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Purpose: Obesity is a worldwide metabolic disease and a critical risk factor for several 
chronic conditions. Obstructive sleep apnea (OSA) is an important complication of obesity. 
With the soaring morbidity of obesity, the prevalence of OSA has markedly increased. 
However, the underlying mechanism of the high relevance between obesity and OSA has 
not been elucidated. This study investigated the effects of obesity on the structure and 
function of the genioglossus to explore the possible mechanisms involved in OSA combined 
with obesity.
Methods: Six-week-old male C57BL/6J mice were fed high-fat diet (HFD, 60% energy) or 
normal diet (Control, 10% energy) for 16 weeks. The muscle fibre structure and electro-
myography (EMG) activity of genioglossus were measured. The ultrastructure and function 
of mitochondrial, oxidative damage and apoptosis in genioglossus were detected by trans-
mission electron microscopy (TEM), qPCR, Western blotting, immunohistochemistry and 
TUNEL staining. We further studied the influence of palmitic acid (PA) on the proliferation 
and myogenic differentiation of C2C12 myoblasts, as well as mitochondrial function, 
oxidative stress, and apoptosis in C2C12 myotubes.
Results: Compared with the control, the number of muscle fibres was decreased, the fibre type 
was remarkably changed, and the EMG activity had declined in genioglossus. In addition, 
a HFD also reduced mitochondria quantity and function, induced excessive oxidative stress 
and increased apoptosis in genioglossus. In vitro, PA treatment significantly inhibited the 
proliferation and myogenic differentiation of C2C12 myoblasts. Moreover, PA decreased the 
mitochondrial membrane potential, upregulated mitochondrial reactive oxygen species (ROS) 
levels, and activated the mitochondrial-related apoptotic pathway in myotubes.
Conclusion: Our findings suggest that a HFD caused genioglossus injury in obese mice. 
The mitochondrial dysfunction and the accompanying oxidative stress were involved in the 
genioglossus injury, which may provide potential therapeutic targets for OSA with obesity.
Keywords: obesity, obstructive sleep apnea, genioglossus, muscle, mitochondria

Introduction
Obesity is a worldwide metabolic disease that has shown increasing morbidity.1,2 Recent 
studies have found that obesity characterized by an excessive accumulation of lipids in 
the blood and subcutaneous and visceral compartments, leads to disorders in glucose and 
lipid metabolism and increases the risk of several chronic conditions, notably 
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cardiovascular and respiratory diseases.3–5 Obstructive sleep 
apnea (OSA) is one of the most common respiratory diseases 
and is characterized by intermittent and recurrent collapse of 
the upper airway during sleep, inducing hypoxia or apnea and 
causing a significant threat to the health and quality of life of 
the affected individuals.6,7 Obesity is highly correlated with 
the incidence of OSA.8,9 According to a recent epidemiologi-
cal study, the prevalence of OSA was four times higher in the 
obese population than in the general population.10 The ana-
tomic stenosis of the upper airway and the dysfunction of 
upper airway dilator muscles were reported to have important 
implications in the pathogenesis of OSA.11,12 High-fat diet 
(HFD)-induced obesity increases the accumulation of fat 
around the upper airway, aggravates stenosis of the upper 
airway, and more easily results in airflow reduction or obstruc-
tion during sleep.13–16 However, how the dysfunction of the 
upper airway dilator muscles in the obese population is 
involved in the mechanism of OSA has not been elucidated.

The genioglossus is the largest upper airway dilator mus-
cle and plays a very important role in maintaining airway 
patency.17 Compared to control subjects, OSA patients show 
an abnormal structure and function of the genioglossus, with 
a higher proportion of type II fibres (fast-twitch, glycolytic), 
which decreases fatigue resistance in the genioglossus.18 

HFD-induced obesity is a metabolic disease. The accumula-
tion of excess free fatty acids (FFAs) in skeletal muscle could 
impair myogenesis, decrease skeletal muscle mass and 
reduce muscle strength.19,20 However, there have been few 
studies addressing the effects of obesity on genioglossus 
structure and function.

Mitochondria are the primary energy source in muscle 
cells. Mitochondria produce adenosine triphosphate (ATP) 
via the oxidative metabolism of glucose and fatty acids, 
which is essential for the maintenance of skeletal muscle 
function.21 In the context of HFD-induced obesity, excess 
lipids in skeletal muscle suppress glucose oxidative meta-
bolism and lead to disturbances in mitochondrial function. 
A large body of studies have shown that mitochondrial 
damage is involved in obesity-induced skeletal muscle 
dysfunction, impairing mitochondrial biogenesis, lowering 
mitochondrial content and reducing the activity of mito-
chondrial enzymes.22–24 Moreover, mitochondrial damage 
was also found in the genioglossus of chronic intermittent 
hypoxia (CIH) rats.25 Therefore, it is essential for us to 
investigate the potential influence of obesity on the mito-
chondria in the genioglossus, which will be beneficial to 
better understand the underlying mechanism of OSA that 
occurs with obesity.

Mitochondrial dysfunction contributes to the excessive 
accumulation of reactive oxygen species (ROS) and oxi-
dative stress, which causes oxidative damage to major 
cellular structures (in particular, the plasma membrane, 
proteins and DNA) and leads to apoptosis.26 In HFD- 
induced obesity, oxidative damage accompanied by mito-
chondrial impairment has been found, which is a critical 
factor for skeletal muscle dysfunction.27,28 Our previous 
work that focused on OSA demonstrated that ROS over-
production caused by hypoxia contributed to pyroptosis in 
myoblasts and might be a critical pathogenesis of OSA.29

Therefore, we hypothesized that mitochondrial dys-
function and oxidative stress may be involved in the 
effects of HFD-induced obesity in the genioglossus, 
which is an important pathogenesis of OSA combined 
with obesity. To address this hypothesis, we examined 
the changes in genioglossus activity and structure, as 
well as the mitochondrial ultrastructure and function, in 
HFD-induced obese mice. In addition, the underlying pre-
liminary mechanisms have been investigated, including 
oxidative stress and apoptosis in the genioglossus. We 
also used palmitic acid (PA), one of the most abundant 
saturated free fatty acids (FFAs) in humans, to mimic 
HFD-induced obesity in an in vitro study.30 We studied 
the influence of PA on the proliferation and myogenic 
differentiation of C2C12 myoblasts, as well as mitochon-
drial function, oxidative stress, and apoptosis in C2C12 
myotubes.

Materials and Methods
Animals
Six-week-old male C57BL/6J mice were provided by 
Shanghai Model Organisms Center and housed under con-
trolled environmental conditions (22 ± 2 °C, 50% ± 5% 
humidity, 12:12 h light/dark cycle). The mice were randomly 
divided into two groups: the control group (normal diet, 10% 
energy; Research diet D12450J) and the HFD group (60% 
energy; Research diet D12492). All mice had free access to 
food and water under specific pathogen-free (SPF) condi-
tions, and the mice body weights were recorded weekly. The 
animal study was approved by the Animal Welfare and 
Ethics Group, Department of Laboratory Animal Science at 
Fudan University. All procedures were performed according 
to Laboratory animal – Guideline for ethical review of ani-
mal welfare (GB/T 35892–2018, standardization administra-
tion of the People’s Republic of China). After 16 weeks, the 
mice were euthanized, and samples were collected. Before 
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sample collection, the mice were fasted overnight and anaes-
thetized with chloral hydrate. Blood was collected from the 
retro-orbital plexus and centrifuged at 3000 rpm for 10 
minutes. Plasma was collected and used for clinical biochem-
ical analyses. Additionally, each mouse genioglossus was 
harvested for subsequent analysis.

Blood Biochemical Assay
Chemical analysis of the serum samples (n = 6) was carried 
out with an automatic biochemistry analyser (Chemray 800, 
Rayto Life and Analytical Sciences Co., Shenzhen, China). 
The following parameters were evaluated: triglycerides 
(TGs) and cholesterol (CHOL). The levels of FFAs were 
measured with commercial kits (Nanjing Jiancheng 
Bioengineering Institute, Nanjing, China).

Intraperitoneal Glucose Tolerance Test 
(IPGTT) and Insulin Tolerance Test 
(IPITT)
At the end of the 16-week experiment, the IPGTT and 
IPITT were performed. For the IPGTT, mice were intra-
peritoneally injected with glucose (Sigma–Aldrich, 
St. Louis, MO, USA; 1.5 g/kg body weight) after 12 h of 
fasting. For the IPITT, mice were intraperitoneally injected 
with insulin (Sigma–Aldrich, St. Louis, MO, USA; 0.5 U/ 
kg body weight) after 4 h of fasting. Blood samples (n = 6) 
were taken from the tail vein, and the blood glucose levels 
were measured at 0, 15, 30, 60, and 120 minutes using 
a glucometer (Roche, USA).

Electromyography (EMG)
EMG of the genioglossus muscle was acquired and ana-
lysed as described in our previous study.31 Briefly, six 
mice from each group were first anaesthetized with 1% 
pentobarbital, and then the genioglossus was exposed. 
EMG electrodes (AD Instrument, Australia) were inserted 
into the genioglossus, and the EMG signal was amplified 
and recorded (LabChart 8, AD Instrument, filter frequency 
was 1–1000 Hz, time constant: 1 s).

Histological Examination and 
Immunohistochemical Assay
The genioglossus samples were harvested and immediately 
fixed in ice-cold 4% paraformaldehyde solution. The his-
topathological tests were performed using standard labora-
tory procedures. Briefly, the genioglossus samples were 
embedded in paraffin and cut into 5 μm sections, which 

were mounted onto glass slides for haematoxylin and eosin 
(H&E), Masson’s trichrome, myosin heavy chain 
(MyHC)-slow, MyHC-fast, 4-hydroxynonenal (4-HNE) 
and 8-hydroxy-2ʹ-deoxyguanosine (8-OHdG) staining. 
For histological examinations, genioglossus sections were 
stained with micrographs of H&E and Masson’s trichrome 
staining (Solarbio, Beijing, China). For tissue immunohis-
tochemistry, after being deparaffinized and rehydrated, the 
genioglossus sections were boiled in 10 mM citrate buffer 
for 10 minutes, processed with 0.25% Triton X-100 for 30 
minutes and blocked with a 5% bovine serum albumin 
(BSA) solution at room temperature for 30 minutes. 
Next, the sections were incubated overnight at 4 °C with 
primary antibodies against MyHC-slow (1:1000, Abcam, 
UK), MyHC-fast (1:1000, Abcam, UK), 4-HNE (1:200, 
Abcam, UK) and 8-OHdG (1:200, Abcam, UK). Then, 
staining was carried out with an immunodetection kit and 
DAB peroxidase substrate kit according to the manufac-
turer’s instructions (ZSGB-BIO, Beijing, China). 
Micrographs were acquired with a light microscope 
(DM2500, Leica, Wetzlar, Germany). Three to ten fields 
of view were randomly selected for quantification analysis.

Transmission Electron Microscopy (TEM)
The genioglossus samples were sliced into several tissue 
pieces (each 1 × 1×1 mm) and fixed in 2.5% glutaralde-
hyde at 4 °C. Then, the samples were incubated in 0.1 
M phosphate buffer with 1% osmium tetroxide for 2 h, 
dehydrated, embedded in epoxy resin, and polymerized for 
48 h at 60 °C. Subsequently, the sections were cut into 
ultrathin sections (50–70 nm), stained with uranyl acetate- 
lead citrate, and examined with a transmission electron 
microscope (JEOL-1200, JEOL electron, Japan).

Mitochondrial DNA (mtDNA) Copy 
Number Determination
The genomic DNA of genioglossus samples (n = 6) was 
isolated with the DNA Extraction Kit (Tiangen, DP304, 
Beijing, China) according to the manufacturer’s instruc-
tions. QPCR was used to detect the copy numbers of 
nuclear DNA and mtDNA with SuperReal PreMix Plus 
(Tiangen, FP205, Beijing, China) on a LightCycler 480 
System (Roche, Basel, Switzerland). The relative copy 
number of mtDNA was determined by the comparative 
cycle threshold (Ct) value of nuclear DNA. The primers 
of nuclear DNA: (F) CGTGGGCTCCAGCATTCTA and 
(R) TCACCAGTCATTTCTGCCTTTG; and the primers 
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of mtDNA: (F) CGAAAGGACAAGAGAAATAGAG and 
(R) GAACAAGGTTTTAAGTCTTACGCA.

Cell Culture and Palmitic Acid Treatment
C2C12 mouse myoblasts from the Cell Bank of Chinese 
Academy of Sciences Shanghai Institute of Cell Biology 
(Shanghai, China) were cultured in growth medium (GM) 
(high-glucose DMEM with 10% FBS (Gibco, MA, USA) and 
1% penicillin/streptomycin (Gibco, MA, USA)) at 37 °C in 
5% CO2/95% air. For myogenic differentiation, when C2C12 
myoblasts were 100% confluent, GM was switched to high- 
glucose DMEM containing 2% horse serum (Gibco, Thermo 
Fisher Scientific, Waltham, MA, USA) and 1% penicillin/ 
streptomycin for 5 days, with medium change every 2 days.

In vitro, PA was used to mimic the high-fat environment. 
PA (Sigma–Aldrich, St. Louis, MO, USA) was dissolved in 
absolute ethanol to generate a 100 mM stock solution after 
filtration through a 0.22 μm PES membrane. Then, the PA 
stock solution was added to serum-free DMEM containing 
5% BSA (Sigma–Aldrich, St. Louis, MO, USA) at final 
concentrations of 100 μM, 300 μM and 500 μM at 37 °C 
with continuous shaking for 2 h. Serum-free DMEM contain-
ing 5% BSA with absolute ethanol was used as the control. 
To examine the effect of PA on the proliferation of C2C12, 
the C2C12 myoblasts were treated with different concentra-
tions of PA for 6 h to 48 h. To assess the effect of PA on the 
myogenic differentiation of C2C12, the C2C12 myoblasts 
were treated with different concentrations of PA for 2 days 
during cellular differentiation. To investigate the effect of PA 
on the mitochondrial function of C2C12 myotubes, after 5 
days of myogenic differentiation, the myotubes were treated 
with different concentrations of PA for 2 days. In some 
experiments, in order to detect the role of PA-induced mito-
chondrial ROS in the damage of C2C12 myotubes, Szeto- 
Schiller (SS) peptide SS–31 (Selleckchem, Houston, TX, 
USA) was used to treat C2C12 myotubes at 10μM for 
2days. SS–31 is reported to target mitochondria and reduce 
mitochondrial ROS.32,33

Cell Viability Assay, Lactic Dehydrogenase 
(LDH) Measurements and Cell 
Morphological Imaging
Cell viability was determined using a Cell Counting Kit-8 
assay (CCK-8, Dojindo, Japan). In brief, C2C12 myoblasts 
were seeded in 96-well plates at a density of 5×103 cells per 
well and allowed to attach for 24 h. Then, the C2C12 myo-
blasts were treated with PA at different concentrations (100 

μΜ, 300 μM and 500 μM). After treatment for 0 h, 6 h, 12 h, 
24 h, and 48 h, the cells were incubated with CCK-8 for 1 h, 
and the absorbance values at 450 nm were measured with an 
Epoch 2 microplate spectrophotometer (BioTek, VT, USA). 
After treatment with PA for 24 h, the morphological changes 
in the C2C12 myoblasts were detected with a Leica DMi8 
microscope (Leica, Wetzlar, Germany).

Cytoplasmic LDH was released into the medium following 
cell death. The amount of LDH in the extracellular medium 
was determined using a commercial LDH kit (Beyotime, 
Nanjing, China). Briefly, C2C12 myoblasts were seeded in 96- 
well plates and treated with PA for 24 h. Then, the culture 
supernatants were collected and centrifuged at 400 × g for 5 
minutes. LDH levels were detected according to the manufac-
turer’s protocol, and the absorbance at 495 nm was measured 
with an Epoch 2 microplate spectrophotometer.

Flow Cytometry Detection of Apoptosis
Cell apoptosis was measured using an Annexin V-FITC/pro-
pidium iodide (PI) apoptosis detection kit (Beyotime, Nanjing, 
China). After treatment with PA for 24 h, C2C12 myoblasts 
were harvested and incubated with annexin V-FITC and PI for 
15 minutes according to the manufacturer’s instructions. The 
rate of apoptosis was measured using flow cytometry (ACEA 
NovoCyte, Hangzhou, China) and analysed with Novo 
Express software 1.4.1 (ACEA Biosciences).

Immunofluorescence Cell Staining
C2C12 myoblasts were incubated with different concen-
trations of PA during cellular differentiation for 2 days. 
Then, the myotubes were washed with PBS, fixed in 4% 
paraformaldehyde for 15 minutes, permeabilized with 
0.25% Triton X-100 for 10 minutes and blocked with 5% 
BSA for 1 h at room temperature. Subsequently, the cells 
were incubated overnight at 4 °C with primary antibodies 
against MyHC (1:10, MF20 DSHB, USA). The 
following day, the cells were incubated with the secondary 
antibody for 1 h, and the nuclei were counterstained with 
DAPI for 5 minutes at room temperature. Finally, fluores-
cent images were captured using a fluorescence micro-
scope (DMi8, Leica, Wetzlar, Germany).

MitoTracker Green and Mitochondrial 
Membrane Potential (MMP) Fluorescent 
Staining
After myogenic differentiation of C2C12 for 5 days, the 
myotubes were treated with different concentrations of PA 
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for 2 days. Then, C2C12 myotubes were incubated with 
MitoTracker green dye (Beyotime, Nanjing, China) at 37 
°C for 30 minutes to observe changes in mitochondrial 
morphology. The nuclei were counterstained with DAPI 
for 5 minutes at 37 °C. Images were immediately acquired 
with a fluorescence microscope (DMi8, Leica, Wetzlar, 
Germany). Moreover, the MMP was evaluated using 
a tetraethylbenzimidazolylcarbocyanine iodide kit (JC-1, 
Beyotime, Nanjing, China) according to the manufac-
turer’s instructions. C2C12 myotubes were incubated 
with different concentrations of PA for 2 days. Then, the 
myotubes were stained with 10 μM JC-1 for 20 minutes at 
37 °C. The nuclei were counterstained with DAPI for 5 
minutes at 37 °C, and images were immediately acquired 
with a fluorescence microscope.

Mitochondrial ROS Determination
Mitochondrial ROS was evaluated using the mitochondrial 
superoxide indicator MitoSOX Red (Invitrogen, Thermo 
Fisher Scientific, Waltham, MA, USA) according to the 
manufacturer’s instructions. Briefly, after myogenic differ-
entiation of C2C12 for 5 days, the myotubes were treated 
with PA or SS-31 for 2 days. Then, C2C12 myotubes were 
washed twice with PBS and incubated in 5 μM MitoSOX 
Red for 30 minutes at 37 °C. The nuclei were counter-
stained with DAPI for 5 minutes at 37 °C, and images 
were immediately acquired with a fluorescence 
microscope.

Apoptosis Assay
A TUNEL assay was performed to detect apoptotic cells in 
genioglossus tissues or C2C12 myotubes using a One-Step 
TUNEL Assay Kit (Beyotime, Shanghai, China) according 
to the manufacturer’s instructions. Briefly, the fixed gen-
ioglossus sections or C2C12 myotubes were incubated 
with TUNEL reaction mixture for 30 minutes at 37 °C 
and then counterstained with 4ʹ,6-diamidino-2-phenylin-
dole (1:10000, DAPI, Abcam, UK) for 5 minutes. 
Images were acquired with a fluorescence microscope 
(DM2500, Leica, Wetzlar, Germany).

Western Blotting
Total protein was extracted from genioglossus tissues or 
C2C12 myotubes using RIPA buffer (Beyotime, Nanjing, 
China) with protease and phosphatase inhibitors. To detect 
the protein levels of Cyt-c in the mitochondria and cytoplasm 
of genioglossus tissues, mitochondrial and cytoplasm pro-
teins were isolated using a mitochondria isolation kit 

(Beyotime, Nanjing, China). Protein concentration was 
determined with a bicinchoninic acid (BCA) Protein Assay 
kit (Thermo Fisher Scientific, Waltham, MA, USA). Total 
protein was separated by 10% SDS polyacrylamide gel elec-
trophoresis (SDS–PAGE) and transferred onto polyvinyli-
dene fluoride (PVDF) membranes using a Bio–Rad system 
(Hercules, CA). The membranes were incubated overnight at 
4 °C with primary antibodies. Antibodies against DRP1 
(1:1000), cleaved caspase-3 (1:1000) and Bax (1:1000) 
were purchased from Cell Signaling Technology (BSN, 
USA). Antibodies against MFN2 (1:300), Bcl-2 (1:1000), 
Cyt-c (1:1000) and Cox IV (1:1000) were purchased from 
Proteintech Group (PA, USA). Antibodies against MyoG 
(1:500), MyoD1 (1:500) and GAPDH (1:500) were pur-
chased from Santa Cruz Biotechnology (TX, USA). The 
MyHC antibody (1:60) was purchased from Developmental 
Studies Hybridoma Bank (IA, USA). The OXPHOS anti-
body (1:1000) was purchased from Abcam (Cambridge, 
UK). Horseradish peroxidase-conjugated secondary antibo-
dies (1:10000, Cell Signaling Technology, BSN, USA) were 
applied the following day and incubated with the membranes 
at room temperature for 1.5 h. Then, the membranes were 
developed with a chemiluminescent substrate kit (Thermo 
Fisher Scientific, Waltham, MA, USA), and the bands were 
detected with Amersham Imager 600 (GE Health care, IL, 
USA). GAPDH was used as an internal control in the total 
protein and cytoplasm protein, Cox IV was used as an inter-
nal control in the mitochondria protein.

Statistical Analysis
Data were analysed using GraphPad Prism 7.0 (GraphPad 
Software, San Diego, CA, USA) and expressed as the 
mean ± SD. Differences between groups were determined 
using Student’s t-test or one-way ANOVA. A p value< 
0.05 was considered statistically significant.

Results
Effects of HFD on Glucose and Lipid 
Metabolism in Mice
The body weights of the HFD mice significantly increased 
after 16 weeks, and these mice were markedly heavier than the 
control group (p < 0.001) (Figure 1A). Moreover, the serum 
TG, FFA and CHOL levels were all elevated in the HFD group 
(Figure 1B–D). In addition, the IPGTT and the IPITT were 
performed, and the data showed that HFD induced systemic 
insulin resistance, with a significant reduction in glucose tol-
erance and insulin sensitivity (Figure 1E and F).

Nature and Science of Sleep 2021:13                                                                                               https://doi.org/10.2147/NSS.S343721                                                                                                                                                                                                                       

DovePress                                                                                                                       
2207

Dovepress                                                                                                                                                            Chen et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Effects of HFD on Genioglossus Structure 
and Activity
The genioglossus is the major upper airway muscle and 
plays an important role in the maintenance of upper airway 
patency. The structure of the genioglossus was detected 
using H&E and Masson’s trichrome staining and MyHC- 
slow or MyHC-fast immunohistochemistry assays 
(Figure 2A). H&E-stained sections of the genioglossus 
showed that the diameters of the muscle fibres in the HFD 
group were increased, while the number of muscle fibres 
was significantly less than that in the control group (p < 
0.05) (Figure 2B and C). Masson’s trichrome staining 
showed that a HFD enhanced collagen content in the gen-
ioglossus compared with the control (p < 0.01) (Figure 2D). 
Then, the genioglossus was subjected to immunohisto-
chemical staining for the determination of muscle fibre 
types, which showed that the numbers of slow-twitch fibres 
decreased and the fast-twitch fibres increased in the HFD 
group (p < 0.001) (Figure 2E).

To study the influence of a HFD on the function of the 
genioglossus, we measured EMG activity, as depicted in 
Figure 2F. The average frequency of the genioglossus by 
EMG in the HFD group was approximately 0.85 Hz, 
which is significantly lower than that of the control (1.2 
Hz, p < 0.01) (Figure 2G). Moreover, both the average 
amplitude and maximum amplitude declined in the HFD 
group (p < 0.05) (Figure 2H and I).

Effects of HFD on Mitochondrial Function 
in the Genioglossus
Mitochondria are the main energy source in skeletal muscle. 
We investigated the effects of HFD-induced obesity on the 
mitochondria of the genioglossus by TEM. For the control 
group, the genioglossus showed regular myofibril structure 
and normal mitochondrial morphology, with a large number 
of cristae. The HFD group showed serious damage to the 
genioglossus ultrastructure, with vague myofibril structure 
and a decrease in the number of mitochondria (Figure 3A 
and B). The mitochondria in the HFD group were swollen, 
and the cristae were partially disintegrated (Figure 3A and 
C). We also evaluated the copy number of mtDNA in the 
genioglossus and the result showed that the relative mtDNA 
level was significantly decreased in the HFD group 
(Figure 3D). In addition, the expression levels of mitochon-
drial fission protein DRP1 and fusion protein MFN2 were 
measured by Western blot. As shown in Figure 3E and F, the 
basal expression level of DRP1 was elevated, and the 
expression of MFN2 was inhibited, indicating an imbalance 
in mitochondrial fusion and fission in the genioglossus of 
the HFD group. To further investigate the effect of HFD on 
the function of mitochondria in the genioglossus, the mito-
chondrial respiratory chain complexes were assessed by 
Western blotting. In the HFD mice, the expression of mito-
chondrial respiratory chain complexes III and V were 
downregulated (Figure 3G and H).

Figure 1 HFD induced obesity and caused glucose and lipid metabolism disorders in C57BL/6J mice. (A) Body weights of control and HFD-fed mice at the end of 16 weeks. 
(B) Plasma triglyceride, (C) plasma FFA, and (D) plasma cholesterol of the control and HFD-fed mice at the end of 16 weeks. (E and F) IPGTT and IPITT of the control and 
HFD-fed mice at the end of 16 weeks. Data are represented as the mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001 compared to the control.
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Figure 2 HFD impaired muscle structure and function in the genioglossus. (A) Representative images of genioglossus sections from control and HFD-fed mice with H&E 
and Masson’s trichrome staining and MyHC-slow or MyHC-fast immunohistochemical staining. (B) Quantification of muscle fibre number, (C) muscle fibre size, (D) collagen 
fibre content and (E) percentage of MyHC-slow and MyHC-fast per visual field. (F) Typical EMG in the genioglossi of control and HFD mice. (G) The average frequency, (H) 
average amplitude and (I) maximum amplitude of the genioglossus by EMG. Data are represented as the mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001 compared to the 
control. Scale bar is 50 μm.
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Figure 3 HFD induced mitochondrial damage and dysfunction in the genioglossus. (A) Mitochondrial morphology and size in the genioglossus of control and HFD-fed mice 
determined by TEM. (B) Quantification of mitochondrial number and (C) mitochondrial size per visual field. (D) Relative mtDNA copy number in the genioglossi of control 
and HFD mice. (E) Protein expression of DRP1 and MFN2 measured by Western blot analysis in the genioglossus of control and HFD mice (F). (G and H) Protein 
expression of mitochondrial respiratory chain complexes I–V measured by Western blot analysis in the genioglossus of control and HFD mice. Data are represented as the 
mean ± SD. *p < 0.05, **p < 0.01 compared to the control. Scale bars are 1 μm.
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Effects of HFD on Oxidative Stress and 
Apoptosis in the Genioglossus
To study the effects of a HFD on oxidative stress in the 
genioglossus, the protein levels of 4-HNE and 8-OHdG, 
markers of oxidative stress-induced lipid peroxidation and 
DNA damage, were detected using immunohistochemical 
staining. The results showed that the numbers of 4-HNE- 
positive fibres (Figure 4A and B) and 8-OHdG-positive 
fibres (Figure 4C and D) were substantially elevated in the 
genioglossus of the HFD group, which indicated that the 
level of oxidative stress was elevated.

To investigate the effects of a HFD on apoptosis in the 
genioglossus, TUNEL staining was performed, which 
labelled the DNA fragmentation of apoptotic cells. The 
results showed that the number of TUNEL-positive cells in 
the HFD group significantly increased compared with 
those in the control group (p < 0.001) (Figure 4E and F). 
Moreover, we also analysed the expression of the mito-
chondria-related apoptotic proteins Cyt-c, Bax (a proapop-
totic protein) and Bcl-2 (an antiapoptotic protein) in the 
genioglossus by Western blotting. Compared with control 
mice, the protein level of cytoplasm Cyt-c (cyto Cyt-c) 
was increased and mitochondria Cyt-c (mito Cyt-c) was 
decreased in genioglossus of the HFD group, indicating 
that Cyt-c was released from the mitochondria into cyto-
plasm. A HFD also induced an elevated level of protein 
Bax/Bcl-2 (Figure 4G and H).

Effects of PA on the Viability and 
Apoptosis in C2C12 Myoblasts
Myoblast proliferation is essential for skeletal muscle 
renewal and regeneration. To investigate the effects of 
PA on myoblast proliferation, C2C12 myoblasts were 
treated with different doses of PA for 6, 12, 24 and 48 
hours, and CCK-8 assays were performed. As shown in 
Figure 5A, PA at 100 μM did not affect the viability of 
C2C12 myoblasts. However, at 300 μM, the cell morphol-
ogies changed and the percent of surviving cells was 
reduced to 62.31% and 54.48% that of untreated cells at 
24 h and 48 h, respectively (p < 0.001). More importantly, 
PA at 500 μM exhibited a dramatic cytotoxic effect on 
C2C12 myoblasts, with a large portion of round and float-
ing cells in the medium (Figure 5C), and the percent of 
surviving cells was only 23.57% and 11.93% that of 
untreated cells at 24 h and 48 h, respectively (p < 0.001). 
The cytotoxic effects of PA on C2C12 myoblasts were also 
measured by an LDH assay. After treatment with PA at 

300 μM and 500 μM for 24 h, the LDH leakage in the 
medium was elevated, exhibiting concentration-dependent 
cytotoxicity (p < 0.001) (Figure 5B).

To further investigate the effects of a HFD on myoblast 
damage, apoptosis in C2C12 myoblasts was detected using 
Annexin V-FITC/PI staining and flow cytometry. 
Consistent with the findings of the CCK-8 and LDH assays, 
the results indicated that the number of apoptotic cells was 
significantly increased after treatment with PA at 300 
μM and 500 μM for 24 h (p < 0.001), and no changes 
were found with PA treatment at 100 μM (Figure 5D and E).

Effects of PA on the Myogenic 
Differentiation of C2C12 Myoblasts
Myogenic differentiation is another important characteris-
tic of myoblasts and plays a key role in the regeneration of 
skeletal muscles. To investigate whether PA affects myo-
genic differentiation, C2C12 myoblasts were incubated 
with different concentrations of PA during cellular differ-
entiation for 2 days. The results of myotube immunofluor-
escence staining demonstrated that treatment with PA at 
300 μM and 500 μM significantly prevented C2C12 differ-
entiation, with the number of myotubes decreasing and the 
fusion of the myotubes becoming disrupted (p < 0.01) 
(Figure 6A and B). Moreover, the relative protein levels 
of the key myogenic differentiation markers MyoD1, 
MyoG and MyHC were all downregulated significantly 
following treatment with 300 μM PA (Figure 6C and D).

Effects of PA on Mitochondrial Function 
in C2C12 Myotubes
We evaluated the effects of PA on mitochondrial morphology 
in C2C12 myotubes using MitoTracker green. As shown in 
Figure 7A and C, the green fluorescence intensity of 
MitoTracker was markedly decreased after treatment with 
PA at 300 μM, indicating decreased mitochondrial mass. 
Then, the expression of DRP1 and MFN2 was measured by 
Western blot. Consistent with the in vivo findings, the expres-
sion level of DRP1 was significantly elevated after 300 
μM PA treatment (p < 0.01) (Figure 7E and F). Moreover, 
the MMP was measured with JC-1 kits, which reflect the 
function of mitochondrial energy metabolism. For the 
untreated myotubes, the red fluorescence of JC-1 aggregates 
represented potential-dependence in the mitochondria to pro-
duce adenosine triphosphate (ATP). Conversely, after treat-
ment with 300 μM PA, the green fluorescence of the JC-1 
monomer was detected, and the ratio of red/green 
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Figure 4 HFD led to oxidative stress and apoptosis in the genioglossus. (A) Representative images of genioglossus sections from control and HFD mice after 4-HNE 
immunohistochemical staining. (B) Quantification of the percentage of 4-HNE-positive fibres per visual field. (C) Representative images of genioglossus sections from 
control and HFD mice after 8-OHdG immunohistochemical staining. (D) Quantification of the percentage of 8-OHdG -positive fibres per visual field. (E) Representative 
images of TUNEL staining in the genioglossus. (F) Percentage of TUNEL-positive nuclei per visual field. (G and H) Protein expression of Bax, Bcl-2, Cyto Cyt-c and Mito 
Cyt-c measured by Western blot analysis in the genioglossus of control and HFD mice. Data are represented as the mean ± SD. *p < 0.05, ***p < 0.001 compared to the 
control. Scale bars are 50 μm.
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Figure 5 PA inhibited the proliferation and viability of C2C12 myoblasts. (A) The viability of C2C12 myoblasts was measured via CCK-8 assay after PA treatment. (B) LDH 
release in the medium of C2C12 myoblasts after PA treatment for 24 hours. (C) Optical micrographs of C2C12 myoblast morphology and quantity changes after PA 
treatment for 24 hours. (D) Apoptosis of C2C12 myoblasts was analysed using Annexin V-FITC/PI staining by flow cytometry after PA treatment for 24 hours. (E) 
Quantification of the percentage of viable (Annexin V-FITC negative and PI negative) cells and apoptotic (Annexin V-FITC positive) cells. Data are represented as the mean ± 
SD. ***p < 0.001 compared to the control. Scale bars are 100 μm.
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fluorescence intensity significantly decreased, which indi-
cated mitochondrial membrane depolarization (Figure 7B 
and D). In addition, we observed a decrease in the expression 
of mitochondrial respiratory chain complexes III and V at 
300 μM PA treatment (p < 0.01) (Figure 7G and H). Together, 
these findings suggest that PA can lead to mitochondrial 
damage and impair mitochondrial respiratory function.

Effects of PA on Mitochondrial ROS and 
Apoptosis in C2C12 Myotubes
Mitochondrial dysfunction can lead to ROS overproduc-
tion, causing damage to cells and tissues.26 To evaluate the 
effects of PA on mitochondrial ROS levels, MitoSOX Red 
(a mitochondrial superoxide indicator) was used for immu-
nofluorescence staining. PA at 300 μM significantly 
increased mitochondrial ROS accumulation in C2C12 
myotubes (p < 0.001) (Figure 8A and B). ROS are 
known to activate apoptotic proteins and promote cell 
apoptosis. After treatment with 300 μM PA, the number 
of TUNEL-positive cells was significantly increased, and 
the expression of the mitochondria-related apoptotic pro-
teins Cyt-c, Bax/Bcl-2 and cleaved caspase-3 was notably 
elevated in C2C12 myotubes (Figure 8C–F). SS–31 is 
reported to be an antioxidant targeting mitochondria.32,33 

SS–31 treatment significantly reduced the mitochondrial 
ROS accumulation in C2C12 myotubes induced by PA 
(Figure 8A and B). In addition, compared with the 300 
μM PA-treated group, SS–31 treatment reduced the num-
ber of TUNEL-positive cells (Figure 8C and D) and down-
regulated the protein level of cleaved caspase-3 (Figure 8E 
and F), indicating SS–31 could partly alleviate the apop-
totic in C2C12 myotubes caused by PA.

Discussion
The dysfunction of upper airway dilator muscles, espe-
cially the genioglossus, is thought to be the main patho-
genesis of OSA. The HFD-induced obese mice in our 
study showed that genioglossus injury was accompanied 
by mitochondrial dysfunction, oxidative stress and apop-
tosis, which might be an important mechanism of OSA co- 
occurring with obesity.

In the present study, mice exhibited a significant 
increase in body weight and plasma levels of FFAs after 
16 weeks of HFD administration. Skeletal muscles play an 
important role in lipid metabolism, while the excessive 
accumulation of lipids can impair oxidative capacities, 
promote lipotoxicity and lead to changes in the structure 
and function of skeletal muscles.34 As predicted, we 

Figure 6 PA inhibited myogenic differentiation of C2C12 myoblasts. C2C12 myoblasts were treated with different concentrations of PA for 2 days during myogenic 
differentiation. (A) The differentiation of C2C12 myoblasts was assessed using immunofluorescence staining with MyHC (green) and DAPI (blue). (B) The differentiation 
index is presented as the percentage of MyHC-positive nuclei to the total number of nuclei. (C and D) Protein expression of MyoD1, MyoG and MyHC measured by 
Western blot analysis. Data are represented as the mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001 compared to the control. Scale bars are 50 μm.
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Figure 7 PA induced mitochondrial dysfunction in C2C12 myotubes. C2C12 myotubes were treated with different concentrations of PA for 2 days. (A) Representative 
images of C2C12 myotubes with MitoTracker green staining. (B) The mitochondrial membrane potential of C2C12 myotubes was assessed using fluorescence staining with 
a JC-1 assay. (C) Relative fluorescence intensity of MitoTracker green. (D) Relative red/green ratio of (B). (E and F) Protein expression of DRP1 and MFN2 in C2C12 
myotubes measured by Western blot analysis. (G and H) Protein expression of mitochondrial respiratory chain complexes I–V measured by Western blot analysis. Data are 
represented as the mean ± SD. *p < 0.05, **p < 0.01 compared to the control. Scale bars are 50 μm.
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Figure 8 PA increased mitochondrial ROS and apoptosis in C2C12 myotubes. C2C12 myotubes were treated with PA or SS-31 for 2 days. (A and B) Fluorescence images 
and analyses of mitochondrial ROS with MitoSOX red in C2C12 myotubes. (C) Representative images of TUNEL staining in C2C12 myotubes. (D) Quantification of the 
percentage of TUNEL-positive nuclei per visual field. (E and F) Protein expression of Cyt-c, Bax, Bcl-2 and cleaved caspase-3 measured by Western blot analysis in C2C12 
myotubes. Data are represented as the mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001. Scale bars are 50 μm.
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discovered changes in genioglossus muscle fibres of HFD 
mice, with a decrease in the number of muscle fibres and 
an increase in the collagen content.

In addition, the muscle fibre type, with a dynamic and 
plastic structure, is of importance to muscle development, 
metabolism and functional adaptations. Slow-twitch fibres 
have more mitochondria and exhibit high oxidative capacity 
and fatigue resistance. In contrast, fast-twitch fibres have lower 
mitochondria levels and oxidative capacity. Studies have 
demonstrated that obese individuals have a decreased propor-
tion of slow-twitch fibres and an increased proportion of fast- 
twitch fibres in skeletal muscles.35,36 The genioglossus in 
patients with OSA have also been reported to have a higher 
proportion of fast-twitch fibres and be more vulnerable to 
fatigue.37 In this study, we confirmed that a HFD caused 
significant changes in fibre types in the genioglossus, with 
the percentage of slow-twitch fibres declining and the percen-
tage of fast-twitch fibres increasing. Changes in muscle fibre 
structure could lead to impairment of muscle function. 
Consistently, we found that the EMG activity of the genioglos-
sus was significantly diminished in HFD-induced obese mice.

Mitochondria are the main energy source in skeletal mus-
cle and play a critical role in maintaining contractility.38 The 
muscle fibre structure and fibre type have been reported to be 
significantly associated with mitochondrial dysfunction.39 

Overaccumulation of FFAs could induce excessive ceramide 
levels,40 which were reported to ultimately cause mitochon-
drial dysfunction and lipotoxicity.41,42 In this study, we found 
that HFD-induced obesity led to mitochondrial damage; as the 
number of mitochondria decreased, they became swollen, and 
the cristae ruptured.

Mitochondria in skeletal muscle are highly dynamic, and 
mitochondrial biogenesis, fusion, fission and mitophagy are 
all involved in the regulation of mitochondrial morphology 
and function. Recent studies have shown that disorder in the 
balance between mitochondrial fission and fusion is impli-
cated in mitochondrial damage and dysfunction in skeletal 
muscle in obesity.43,44 We detected a decrease in the mito-
chondrial fusion protein MFN2 and an increase in the fission 
protein DRP1 in the genioglossi of HFD-induced obese mice, 
indicating that obesity impaired mitochondrial fusion and 
induced excessive mitochondrial fission in the genioglossus. 
Our in vitro data support this conclusion. PA-treated C2C12 
myotubes exhibited a decrease in mitochondrial mass and an 
increase in protein DRP1 expression, coupled with decreases 
in the MMP and mitochondrial oxidative phosphorylation 
(OXPHOS) complexes III and V, which are consistent with 
the observation in vivo. Mitochondrial dysfunction has been 

suggested to be one of the key processes during obesity that 
leads to skeletal muscle injury.45 Considering the importance 
of the mitochondria on oxidative metabolism and energy 
generation, we speculated that mitochondrial damage and 
dysfunction could ultimately lead to decreased oxidative 
capacities and fatigue resistance in the genioglossus.

Mitochondrial dysfunction can trigger apoptosis by reg-
ulating apoptosis-related genes, such as those in the Bcl-2 
family.46 In the genioglossus, more TUNEL-positive apop-
totic cells were observed in HFD-induced obese mice. 
Moreover, the expression levels of pro-apoptosis proteins 
(Cyt-c and cleaved caspase-3) were upregulated, while the 
expression of an apoptosis-inhibiting protein (Bcl-2) was 
downregulated in the genioglossus of obese mice. In sup-
port of these findings, our in vitro study demonstrated that 
high levels of PA significantly inhibited cellular prolifera-
tion and myogenic differentiation in C2C12 myoblasts. 
Moreover, PA exposure stimulated cell apoptosis in both 
C2C12 myoblasts and myotubes.

Mitochondrial impairment contributes to excessive ROS 
generation and oxidative stress, which is an important 
mechanism of tissue injury and apoptosis.47 Oxidative stress 
is a critical factor for skeletal muscle injury in obesity.48 ROS 
overproduction was also found in the genioglossus of rats 
with chronic intermittent hypoxia.49 In this study, we indeed 
detected the oxidative damage in the genioglossus of HFD- 
induced obese mice, manifested by the dramatic upregulation 
of 4-HNE-positive staining muscle fibres and 8-OHdG- 
positive fibres. Consistent with the in vivo findings, we also 
found increased production of mitochondrial ROS in C2C12 
myotubes after PA treatment. Furthermore, SS-31, an anti-
oxidant targeting mitochondria, reduced the accumulation of 
mitochondrial ROS and ultimately alleviated the apoptotic in 
C2C12 myotubes caused by PA.

In conclusion, our data indicate that a HFD could 
decrease EMG activity and muscle fibre mass, cause marked 
changes in muscle fibre type, lead to ultrastructural damage 
and increase apoptosis in the genioglossus. Most impress-
ively, this study identifies that genioglossus injury might be 
mainly mediated by mitochondrial disturbance and the 
accompanying oxidative stress in HFD-induced obese mice, 
which may provide potential therapeutic targets for OSA co- 
occurrence with obesity.
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