouth breathing, or 
apnea ranged from 7.9 to 13.4% as measured according to the Pediatric Sleep 
Questionnaire (PSQ).3,4 Based on guidelines provided by the American Academy 
of Paediatrics in 2012, the morbidity due to OSA in children is 1 to 5%.5 Since 
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overnight polysomnography (PSG) remains the gold stan-
dard for diagnosing the severity of SDB, diagnostic effi-
ciency is largely dependent on the availability and 
accessibility of this technique.

Sleep stage classification is the first step for data ana-
lysis in PSG, according to the strict criteria proposed by 
the American Academy of Sleep Medicine (AASM).6 It 
takes nearly 1 to 2 hours for technicians to identify sleep 
stages manually. However, intra-rater reliability (IRR) of 
classification is also known to be the subject of consider-
able variability. The SIESTA database arising from an EU- 
funded project found that the overall agreement for the 
AASM standard was 82.0% (ĸ = 0.76) based on an epoch- 
by-epoch comparison.7 The accurate and user-friendly 
sleep staging system would assist sleep experts and pro-
vide critical clinical utility.

Because of time consuming nature and labor intensive-
ness of the manual method, several methods for automatic 
scoring of long-term sleep data have been researched in 
the past decades. The accuracy of the models mostly 
ranges from 78–90%.8–12 Development and evaluation of 
software dedicated to automatic sleep staging (AS) face 
several issues, among which are: (1) EEG has a low sig-
nal-to-noise ratio (SNR), as the brain activity measured is 
often covered by multiple sources of environmental, phy-
siological, and activity-specific noise called “artifacts”; (2) 
the generalization capabilities of models need to be further 
verified, for patients of different ages, pathophysiological, 
and treatment in the real world.13,14

Behavioral and physiological characteristics of sleep in 
normal children vary significantly from sleep in adults.1 

There is a dynamic changing process in the frequency and 
amplitude of the characteristic waves in different ages. 
Considerable differences occur within and between indivi-
dual children. How to classify the sleep stages in children 
of different ages correctly concerns the evaluation of sleep 
efficiency and management of pediatric sleep-related 
disorders.

An automated deep neural network which has achieved 
human-level annotation performance with an average 
accuracy of 81.81% was proposed by using a multi- 
model integration strategy with multiple signals in our 
laboratory.8 Based on unfiltered EEG in a large sample 
of children with sleep-disordered breathing, our study 
was devoted to developing an automatic sleep stage ana-
lysis model with good generalizability in the clinical 
setting.

Patients and Methods
Study Datasets
The study was conducted under the principles stated in the 
Declaration of Helsinki and approved by the Institutional 
Review Board (IRB) of the Beijing Tongren Hospital 
(TRECKY2017-032). Written informed consent was 
obtained from each parent of the children for inclusion in 
the study and the use of their medical records. According 
to the IRB’s decision, this study used public datasets of 
sleep-EDF for model verification without obtaining 
patients’ informed consent.

Clinical Data
We recruited children in the Beijing Tongren Hospital 
between January 2017 and June 2021. The inclusion cri-
teria were as follows: (1) 2 to 18 years old; (2) snoring 
more than 3 days every week; (3) total sleep time more 
than 6 hours; (4) children’s parents voluntarily participated 
in the study and signed informed consent forms. The 
exclusion criteria were as follows: (1) cannot cooperate 
to complete overnight polysomnography; (2) PSG record-
ing integration failed; (3) PSG recordings could not be 
analyzed by technicians because of a large number of 
artifacts.

Sleep-EDF Database
For validating the generalization of the model, we used 
expanded version of the sleep-EDF database in which PSG 
recordings lasting approximately 20 hours or 9 hours each 
were collected from healthy subjects and some who had 
mild difficulty falling asleep after temazepam intake but 
were otherwise healthy, including sleep-EDF-13 (61 PSG 
recordings) and sleep-EDF-18 (197 PSG recordings).15 We 
combined the N3 and N4 according to the R&K rule into 
N3 with the AASM guidelines. For comparison with other 
articles, we input the integral PSG data with long periods 
of wake and only included 30 minutes of the wake before 
and after sleep.

Overnight Polysomnography (PSG)
The PSG was performed using the different computerized 
data collection systems of Compumedics S series 
(Compumedics Inc, Australia) and Alice 6 (Phillips Inc, 
America), including EEG(C3/A2, C4/A1), EOG (ROC, 
LOC), EMG, electrocardiogram (ECG), nasal and oral 
cannula pressure, recording of respiratory (thoracic and 
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abdominal) movements, and pulse oximetry for oxygen 
saturation (SpO2).

The highly trained, experienced (more than 10 years) 
PSG technician scored sleep stages and respiratory events 
in a 30s epoch following the AASM guidelines (2012).6 It 
is classified into one of the following five categories: (1) 
Wake (W), (2) Non-rapid eye movement stage 1 (N1), (3) 
Non-rapid eye movement stage 2 (N2), (4) Non-rapid eye 
movement stage 3 (N3) or (5) Rapid eye movement stage 
(REM). Sleep stages of N1 and N2 are also called shallow 
sleep, and N3 is called deep sleep. In our study, we 
additionally classified sleep stages into 4 stages (W vs 
shallow sleep vs deep sleep vs REM), 3 stages (W vs non- 
rapid eye movement stage vs REM), and 2 stages (W vs 
Sleep).

The obstructive apnea-hypopnea index (OAHI) was 
defined as the number of apnea and hypopnea events 
per hour of sleep and was used to indicate the severity of 
SDB: PS (OAHI<1); mild OSA (1≤OAHI<5); moderate 
OSA (5≤OAHI<10); severe OSA (OAHI≥10).16,17

Data Processing
Signal Preprocessing
The frequency of the PSG data in the A6 dataset was 200 
Hz while it is 256 Hz in the Compumedics dataset. To 
facilitate subsequent processing and retain necessary infor-
mation of the signal at the same time, we filtered the signal 
at 50Hz and then downsampled it to 50 Hz. Based on this 
operation, we could eliminate high-frequency noise with-
out spectral aliasing. Moreover, the amplitude of the signal 
was scaled to 100.

Label Smoothing
In the multi-classification task, the neural network would 
output the degree of confidence of each category. The 
probability vector could be obtained after the softmax 
processing. The cross-entropy loss of the network 
was computed as:

l p; qð Þ ¼ � ∑
k

i¼1
pi log qi (1) 

Where p is the ground truth probability vector and q is the 
network predicted probability vector, and K is the total 
number of classes. When the ground truth probability 
vector is in the form of one-hot (hard label), pi=1 if 
i equals to the ground truth class c, otherwise pi = 0. In 
this way, it may induce overfitting. To solve this problem, 
label smoothing converts hard label to soft label:

Pi ¼
1 � ε if ε ¼ c

ε
k� 1 if ε�c

�

(2) 

Where ɛ is constant and 0<ɛ<1. Label smoothing can 
improve the generalization of neural networks and prevent 
the network from becoming over-confident and overfitting.

One-to-Many Label
When doctors classify the sleep stage, it is not only based on 
the current epoch but also the adjacent ones. To make sure 
that the neural network can learn the features of the adjacent 
epoch, we used the one-to-many label, which means that 
the label of the current epoch corresponds to the signal of 
the current epoch and the adjacent ones. In our work, we took 
the signal of epoch before and after into consideration, which 
means that each label corresponded to a 90 seconds signal.

Neural Network
In this work, we used the modularized network architecture 
which consists of convolution block and multi-branch con-
volution block. Modularized network architecture has been 
widely used in neural networks nowadays such as VGG- 
nets18 and ResNets,19 of which the effectiveness has been 
proven by a variety of tasks.20–23 The neural network can 
become deeper without the limitation of the growing number 
of hyper-parameters by stacking blocks of the same structure.

Convolution Block
The structure of the convolution block is shown in 
Figure 1. The convolution layers are used to perform 
channel number conversion and extract the feature’s 
potential mapping. The shortcut connection is used to 
concatenate the input and output of the second ReLU, 
which can make the network deeper without the problem 
of vanishing gradient and exploding gradient. The length 
of the feature is halved by the average pooling layer. Batch 
normalization (BN) and ReLU are used before and after 
the convolution layer respectively. BN normalizes the dis-
tribution of input and ensures the input of the convolution 
layer has the same distribution as far as possible, which 
can alleviate the problem of vanishing gradient in training 
and accelerate the training speech of the model.

Multi-Branch Convolution Block
The structure of the multi-branch convolution block is 
shown in Figure 2. Multi-branch architecture is widely 
used by the family of Inception models24–26 and 
ResNeXt.27 The first convolution layer is used to perform 
channel number conversion. The channel of feature is split 
into g group and as input of the convolution layer with 
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a kernel size of 3×1 respectively, then concatenate them 
together. The third convolution layer with a kernel size of 
1×1 guarantees that the number of channels is the same as 
the input. We also used the shortcut and average pooling as 
in convolution block. Multi-branch convolution block can 
reduce the number of parameters of the network and pre-
vent the model from overfitting.

Overall Architecture and Training
The proposed overall network architecture is shown in 
Figure 3, which is mainly composed of convolution block 

and multi-branch convolution block. After the feature 
was extracted by the last multi-branch convolution block, 
we used the global average pooling layer to reduce the 
parameter amount of the model. Our model had great effec-
tiveness even though it only had 0.16 million parameters, 
which is fewer parameters than most models. In other words, 
the model was easier to train and obtain higher training 
speed. The optimizer used in model training was Adabound28 

(learning rate=0.0001, beta1=0.9, beta2=0.999, 
gamma=0.001) and batch size was 32. Moreover, early stop-
ping callback on the validation loss with the patience of 5 
epochs. All experiments in this study were performed on an 
NVIDIA GeForce RTX 3090 GPU.

Model Evaluation and Statistical Analysis
The performance of the neural network model was eval-
uated by the overall accuracy, precision, recall, weighted 
F1 score, and Cohen’s Kappa coefficient. Their calculation 
formula was as follows:

accuracy ¼
TPþ TN

TPþ TN þ FPþ FN
(3) 

precision ¼
TP

TPþ FP
(4) 

recall sensitivityð Þ ¼
TP

TPþ FN
(5) 

F1 ¼
2 � precision � recall

precisionþ recall
(6) 

where TP, TN, FP, and FN are the true positive, the true 
negative, the false positive, and the false negative, 
respectively.

K ¼
Pre að Þ � Pre eð Þ

1 � PreðeÞ
(7) 

where, Pre að Þ ¼ TPþTN
N , Pre eð Þ ¼ TPþTN

N � TPþFP
N 

þ 1 � TPþFN
N

� �
� 1 � TPþFP

N
� �

, 
and N ¼ TP þ FP þ TN þ FN

Statistical analysis was performed using SPSS 22 soft-
ware (SPSS Inc., Chicago, IL). We used Shapiro–Wilk test 
for normal data distribution test. Data were presented as 
mean±standard deviation or median (P25, P75). Variables 
with normal distribution were analyzed by t-test. Variables 
with nonnormal distribution were analyzed by Wilcoxon 
rank-sum test. The limit of agreement between technicians 
and the models was also analyzed using Bland-Altman 
plots.

Figure 1 An overview of convolution block. 
Note: Batch normalization (BN) and ReLU were used before and after the con-
volution layer respectively.
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Results
Study Population
The numbers of raw data collected by Alice 6 and 
Compumedics S series were 201 and 143, respectively. 
All the epochs were randomly split into training, valida-
tion, and testing sets at a ratio of 7:1:2. There was no 
significant difference in the demographic and polysomno-
graphic parameters among the different datasets (Table 1). 
The distribution of W, N1, N2, N3, and REM was imbal-
anced at the radio of 1.74:1:7.33:3.94.

Model Performance
In Table 2, we showed the accuracy and Cohen’s kappa of 
different models using channel combinations. The best per-
formance with an average accuracy of 83.36% (ĸ=0.7817) in 
5-stages appeared in the model ensemble which included the 
C3/A2+C4/A1+LOC+ROC+EMG, C3/A2, C4/A1, LOC, 
and ROC. And this model could also classify the stage of 

wake and sleep successfully with an average accuracy of 
96.76% (ĸ=0.8236). In the single-channel EEG model, the 
performance of C3 was better than LOC and EMG. The 
confusion matrix for displaying the five sleep stage classifi-
cation between the network prediction and technician was 
pictured in Figure 4. Except for single-channel EMG, N1 had 
precision (45.24–53.48%) and sensitivity (14.93–29.82%), 
which were lower than others. Most of them were classified 
as N2. We also compared the sleep stage classification per-
formance of various ages of children, different data collec-
tion systems, and severities of OSA. The results were listed 
in the supplemental material (Table S1–S3).

Quantitative Sleep Parameters
There was no significant difference in total sleep time (TST), 
sleep efficiency (SE), sleep onset latency (SOL), time of wake, 
time of shallow sleep, and time of deep sleep between the 
network prediction using the model ensemble and technicians 

Figure 2 An overview of multi-branch convolution block. 
Notes: The channel of feature was split into g group and as input of the convolution layer respectively, then we concatenated them together. The specific values of c and 
g are shown in Figure 3.
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(P>0.05). The model would overestimate the sleep time in 
REM (P<0.001) by about 7.73min (Figure 5). Using the sin-
gle-channel EEG model, we found that it underestimated SOL 
by about 1.63min (Supplemental Material, Figure S1).

Analysis of Respiratory Parameters
Using the stage classification of the model ensemble, we 
reviewed the analysis of respiratory events in the testing data-
set. In Table 3, there was good consistency between the model 
and technicians (P=0.303). And there was no mistake in the 
diagnosis of OSA severity between the two sleep stage 
analyses.

Comparative Experiment on the Public 
Dataset
We conducted 4-fold cross-validation to evaluate the per-
formance of the model which used channels of Fpz-Cz, 

Pz-Oz, and EOG. For 5-stages, the testing achieved accu-
racy of 92.76%(ĸ=0.8778) and 91.94% (ĸ=0.8521) of 
sleep-EDF-13 and sleep-EDF-18 with integral data, 
respectively. When removing large amounts of stage of 
wake, model performance dropped with the accuracy of 
85.75% (ĸ=0.8015) and 84.58% (ĸ=0.7862) of sleep-EDF 
-13 and sleep-EDF-18, respectively. The comparison of 
similar research was shown in Table 4.

Discussion
This study was the first to use unfiltered raw data of PSG 
based on large clinical samples in children with SDB for 
sleep staging model training, and compared the quantita-
tive sleep parameters under sleep stage classification by 
experts and the model, such as total sleep time, sleep 
efficiency, sleep onset latency, and the time of each sleep 
stage. We used the modularized network which had lower 

Figure 3 An overview of our overall network architecture based on convolution block and multi-branch convolution block.
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number of parameters to propose an automatic sleep stage 
analysis model for children. For the 5-stages, the accuracy 
was 83.36%, and the cohen’s Kappa coefficient was 
0.7881. This model could accurately distinguish between 
wake and sleep stages and showed no significant differ-
ence in diagnosis of the severity of children with SDB. 
Compared with similar studies, using sleep-EDF for ver-
ification, this model performed well.

Previous studies have trained models based on public 
datasets (collected from healthy adults and insomnia 
patients without other diseases), which have achieved 
good accuracy (78–92%). However, the original PSG 
data may have electrodes falling off, unstable baseline, 
high impedance, etc., and the accuracy of the model is 

affected by factors such as sleep fragmentation and 
arousal.8 Before this, other studies established sleep sta-
ging models based on pediatric PSG data,10,11 but its 
sample size, using more channels, and larger model load 
might limit its clinical application. Due to the different 
EEG patterns of children of different ages, we used the 2– 
18 years old to train children’s PSG, and the model 
had better generalization. The accuracy of sleep staging 
for children aged 2–6, 7–13, and 14–18 were 82.68%, 
83.86%, and 84.71%, respectively. Similar to other 
research, the accuracy decreased as the severity of SDB 
increased.8,32 The testing set of this study included 10 
children, whose AHI ranged from 5.03 to 39.42. The 
accuracy of automatic sleep stage classification was 

Table 1 The Demographic and Polysomnographic Data of Children in Different Datasets

Number Training (240) Validation (36) Testing (68) P value

Gender(male:female) 159:81 25:11 48:20 0.784
Age 6.74(5.07,9.31) 7.41(5.11,8.90) 7.08(5.13,10.52) 0.393

BMI z-score 0.44(−0.48,1.50) 0.91(−0.24,1.88) 0.55(−0.48,1.43) 0.474

TST(min) 479.75(429.35, 517.25) 472.35(433.15, 501.88) 464.41(434.88, 519.38) 0.799
SE(%) 91.51(83.69,95.64) 91.30(85.20,94.37) 92.78(88.57,95.16) 0.499

SOL(min) 4.00(1.00,10.30) 4.50(1.25,14.18) 4.75(2.13,12.13) 0.500

OAHI(/h) 0.58(0.13,2.93) 1.16(0.28,2.80) 0.52(0.13,2.38) 0.371
Sleep stage(epoch) 252,992 37,771 70,181

W(%) 29,009(11.47) 4260(11.28) 7100(10.12)
N1(%) 12,483(4.93) 1839(4.87) 4071(5.80)

N2(%) 106,549(42.12) 15,945(42.21) 29,827(42.50)

N3(%) 58,540(23.14) 9288(24.59) 16,030(22.84)
REM (%) 46411(18.34) 6439(17.05) 13,153(18.74)

Arousal index(/h) 3.30(1.50,5.88) 3.35(1.70,6.85) 3.65(2.00,6.50) 0.544

Minimum SpO2(%) 92.00(89.00,95.00) 91.50(86.25,94.00) 92.00(89.00,95.00) 0.632
ODI(/h) 0.60(0.10,2.55) 1.70(0.25,5.02) 0.55(0.10,2.67) 0.234

Note: Nonparametric distributed data were presented as median (P25, P75). 
Abbreviations: BMI, body mass index; TST, total sleep time; SE, sleep efficiency; SOL, sleep onset latency; OAHI, obstructive apnea-hypopnea index; W, wake stage; REM, 
rapid eye movement stage; SpO2, pulse oxygen saturation; ODI, oxygen desaturation index.

Table 2 Comparison of Testing Performances Using Different Input Channels

Channel 5-Stages 4-Stages 3-Stages 2-Stages

Accuracy Cohen’s 
Kappa

Accuracy Cohen’s 
Kappa

Accuracy Cohen’s 
Kappa

Accuracy Cohen’s 
Kappa

Model ensemble 0.8336 0.7817 0.8645 0.7985 0.9201 0.8255 0.9676 0.8236
EEG+EOG+EMG 0.8261 0.7562 0.8582 0.7889 0.9142 0.8117 0.9626 0.8019

EEG+EOG 0.8268 0.7562 0.8569 0.7869 0.9146 0.8138 0.9618 0.7996

EEG(C3/A2) 0.8104 0.7322 0.8400 0.7626 0.8968 0.7751 0.9542 0.7487
EOG(LOG) 0.7915 0.7066 0.8252 0.7404 0.8896 0.7605 0.9590 0.7747

EMG 0.5057 0.2327 0.5452 0.2462 0.7360 0.2806 0.9144 0.3955

Notes: Model ensemble: using the model combination, including C3+C4+LOC+ROC+EMG, C3, C4, LOC, and ROC; bold highlights the accuracy of the model ensemble 
and EEG(C3/A2) in 5-stages and 2-stages. 
Abbreviations: EEG, electroencephalography; EOG, electrooculography; LOG, left electrooculography; ROC, right electrooculography; EMG, electromyogram.
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82.74% in 5-stages, which was a little less than the per-
formance in children with primary snoring and mild OSA. 
However, there was less influence on the calculation of 
classification in the severity of SDB.

Considering the clinical application of the automatic 
sleep staging model, we analyzed the performance of 
different channel combinations and single-channel EEG. 
Except for the single-channel EMG, all models had an 
accuracy of more than 95% for 2-stages, and the 

performance of 5-stages was equivalent to that of experi-
enced sleep technicians. The lower accuracy of single- 
channel EEG model might be related to the smaller differ-
ences in different sleep stages. Affected by sweating and 
electrode shedding, many artifacts in EMG and small 
differences in EMG signals in N1, N2, and N3 phases 
were the explanation for the poor effect of the single- 
channel EMG model. Similar to other studies, the specifi-
city and sensitivity of N1 stage classification were at a low 

W N1 N2 N3 REM Pre Sen F1 W N1 N2 N3 REM Pre Sen F1 W N1 N2 N3 REM Pre Sen F1 

W 84.97 3.49 7.32 0.58 3.63 83.37 84.97 84.17 W 85.69 4.93 5.68 0.59 3.11 79.13 85.69 82.28 W 86.48 3.86 5.87 0.48 3.31 78.13 86.48 82.09

N1 14.49 20.98 46.28 0.81 17.44 53.48 20.98 30.13 N1 16.51 29.82 39.23 0.84 13.61 46.32 29.82 36.28 N1 17.91 26.58 39.60 0.69 15.23 51.43 26.58 35.04

N2 1.21 0.94 87.38 5.67 4.81 82.49 87.38 84.86 N2 1.95 2.18 85.82 5.70 4.35 82.81 85.82 84.29 N2 1.84 1.67 87.04 5.07 4.39 82.11 87.04 84.50

N3 0.27 0.03 13.58 85.96 0.16 88.60 85.96 87.26 N3 0.27 0.02 13.71 85.88 0.12 88.51 85.88 87.18 N3 0.36 0.04 15.63 83.83 0.13 89.52 83.83 86.58

REM 1.59 1.60 7.18 0.08 89.55 82.92 89.55 86.11 REM 2.34 3.08 8.44 0.11 86.03 84.41 86.03 85.21 REM 2.92 1.85 8.48 0.02 86.73 83.94 86.73 85.31

W N1 N2 N3 REM Pre Sen F1 W N1 N2 N3 REM Pre Sen F1 W N1 N2 N3 REM Pre Sen F1 

W 77.51 3.55 11.15 0.85 6.94 77.32 77.51 77.41 W 79.79 5.06 9.00 0.77 5.38 79.72 79.79 79.76 W 32.70 0.08 59.48 2.86 4.87 65.48 32.70 43.62

N1 14.79 14.93 45.17 1.03 24.07 45.24 14.93 22.46 N1 13.76 21.35 46.55 0.88 17.46 45.57 21.35 29.07 N1 12.63 0.27 67.87 8.94 10.29 35.48 0.27 0.54

N2 1.73 0.80 85.91 6.04 5.53 81.28 85.91 83.53 N2 1.47 1.58 82.51 6.22 8.23 78.93 82.51 80.68 N2 1.61 0.02 81.28 11.38 5.71 49.26 81.28 61.34

N3 0.45 0.04 13.34 85.98 0.19 87.83 85.98 86.90 N3 0.61 0.04 16.34 82.53 0.47 87.08 82.53 84.75 N3 0.79 0.00 60.10 35.32 3.79 51.12 35.32 41.78

REM 3.24 1.81 8.55 0.07 86.34 78.28 86.34 82.11 REM 2.63 1.54 10.69 0.15 84.98 75.53 84.98 79.98 REM 0.79 0.06 63.26 11.07 24.82 51.50 24.82 33.50

Predicted Sleep Stage

egat
S
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  D EEG (C3/A2)   E EOG (LOC)   F EMG

Figure 4 The confusion matrix displaying the 5-stages classification between the network prediction and technician (true sleep stage). 
Notes: (A) The performance of the model ensemble; (B) the performance of the model using the channels of EEG, EOG, and EMG; (C) the performance of the model using 
the channels of EEG and EOG; (D) the performance of the model using the channel of EEG(C3/A2); (E) the performance of the model using the channel of EOG(LOG); (F) 
the performance of the model using the channel of EMG. 
Abbreviations: Pre, precision; Sen, sensitivity; F1, F1-score.
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Figure 5 Bland-Altman plots showing the agreement between technicians and model ensemble for TST, SOL, time in W, time in N1+N2 (shallow sleep), time in N3 (deep 
sleep), and time in REM. 
Note: The solid horizontal lines indicate the upper and lower limits of agreement, and the dotted line indicates the mean bias for the model. 
Abbreviations: TST, total sleep time; SE, sleep efficiency; SOL, sleep onset latency; W, wake stage; N1+N2, shallow sleep; N3, deep sleep; REM, rapid eye movement stage; 
OAHI, obstructive apnea-hypopnea index.
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level due to the small proportion of N1 in this database. 
A large number of N1 was divided into N2 and REM, 
which may be related to N1 which is mostly in the transi-
tion of sleep stage and the characteristics are not obvious. 
Some studies have performed separate data amplification 
for the N1-35-, which can increase the diagnostic efficiency 
of N1. We will use it in the optimization of the model in 
the future. The N3 stage has a higher proportion in chil-
dren’s sleep, and the slow-wave has the characteristics of 
high amplitude. Compared with the adult EEG staging 
model,8,36,37 the accuracy of the N3 in this study 
had been greatly improved.

Comparing the ability of sleep stage classification 
and quantitative sleep parameters illustrates the practi-
cality of the neural network model. The difference 
between model ensemble and technician analysis was 
small. The model underestimated the total sleep time 
by 1.00min, time in slight sleep (N1+N2) by 5.21min, 
time in N3 by 3.52min, and overestimated sleep onset 
latency by 0.44min, time in W by 0.56min, and time in 
REM by 7.73min. This inconsistency is tolerable. 
Similarly, the single-channel EEG model obtained 
a similar performance. Others based on non-contact 
radar technology, wearable devices, electrocardiograms, 
and respiratory dynamics, etc., had lower accuracy in 
judging different sleep stages than the single-channel 
EEG model of this study.38–40 Using the automated 

sleep stage, we re-analyzed the respiratory events, and 
the calculated OAHI was not different from the manual 
analysis. In the future, adding a single-channel EEG 
module to wearable devices and performing automatic 
sleep stage classification will be more efficient to screen 
children with sleep-disordered breathing.

As shown in Table 4, a variety of deep learning net-
works achieved good performance.10,29–34 With combined 
channels of EEG and EOG, our results were at a leading 
level. Recently, researchers have begun to consider how to 
design algorithms to be small, efficient, and robust. Based 
on previous research, we have improved data preproces-
sing and algorithms: (1) we filtered the signal at 50Hz, 
which would preserve EEG characteristics, remove high- 
frequency noise while reducing the amount of calculation. 
(2) Label smoothing mainly uses soft label, which modi-
fies the weight of the real sample label category when 
calculating the loss function, and finally has the effect of 
suppressing overfitting. (3) Compared with other 
classifiers,30,41–43 our model achieved a huge performance 
improvement, meanwhile the number of parameters (num-
ber of trainable parameters in a single model was 
0.15 million) was much smaller than in other similar 
studies (Table 5).

There are still several limitations in our study. Even 
though our study population involved children aged 2–18, 
there is still a lack of validation for children under 2 years 

Table 3 Comparison of the Sleep Parameters and Respiratory Parameters Between Network Prediction and Analysis of Technicians

Technicians Model Ensemble Single-Channel EEG(C3/ 
A2)

P valuea P valueb

TST/min 472.00 

(434.88,518.88)

469.50 

(426.88,509.88)

474.50(422.63,513.88) 0.581 0.059

SE(%) 92.72(88.56,95.17) 94.43(86.32,95.93) 92.98(86.44,96.46) 0.613 0.064
SOL/min 5.00(2.50,12.38) 5.50(2.13,13.00) 3.25(0.63,9.75) 0.835 0.011*

W/min 27.00(18.13,46.63) 24.75(14.00,57.38) 25.75(10.75,58.13) 0.496 0.402

N1+N2/min 248.99±51.43 243.77±46.84 241.40±52.01 0.194 0.085
N3/min 117.87±44.13 114.35±32.31 115.38±33.68 0.343 0.507

REM/min 96.71±27.59 104.44±33.68 106.66±38.63 <0.001* 0.001*
OAHI (/h) 0.52(0.13,2.38) 0.55(0.13,2.45) 0.54(0.13,2.40) 0.303 0.303

Primary snoring 43 43 43 1.000 1.000

Mild OSA 15 15 15
Moderate- 

severe OSA

10 10 10

Notes: Data were presented as mean ± standard deviation or median (P25, P75); variables were nonparametrically distributed and analyzed by Wilcoxon rank-sum test; 
variables were normally distributed and analyzed by t-test; a=analysis of technicians vs model ensemble; b=analysis of technicians vs single-channel EEG; *statistically 
significant at P < 0.05. 
Abbreviations: TST, total sleep time; SE, sleep efficiency; SOL, sleep onset latency; OAHI, obstructive apnea-hypopnea index; W, wake stage; N1+N2, shallow sleep; N3, 
deep sleep; REM, rapid eye movement stage.
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of age. SDB patients have mainly primary snoring and 
mild OSA, and the proportion of N1 in the children’s 
clinical sample database was very small, which could 
affect its performance.

Conclusion
In our study, we created an automatic sleep stage analysis 
model with the modularized network with satisfying relia-
bility and generalizability, which could be applied to cal-
culating quantitative sleep parameters and evaluating the 
severity of SDB.
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