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Purpose: Alendronate is a widely used anti-osteoporotic drug. PFN1 gene is a newly 
identified early-onset Paget’s disease pathogenic gene. The purpose of this study is to 
study whether the genetic variations in this gene affect the clinical efficacy of alendronate 
in postmenopausal Chinese women with low bone mass.
Patients and Methods: Seven single nucleotide polymorphisms in PFN1 gene were 
genotyped. A total of 500 postmenopausal women with osteoporosis or osteopenia were 
included. All participants were treated with weekly alendronate 70 mg for 12 months. A total 
of 466 subjects completed the follow-up. Bone mineral density (BMD) of lumbar spine, 
femoral neck and total hip were measured at baseline and after treatment.
Results: After 12 months of treatment, the BMD of lumbar spine, femoral neck and total hip 
all increased significantly (all P < 0.001), with an average increase of 4.72 ± 5.31%, 2.08 ± 
4.45%, and 2.42 ± 3.46%, respectively. At baseline, there were no significant differences in 
BMD at lumbar spine, femoral neck and total hip between different genotype groups (P > 
0.05). We failed to identify any significant association between the genotypes or haplotypes 
of PFN1 and the BMD response to alendronate therapy.
Conclusion: Genetic polymorphisms of PFN1 may not be a major contributor to the 
therapeutic response to alendronate treatment in Chinese women with low bone mass.
Keywords: alendronate, bone mineral density, osteoporosis, PFN1 gene, single-nucleotide 
polymorphism

Introduction
Osteoporosis is a common skeletal disease characterized by low bone mass, 
reduced bone strength, deteriorated bone microarchitecture. Genetic factors con-
tribute 60–80% of the variance in bone mineral density (BMD).1–3 With the 
development of the aging population, the incidence of osteoporosis and osteoporo-
tic fracture has been increasing. An analysis of National Health and Nutrition 
Examination Survey 2005–2008 data revealed that 19% of older men and 30% of 
older women in the United States require antiosteoporosis therapy.4 With regard to 
osteoporosis in China, the rate of hip fractures in China is progressively increased 
approximately 10% per year from 2002 to 2006.5 Our study in 2019 indicated that 
the prevalence of vertebral fractures in the elderly in Shanghai was 17.2%, that of 
men was 17.0%, and that of women was 17.3%.6
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Alendronate is a potent and specific inhibitor of osteo-
clast-mediated bone resorption. Because of its beneficial 
effects in increasing bone mass and reducing the risk of 
fracture, it is widely used as a first-line drug in postme-
nopausal women with osteoporosis in Europe, the 
Americas and Asia.7–12 Studies have demonstrated that 
treatment with 70 mg of alendronate once weekly 
decreases the risk of vertebral fractures by 50% and the 
risk of peripheral fractures by 20–30%.13,14 Nevertheless, 
the efficacy and safety of alendronate vary among differ-
ent patients, with approximately 5–10% of cases having 
poor or no clinical response.15 The identification of the 
factors that influence the response to alendronate therapy 
can help optimize drug therapy. Variations in the human 
genome are considered the key cause of variable drug 
responses and adverse reaction development.16,17 The 
COL1A1 gene18 and VDR gene19–21 have been shown to 
be involved in the response to bisphosphonate therapy. 
Our previous research proved that MVK and FDFT1 
polymorphisms are genetic determinants for response to 
alendronate therapy in postmenopausal Chinese 
women.22 We also clarified that there is no association 
between polymorphisms in OPG, RANKL and RANK 
gene and BMD response to alendronate.23 Recently, we 
demonstrated that the common variation of SOST gene is 
associated with the response to alendronate treatment in 
postmenopausal women with low BMD.24 However, to 
date, pharmacogenomics reports on alendronate are still 
scattered.

The PFN1 gene, located at 17p13.3, encodes the highly 
evolutionarily conserved protein Profilin 1. Profilin 1 is 
a small actin monomer-binding protein which is consid-
ered to be an essential control element for actin polymer-
ization and cell migration.25,26 Profilin 1 is ubiquitously 
expressed in all cell types and in organs and tissues 
throughout the body, and is involved in the control of 
a variety of cell functions.25,27–31 We and two other 
research teams have reported that mutations in the PFN1 
gene could lead to early-onset Paget’s disease with or 
without giant cell tumors.32–34 This finding indicates that 
PFN1 mutations can cause the imbalance of skeletal 
homeostasis and changes in bone mass and bone turnover 
status. In addition, Shirakawa et al have demonstrated in 
animal experiments that Pfn1 plays critical role in inhibit-
ing osteoclast motility and bone resorption, thereby affect-
ing the skeletal homeostasis of mice.35 So, we believe that 
PFN1 gene may be a key gene regulating the proliferation, 
differentiation and activity of osteoclasts.

We hypothesized that genetic polymorphisms in PFN1 
gene is good candidate to explain the variable responses to 
alendronate treatment. Therefore, we conducted this study 
to explore the association between PFN1 gene variations 
and the BMD response to alendronate therapy in postme-
nopausal Chinese women with low mass.

Materials and Methods
Subjects
All participants were recruited by the department of 
Osteoporosis and Bone Disease in Shanghai Jiaotong 
University Affiliated Sixth People’s Hospital. Five hun-
dred women were enrolled in this study. All study subjects 
were postmenopausal Han Chinese women with primary 
osteoporosis or osteopenia, without spontaneous menses 
for at least 1 year. All participants were treated with 70 mg 
of alendronate (Merck, Fosamax, Hangzhou, China) once 
weekly, 600 mg of calcium and 125 IU of vitamin D daily 
for 12 months. The study protocol was approved by the 
Committee of the Ethics of Human Research in the 
Shanghai Jiaotong University Affiliated Sixth People’s 
Hospital and was conducted in accordance with the 
Declaration of Helsinki. All study participants provided 
written informed consent.

The inclusion criteria were as follows: natural meno-
pause after 40 years of age and a BMD of at least 1.0 SD 
below the peak mean bone density of healthy young 
women (−1.0 T-score) at the posterior–anterior L1–4, 
femoral neck, or total hip. The diagnosis of osteoporosis 
was based on L1-4, femoral neck or total hip with 
a T-score less than −2.5, or a history of fragility fractures 
of the spine or hip. Among women with osteopenia, the 
decisions of treatment were made depended on the high 
risk of osteoporotic fractures. We evaluated the high risk 
of fracture according to the history of low trauma fracture 
at humerus or radius, the 10-year probability of hip frac-
ture ≥3% or of a major osteoporotic fracture (clinical 
spine, hip, forearm and humerus fracture) ≥20% by 
FRAX®.36

The exclusion criteria24 were as follows: a history of (1) 
chronic renal disease manifested by an endogenous creati-
nine clearance of <35 mL/min; (2) acute inflammation of the 
gastrointestinal tract (eg, gastritis and ulcerations); (3) eso-
phagitis or certain malformations and malfunctions of the 
esophagus (eg, strictures and achalasia); (4) proton-pump 
inhibitor usage along with alendronate treatment; (5) inabil-
ity to stand, walk or sit for 30 min after oral administration 
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of alendronate; (6) hypersensitivity to alendronate or 
another ingredient in the therapeutic compound; (7) hypo-
calcemia (serum calcium (Ca) < 2.08 mmol/l) or hypopho-
sphatemia (serum phosphorus (P) < 0.80 mmol/l); (8) 
increased serum parathyroid hormone (PTH) levels (normal 
values: 15–65 pg/mL); (9) serious residual effects of cere-
bral vascular disease; (10) diabetes mellitus, except for adult 
asymptomatic hyperglycemia controlled by diet; (11) 
chronic liver disease or alcoholism; (12) 12 weeks of corti-
costeroid therapy at pharmacologic levels; (13) 6 months of 
treatment with anticonvulsant therapy; (14) evidence of 
other metabolic or inherited bone diseases (eg, hyperpar-
athyroidism or hypoparathyroidism, Paget’s disease, osteo-
malacia or osteogenesis imperfecta); (15) rheumatoid 
arthritis or collagen disease; (16) significant disease of any 
endocrine organ that would affect bone mass (eg, Cushing’s 
syndrome or hyperthyroidism); (17) any neurological or 
musculoskeletal condition that would be a nongenetic 
cause of low bone mass; (18) a body mass index (BMI) of 
<18 kg/m2 or >30 kg/m2; and (19) any previous treatment 
with bisphosphonate, sodium fluoride, calcitonin, a selective 
estrogen receptor modulator, strontium ranelate, or the 
recombinant form of PTH or current use of hormone repla-
cement therapy.

BMD Measurements
Lunar prodigy dual-energy X-ray absorptiometry densit-
ometer (DXA; GE Healthcare, Madison, WI, USA) was 
used to measure the BMD of lumbar spine (L1–4), left 
femoral neck and total hip at baseline and after 12 months 
of treatment, respectively. The BMD of the right hip was 
measured only in patients with a history of left hip fracture or 
surgery. The Prodigy encore software (ver. 6.70, standard- 

array mode; GE Healthcare) were used for data analysis. The 
machines were calibrated daily and coefficient of variance 
(CV) values for BMD of the L1–4, femoral neck and total hip 
were 1.39%, 2.22% and 0.70%, respectively.37 The long-term 
reproducibility of our DXA instrument during the study based 
on weekly repeated phantom measurements was 0.45%. 
Besides, we chose the least significant change (LSC) to 
estimate the effectiveness of treatment. And the LSC in 
BMD at L1–4, femoral neck and the total hip were 3.85%, 
6.15% and 1.94%.37 Weight and height were measured using 
a calibrated balance beam scale and a calibrated stadiometer. 
The BMI was defined as weight/height2 in kg/m2.

PFN1 Genotyping
Seven tagSNPs in PFN1 gene (rs13204, rs78224458, 
rs238243, rs238242, rs113460962, rs4790714 and 
rs117337116) were selected from dbSNP (http://www.ncbi. 
nlm.nih.gov/snp/) and HapMap (http://hapmap.ncbi.nlm.nih. 
gov/) based on the following criteria: (1) minor allele fre-
quency (MAF) higher than 5%; (2) pairwise linkage disequili-
brium (LD) exceeding the threshold of 0.8 (r2 > 0.8) (Table 1). 
Genomic DNA was isolated from peripheral blood leukocytes 
via isopropanol-precipitating method. Genotyping was per-
formed using the ABI PRISM SNaPshot multiplex kit 
(Applied Biosystems), an Mx3000p real-time PCR system 
(Stratagene), and GeneMapper 4.1 (Applied Biosystems).

Statistical Analyses
Hardy–Weinberg equilibrium (HWE) was tested for each 
SNP using the χ2 test. The linkage disequilibrium block 
structure was assessed using the Haploview 4.2. PLINK 
(http://pngu.mgh.harvard.edu/purcell/plink/) was utilized in 
quality control filtering and haplotype association test. SNPs 

Table 1 Information on the 7 SNPs in This Study

SNP Physical Position Gene Location Major Allele Minor Allele MAF P-value of HWE

rs13204 4849284 Exon3 G A 0.180 0.410

rs78224458 4849546 Intron2 T C 0.126 0.924

rs238243 4849635 Intron2 A G 0.469 0.004

rs238242 4849774 Intron2 G A 0.313 0.107

rs113460962 4850748 Intron1 T C 0.093 1.000

rs4790714 4852463 5ʹ-flanking C T 0.175 0.583

rs117337116 4853945 5ʹ-flanking T C 0.052 0.723

Abbreviations: SNP, single nucleotide polymorphism; MAF, minor allele frequency; HWE, Hardy–Weinberg equilibrium.
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with call rates <75% and HWE tests with P-values <0.01 
were excluded from further analysis. Descriptive statistics 
were given as the mean ± SD for normally distributed data 
and as the median and interquartile range for the non- 
normally distributed data. The BMD value at L1–4, femoral 
neck and total hip before and after alendronate treatment 
were compared by using the paired t-test. SPSS 22.0 (SPSS, 
Chicago, IL, USA) was used to analyzed these data. The 
response to alendronate treatment is estimated by the % 
change in BMD, defined as (12-months BMD – baseline 
BMD)/baseline BMD × 100%. The baseline and % change 
after 12 months treatment in BMD among different genotype 
groups were tested using PLINK in the ADD linear model. 
The differences in BMD at baseline and % change after 12 
months treatment among haplotype groups were analyzed 
using PLINK in the GLMs linear model. According to the 
LSC in BMD, the participants were divided into two groups: 
responder(s) and non-responder(s). The association between 
genotype groups and the opportunity of being a responder 
after treatment was analyzed using PLINK in the ADD 
logistic regression model. The association between the hap-
lotype groups and the opportunity of being a responder was 
analyzed using PLINK in the GLMs logistic regression 
model. All data were adjusted by the age and BMI covari-
ates. P-values <0.05 were defined as statistically significant. 
The Bonferroni correction was used to adjust for multiple 
testing. For SNP analysis, P-value thresholds for statistical 
significance were 0.008; for haplotype analysis, P-value 
thresholds for statistical significance were 0.025.

Results
Basic Characteristics of Study Subjects
Among the 500 subjects participating in the study, 466 sub-
jects completed 12 months of alendronate treatment and had 
BMD measurement at baseline and 12-months treatment, 
respectively. The average baseline age, height, weight and 
BMI were 64.88 ± 8.11 years, 153.76 ± 6.38 cm, 54.29 ± 

8.26 kg and 22.96 ± 3.08 kg/m2, respectively. The mean BMD 
of the L1–4, femoral neck and total hip was 0.814 ± 0.149 g/ 
cm2, 0.673 ± 0.104 g/cm2, 0.717 ± 0.107 g/cm2, respectively. 
After 12 months of treatment, there were no significant dif-
ference between baseline and follow-up height, weight or 
BMI. As expected with alendronate treatment, the BMD of 
L1–4, femoral neck and total hip all increased significantly 
(all P < 0.001), with average increases of 4.72 ± 5.31%, 2.08 ± 
4.45%, and 2.42 ± 3.46%, respectively (Table 2).

Allele Frequencies and Haplotype 
Structures
All 466 participants were genotyped. All tagSNPs were 
successfully genotyped and none of them failed the fre-
quency test (MAF < 0.01). In the study, the population 
distribution of rs238243 deviated from HWE (P < 0.01) 
and were excluded from further analysis. The other 6 SNPs 
(rs13204, rs78224458, rs238242, rs113460962, rs4790714 
and rs117337116) were compatible with HWE. Two haplo-
type blocks have been constructed from 6 SNPs (Figure 1).

Association Between Genetic 
Polymorphisms and the Therapeutic 
Response to Alendronate Treatment
At baseline, there were no significant differences in BMD 
at L1–4, femoral neck and total hip between different 
genotype groups (P > 0.05). The associations between 
the 6 SNPs and the % change in BMD at L1–4, femoral 
neck or total hip were analyzed as the first step. Two 
haplotype blocks have been constructed from 6 SNPs 
(Figure 1). The rs13204, rs78224458 and rs238242 con-
stituted block 1, and rs4790714, rs117337116 constituted 
block 2. After Bonferroni correction, no association was 
observed between any SNP or haplotype and BMD % 
change after 12 months of alendronate therapy in postme-
nopausal Chinese women with low BMD (Tables 3 and 4). 
In order to estimate the effectiveness of treatment, subjects 

Table 2 Characteristic Changes of 466 Postmenopausal Women

Height (cm) Weight (kg) BMI (kg/cm2) L1-4 BMD (g/cm2) Femoral Neck BMD (g/cm2) Total Hip BMD (g/cm2)

Baseline 153.76±6.38 54.29±8.26 22.96±3.08 0.814±0.149 0.673±0.104 0.717±0.107

12 months 153.52±6.51 54.32±8.39 23.04±3.13 0.850±0.147 0.686±0.105 0.733±0.109

Percent change (%) — — — 4.72±5.31 2.08±4.45 2.42±3.46

P-value 0.587 0.844 0.119 < 0.001 < 0.001 < 0.001

Notes: Data presented as mean ± SD. Significant values (P <0.05) are presented in bold. 
Abbreviations: BMI, body mass index; BMD, bone mineral density.
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were divided into responder(s) group and non-responder(s) 
group according to the LSC in BMD. The associations 
between 6 SNPs and being a responder to alendronate 
treatment at the L1–4, femoral neck or total hip were 
analyzed in the second step. In response to 70 mg weekly 
of alendronate, 55.0% subjects in spine BMD, 12.3% sub-
jects in femoral neck, 57.8% subjects in total hip arrived 
an effective therapeutic range. Unfortunately, no associa-
tion was found between any SNP or haplotype and treat-
ment response in postmenopausal Chinese women with 
low BMD (Tables 5 and 6).

Discussion
Osteoporosis is an important health problem worldwide. 
The effect of anti-osteoporosis treatment is determined by 
the bone-remodeling process, including the resorption of 
osteoclasts and the formation of osteoblasts. Alendronate 
is an important inhibitor of bone resorption and is the most 
commonly used bisphosphonate worldwide. It can increase 
BMD and decrease the risk of fragility fracture.38 It is well 
known that the treatment response to this drug is highly 
variable.22 Pharmacogenetics studies the genetic bases of 
individual drug response, determines the most effective 
drugs and the most beneficial doses for each patient. It 
has an important pharmacoeconomic impact on chronic 
diseases that require long-term treatment.39 As we all 
know, the response to alendronate treatment has a strong 

genetic component. Therefore, it is very important to clar-
ify the genetic factors involved in anti-osteoporosis treat-
ment, which will help to significantly improve the 
treatment effect. In previous studies, studies involving 
bone loss control, mevalonate pathway, farnesyl dipho-
sphate synthase gene, geranylgeranyl diphosphate and 
other genes were analyzed.18,22,24,40–45 Despite all the 
advances in the field of pharmacogenetics in recent 
years, so far, these studies have found only a few SNPs 
that may be related to the response to anti-osteoporosis 
treatments. The pharmacogenetics of osteoporosis is still 
in its infancy, and pharmacogenomics research on anti- 
osteoporosis treatment is still insufficient.16

The PFN1 gene is a recently discovered pathogenic 
gene for early-onset Paget’s disease.32–34 It is widely 
expressed and highly expressed in blood and bone marrow 
cells.46 The PFN1 gene plays a central role in regulating 
de novo actin polymerization by enhancing ADP-ATP 
exchange on G-actin.47 Cell studies have confirmed that 
the PFN1 gene at least partially regulates the function of 
stem cells in bone marrow through the PFN1/Gα13/EGRL 
axis.48 Many studies have shown that PFN1 can stimulate 
the migration of endothelial cells, chondrocytes, human 
mesenchymal stem cells and neuronal cells.49,50 Zoidakis 
et al found that PFN1 plays an important role in skeletal 
development, and is a key molecule in sternal develop-
ment and trabecular bone formation.51 Cell research found 

Figure 1 Haplotype linkage disequilibrium (LD) blocks in 466 postmenopausal women. Two LD blocks connecting SNP pairs are shaded based on the LD strength between 
SNPs by using the disequilibrium coefficient r2. The increasing degree of red of the cells represents the increasing strength of LD. LD plots with r2 values were generated 
using Haploview. Figure 1 shows the LD pattern in the PFN1 gene based on the 466 postmenopausal women with low bone mineral density.
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that in osteoblasts MC3T3-E1 (MC), the expression of 
PFN1 mRNA was down-regulated with osteogenic 
differentiation.52 And in MC cells, siRNA knocking out 
PFN1 can enhance the alkaline phosphatase activity 

induced by bone morphogenetic protein (BMP). 
Therefore, it can be considered that PFN1 is a new target 
of BMP, which can inhibit the differentiation of osteo-
blasts induced by BMP through transcription.52 Wanting 

Table 3 The Association Between 6 Single Nucleotide Polymorphisms and the % Change in BMD

SNP Genotype Counts L1-4 (%) Femoral Neck (%) Total Hip (%)

Mean SD P-value Mean SD P-value Mean SD P-value

rs13204 G/G 310 4.52 5.45 0.215 2.14 4.77 0.696 2.49 3.65 0.501

G/A 144 5.16 4.84 1.96 3.70 2.18 3.04

A/A 12 4.73 6.93 2.08 4.32 3.45 2.98

rs78224458 T/T 357 4.71 5.53 0.911 2.05 4.67 0.814 2.49 3.62 0.309

C/T 101 4.67 4.43 2.02 3.69 2.01 2.79

C/C 8 5.92 5.62 4.16 2.96 4.29 3.01

rs238242 G/G 212 4.38 5.79 0.372 1.82 4.88 0.814 2.28 3.68 0.918

G/A 216 5.05 4.38 2.32 4.08 2.60 3.31

A/A 38 4.79 6.95 2.18 3.99 2.15 2.96

rs113460962 T/T 383 4.77 5.45 0.328 1.94 4.49 0.269 2.45 3.57 0.177

C/T 79 4.56 4.65 2.53 3.98 2.25 2.91

C/C 4 3.30 3.73 7.06 6.87 2.69 1.75

rs4790714 C/C 315 4.74 5.37 0.529 1.82 4.51 0.866 2.35 3.55 0.901

C/T 139 4.81 5.15 2.54 4.35 2.54 3.27

T/T 12 3.23 5.55 3.75 3.52 2.64 3.35

rs117337116 T/T 419 4.73 5.39 0.432 2.02 4.39 0.703 2.41 3.54 0.677

C/T 45 4.60 4.57 2.38 4.79 2.34 2.59

C/C 2 9.29 — 8.20 7.56 6.19 0.58

Abbreviations: BMD, bone mineral density; SNP, single nucleotide polymorphism.

Table 4 The Association Between 2 Haplotypes and the % Change in BMD

SNPs Haplotype L1-4 Femoral Neck Total Hip

Beta P-value Beta P-value Beta P-value

rs13204 rs78224458 rs238242 ACA 0.055 0.911 −0.092 0.814 −0.299 0.309

ATA 1.280 0.067 −0.213 0.748 0.187 0.681

GTA −0.100 0.835 0.044 0.907 0.182 0.537

GTG −0.332 0.372 0.071 0.814 0.023 0.918

rs4790714 rs117337116 TC −0.533 0.432 0.212 0.703 −0.179 0.677

TT −0.076 0.879 −0.031 0.938 0.049 0.875

CT 0.271 0.529 −0.058 0.866 0.033 0.901

Abbreviations: BMD, bone mineral density; SNP, single nucleotide polymorphism; Beta, regression coefficient.
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et al conditionally knocked out profilin1 by using DMP1- 
CRE and PFN1-floxed mice. This conditional deletion of 
profilin1 specifically in osteocytes led to reduction in the 
levels of bone volume and BMD.53 This study indicated 
that PFN1 was expressed in osteocytes and regulates cell 
shape, migration and bone mass. In addition, Shirakawa 
et al investigated the osteoclast-specific functions of Pfn1 
in mice and in cultured osteoclasts, and revealed its nega-
tive function in osteoclast movement and bone-resorbing 
activity.35 These studies have shown that PFN1 is closely 
related to the function of osteoblasts and osteoclasts as 
well as the regulation of bone mass. Therefore, we 
hypothesized PFN1 gene polymorphism as a candidate 
factor for the efficacy of alendronate.

To our knowledge, this is the first study reported 
a population-based association analysis of PFN1 gene 
polymorphism and response to alendronate treatment in 
postmenopausal Chinese women. In the present study, 

500 postmenopausal Chinese women with osteoporosis 
or osteopenia were given alendronate at a dose of 70 mg 
weekly for 12 months, and 466 completed the therapy. In 
total, 7 SNPs in the PFN1 gene were genotyped in all 
patients. Initially, the association between candidate poly-
morphisms and baseline BMD, % change in BMD at L1– 
4, femoral neck and total hip were analyzed. No associa-
tion was observed between any SNP or haplotype and 
baseline BMD or % change in BMD to 12 months of 
alendronate therapy in postmenopausal Chinese women 
with low BMD. Next, we considered that the % change 
of BMD may not represent the pharmacologic treatment 
response. According to the standards and guidelines estab-
lished by ISCD 2007 Adult and Pediatric Official 
Positions, LSC should be considered to eliminate the 
error effect.54 Therefore, we divided the patients into 
responder(s) group and non-responder(s) group depending 
on our LSC at L1–4, femoral neck and total hip. 

Table 5 The Association Between 6 Single Nucleotide Polymorphisms and BMD Response

SNP L1-4 Femoral Neck Total Hip

OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value

rs13204 1.066 0.749–1.518 0.722 0.823 0.477–1.421 0.485 0.844 0.594–1.199 0.344

rs78224458 1.019 0.684–1.519 0.926 0.882 0.479–1.624 0.687 0.813 0.548–1.207 0.305

rs238242 0.960 0.713–1.292 0.786 0.915 0.586–1.427 0.695 0.966 0.718–1.301 0.820

rs113460962 0.905 0.575–1.425 0.666 1.191 0.625–2.269 0.596 0.868 0.507–1.367 0.540

rs4790714 0.815 0.569–1.167 0.264 1.013 0.598–1.713 0.963 1.191 0.832–1.707 0.340

rs117337116 0.645 0.355–1.172 0.150 1.013 0.427–2.407 0.976 1.238 0.679–2.258 0.486

Abbreviations: BMD, bone mineral density; SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.

Table 6 The Association Between 2 Blocks and BMD Response

SNPs Haplotype L1-4 Femoral Neck Total Hip

OR P-value OR P-value OR P-value

rs13204 rs78224458 rs238242 ACA 1.020 0.926 0.882 0.687 0.813 0.305

ATA 1.140 0.652 0.759 0.571 0.982 0.951

GTA 0.855 0.443 1.080 0.795 1.160 0.454

GTG 1.040 0.786 1.090 0.695 1.040 0.820

rs4790714 rs117337116 TC 0.645 0.150 1.010 0.976 1.240 0.486

TT 0.942 0.778 1.010 0.974 1.140 0.535

CT 1.230 0.264 0.988 0.963 0.839 0.340

Abbreviations: BMD, bone mineral density; SNP, single nucleotide polymorphism; OR, odds ratio.
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Unfortunately, no SNP or haplotype was associated with 
the opportunity of being a responder at L–4, femoral neck 
or total hip. Although PFN1 has been proved to be the 
pathogenic gene of early-onset Paget’s disease, and it has 
been confirmed in cell and animal experiments that it is 
closely related to the skeletal homeostasis, we were unable 
to find a clear association between the PFN1 gene poly-
morphism and the response of Chinese postmenopausal 
women to alendronate treatment.

The results of this study may be due to the fact that 
although the PFN1 gene is consider to be closely related to 
the function of osteoblasts and osteoclasts, these studies 
have mainly focused on the cellular and animal levels. At 
present, the relationship between PFN1 and human bone 
mass is not clear. Another possible reason for failure to 
observe association of PFN1 polymorphism with the effi-
cacy of alendronate is that unknown environmental factors 
(including other phenotypes or lifestyle factors such as 
vitamin D status, dietary characteristics, or medication com-
pliance) may be confounding correlation between PFN1 
polymorphism and the efficacy of alendronate, thereby 
masking the presence of a genetic association. And the 
number of subjects in our study was moderate. The 
rs238243 was detected deviated from HWE and excluded 
from further analysis. It was likely due to the relatively 
insufficient sample size. Therefore, it is necessary to testify 
the relationship between the excluded SNP and efficacy of 
alendronate treatment by enlarging samples size.

This is the first study to explore the genotype–treat-
ment interaction between genetic variations in the PFN1 
gene and BMD response to alendronate therapy in post-
menopausal Chinese women with low BMD. However, we 
also acknowledge that our study has limitations. First, 
bone turnover markers were not evaluated. Bone turnover 
markers are also an important parameter to evaluate the 
effects of alendronate treatment. Second, 12 months fol-
low-up time might not enough to detect the significant 
change of BMD. We believe that further studies with 
longer follow-up may be necessary.

Conclusion
In conclusion, this study demonstrated that polymorphisms 
of PFN1 gene may not be a major contributor to therapeutic 
response to alendronate in Chinese postmenopausal women 
with low BMD. Further studies that consider additional 
confounding factors or other types of polymorphisms such 
as insertion-deletions, copy number variants, and less com-
mon SNPs are needed for testing in a larger sample.
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