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Purpose: As an inflammatory form of programmed cell death, pyroptosis has been well 
established to be associated with tumorigenesis and tumor immune microenvironment. In this 
paper, we aimed at the construction of a pyroptosis-related gene prognostic index (PRGPI) 
for predicting prognosis and guiding individualized immunotherapy in glioma patients.
Patients and Methods: Pyroptosis-related genes (PRGs) were identified based on 
a detailed review of published literatures. The transcriptome data and clinical information 
of glioma patients were obtained from CGGA and TCGA databases. PRGPI was constructed 
by using the multivariate Cox regression method. The immune cell infiltration level was 
analyzed via CIBERSORT algorithm. The tumor immune dysfunction and exclusion (TIDE) 
algorithm was applied to evaluate the potential response to immune checkpoint inhibitor 
(ICI) therapy. The expression patterns of PRGs in PRGPI were validated in cell lines and 
pathological specimens.
Results: We identified a total of 31 PRGs. Among them, PRGs (CASP3, DPP9, MAPK8, 
PELP1 and TOMM20) were selected for the construction of PRGPI. In both training 
(CGGA693) and validation (CGGA325 and TCGA) cohorts, PRGPI-high patients showed 
an inferior survival outcome compared with PRGPI-low patients. ROC curves illustrated that 
the prognostic prediction power of PRGPI was robust. A nomogram was developed based on 
independent prognostic indicators (PRGPI, age and WHO grade), and also exhibited a strong 
forecasting ability for overall survival (OS). Additionally, PRGPI-high patients exhibited 
higher immune, stroma and ESTIMATE scores, lower tumor purity, higher infiltration of M2- 
type macrophages, lower infiltration of CD8+ T cells and activated NK cells, higher tumor 
mutation burden (TMB), and higher expression of immune checkpoints. TIDE showed that 
PRGPI-high group had more responders of ICI therapy than PRGPI-low group. Finally, the 
expression patterns of five selected PRGs in PRGPI were significantly different between 
normal and glioma.
Conclusion: The constructed PRGPI can be used for predicting prognosis and guiding 
individualized immunotherapy in glioma patients.
Keywords: pyroptosis, glioma, prognosis, immune microenvironment, ICI therapy

Introduction
Glioma is the most frequent primary malignant tumor in the central nervous 
system,1 which is characterized by high recurrence rate and high mortality. 
According to the 2016 World Health Organization (WHO) classification, diffuse 
glioma is further categorized into lower-grade glioma (LGG, WHO II–III) and 
glioblastoma (GBM, WHO IV).2,3 Despite the continuous development of multiple 
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treatment modalities, including surgical resection, chemor-
adiotherapy and immunotherapy, the prognosis of glioma 
remains dismal, especially for GBM. Based on the Central 
Brain Tumor Registry of the United States (CBTRUS) 
statistical report, the median survival time of all GBM 
patients (regardless of treatment) is approximately 8 
months.1 Currently, therapeutic options and prognostic 
evaluation for glioma patients are primarily based on the 
WHO grading system and molecular subtypes, represented 
by IDH mutation, 1p19q codeletion and MGMT promoter 
(MGMTp) methylation, etc.4–6 However, even for the 
same category of glioma patients, nonnegligible heteroge-
neities in terms of the therapy resistance, recurrence rate, 
and overall survival (OS) still exist. The existing markers 
for glioma are unable to fully satisfy the requirements of 
individualized therapies and survival prediction. Thus, the 
identification of indicators for treatment guidance and 
prognosis evaluation is of utmost urgency in glioma.

Programmed cell death (PCD) is the fundamental mode 
under which the organism obliterates the damaged or 
aberrant cells.7 There are several known PCD types, 
including necrosis, apoptosis, necroptosis, autophagy, fer-
roptosis and pyroptosis. Among them, pyroptosis, an 
inflammatory form of PCD, is distinguished from other 
types by its specialized morphological traits, such as the 
nuclear integrity and a bit of DNA laddering, pore- 
formation, cell swing and osmotic lysis.8–10 Pyroptosis is 
triggered by caspase-1/4/5/11, which is activated by some 
inflammasomes.11 The cleavage of GSDMD and GSDME 
acts as the effector of pyroptosis, which leads to the for-
mation of the pores and secretion of IL-1β and IL-18 from 
cytoplasm to microenvironment.12 Accumulating evi-
dences have shown that pyroptosis is closely correlated 
with malignant tumors.13–15 The inflammatory mediators 
IL-1β and IL-18 can provide an environment conducive to 
tumorigenesis and tumor progression.16 Meanwhile, the 
induction of pyroptosis can also inhibit the proliferation 
and migration of tumor cells.11,17 Exploring the potential 
dual role of pyroptosis in cancer should be fruitful in 
cancer research. In addition, pyroptosis may be able to 
function as a form of immunogenic cell death (ICD) 
which can synergize with cancer immunotherapy. It has 
been reported that a biomimetic nanoparticle was gener-
ated to induce systemic anti-tumor immunity via photo- 
activated pyroptosis.18 An inspired chemo-photodynamic 
therapy using the presented nano-prodrug strategy could 
induce pyroptotic tumor cells, which release DAMPs, thus 
initiating adaptive immunity, boosting immune checkpoint 

inhibition (ICI) efficiency.19 Hence, the immunotherapy 
strategy that harnessing pyroptosis to enhance anti-tumor 
immune response hold significant promise.

Unfortunately, there is little research investigating the 
role of pyroptosis in glioma, and its correlations with 
prognosis and response to ICI therapy in glioma patients 
have never been explored. In this case, we focused on the 
genes involved in the regulation of pyroptosis, namely 
pyroptosis-related genes (PRGs), and screened prognostic 
PRGs to construct a pyroptosis-related gene prognostic 
index (PRGPI). We then evaluated the prognostic value 
of PRGPI in glioma patients, characterized it’s molecular 
and immune profiles, and explore its applications in ICI 
therapy. Our findings demonstrated that PRGPI was 
a promising prognostic and ICI therapy indicator for 
glioma patients.

Methods and Materials
Data Collection
RNA sequencing (RNA-seq) data and clinical information 
of enrolled patients were downloaded from the Chinese 
Glioma Genome Atlas (CGGA; http://www.cgga.org.cn/) 
and The Cancer Genome Atlas (TCGA; https://portal.gdc. 
cancer.gov/) databases. Excluding the patients with miss-
ing survival data or OS <30 days, and those without 
definitive histopathological, a total of 638 patients were 
extracted from CGGA database (mRNAseq_693 dataset) 
and set as the training cohort. Besides, a total of 298 
patients were extracted from CGGA database 
(mRNAseq_325 dataset) and 550 patients were extracted 
from TCGA database, both of which were defined as the 
validation cohorts. The RNA-seq data of 1152 normal 
brain tissues were downloaded from the Genotype-Tissue 
Expression (GTEx; https://gtexportal.org/home/) database. 
All RNA-seq data were obtained in the format of frag-
ments per kilobase of exon model per million mapped 
reads (FPKM) normalized. The clinicopathological char-
acteristics of glioma patients in three cohorts are summar-
ized in Table 1.

Expression and Prognostic Value of PRGs
Through a detailed review of published literatures, we 
identified a total of 31 PRGs (Supplementary Table S1). 
Subsequently, the expression data of 31 PRGs was normal-
ized with log2(FPKM+1) transformation for the differen-
tial expression analysis. By using the STRING database 
(https://www.string-db.org/), interactions among PRGs 
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were presented via a protein-protein interaction (PPI) net-
work. The minimum required interaction score was set as 
0.700 (high confidence). The Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses were conducted for the functional anno-
tation of PRGs via the “clusterProfiler” package of R. To 
identify the prognostic PRGs, univariate Cox regression 
analysis was performed with the criterion of p<0.05.

Construction and Validation of the PRGPI
The prognosis-associated PRGs in training cohort were 
incorporated into the least absolute shrinkage and selection 
operator (LASSO) Cox regression by using the R package 
“glmnet”. The minimum 10-fold cross-validation was used 
to select the optimal value of λ, and 10 PRGs were identified. 
Subsequently, the multivariate Cox regression analysis of 
these 10 PRGs was performed to construct the PRGPI. The 
calculation formula of PRGPI is shown as follows:

PRGPI ¼ ∑
n

i¼1
Coefi � xi 

where xiand Coefirefer to the expression level of selected 
PRGs and corresponding coefficient in the Cox model, 

respectively. The median PRGPI was taken as the cut-off 
value to stratify patients into different PRGPI subgroups. By 
using the R package “survminer”, the Kaplan–Meier curve 
with Log rank test was plotted for the comparison of OS 
between PRGPI subgroups. To quantify the prognostic 
power of PRGPI, we performed receiver operating charac-
teristic (ROC) curve analysis by using the R package 
“timeROC”. The independent prognostic value of PRGPI 
was determined by univariate and multivariate Cox regres-
sion analyses. All validation tests of PRGPI were performed 
in both training and validation cohorts. Next, we developed 
a nomogram based on independent prognostic factors in 
training cohort. The availability of this nomogram was eval-
uated by the C-indices and calibration curves.

Mutation Profile of Different PRGPI 
Subgroups
The available information on genetic alterations was 
obtained from TCGA database. The tumor mutation bur-
den (TMB) was calculated as mutations per megabase 
(mut/Mb). Mutation annotation format (MAF) was used 
to store the somatic variant data. We then qualitatively and 
quantitatively analyzed the somatic variant data among 

Table 1 Characteristics of Glioma Patients in Training and Validation Cohorts

Characteristics Training Cohort Validation Cohorts

CGGA693 (n=638) CGGA325 (n=298) TCGA (n=550)

Age (years) <45 353 172 252

≥45 285 126 298
Gender Female 271 113 231

Male 367 185 319

WHO grade II 171 97 192
III 244 72 217

IV 223 129 141

IDH status Mutation 329 161 344
Wild type 261 136 198

NA 48 1 8

1p19q status Codeletion 137 62 138
Non-codeletion 437 231 406

NA 64 5 6

MGMTp status Methylation 293 143 391
Unmethylation 213 137 100

NA 132 18 29

TMZ chemotherapy Yes 150 668 NA
No 468 265 NA

NA 20 33 NA

Radiotherapy Yes 490 234 NA
No 123 55 NA

NA 25 9 NA
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different PRGPI subgroups by using the R package 
“Maftools”.

Immune Characteristics and ICI Therapy 
in Different PRGPI Subgroups
To determine the enrichment of differentially expressed 
genes (DEGs; |log2FC|>2 and adjusted p<0.05) between 
PRGPI-high and PRGPI-low groups, the gene set enrich-
ment analysis (GSEA) was carried out based on the “h.all. 
v7.4.symbols.gmt” and “c2.cp.kegg.v7.4.symbols.gmt” 
gene sets by using the JAVA program. The immune scores, 
stromal scores, ESTIMATE scores and tumor purity of 
each patient were calculated using the ESTIMATE algo-
rithm with the R package “estimate”.20 The relative pro-
portion of 22 immune cell types for each patient was 
calculated through CIBERSORT (https://cibersort.stan 
ford.edu/) algorithm with 1000 permutations.21 Moreover, 
we used tumor immune dysfunction and exclusion (TIDE; 
http://tide.dfci.harvard.edu) algorithm to evaluate the 
potential response to ICI therapy of each patient.22

Cell Lines and Quantitative Real-Time 
Polymerase Chain Reaction (qRT-PCR)
The human glioma cell lines (U87, U251 and T98G) and the 
normal human astrocyte (NHA) cell line were obtained from 
Cell Bank of the Chinese Academy of Sciences. These cell 
lines were cultured in a humidified incubator at 37°C and 5% 
CO2, and maintained in Dulbecco’s Modified Eagle Medium 
(DMEM) with 10% fetal bovine serum (FBS) and 1% peni-
cillin/streptomycin (P/S). Total RNA was extracted from cells 
using RNAiso Plus (Takara 9109). Referring to the manufac-
turer instruction, cDNA was synthesized by reverse transcrip-
tion using reverse transcription kit (Takara RR036A). The 
qRT-PCR analysis was further performed on the LightCycler 
480 Real-Time PCR system using TB Green® Premix Ex 
Taq™ II (Takara RR820A). All expression data was normal-
ized to GAPDH as an internal control using the 2−ΔΔCt method. 
All primers were chemically synthesised by Sangon Biotech 
(Sangon Biotech, Shanghai, China). The primer sequences 
were listed in Supplementary Table S2.

Tissue Samples and 
Immunohistochemistry (IHC)
A total of 12 paired glioma and adjacent non-tumor tissue 
samples were collected from 12 glioma patients (3WHO 
grade II, 4 WHO grade III and 5 GBM), who underwent 
tumor resection in the Neurosurgery Department of Wuhan 

Union Hospital from January 2017 to May 2019. The informed 
consent was acquired from each involved patient, in accor-
dance with the Declaration of Helsinki. The ethical approval 
was obtained from the Medical Ethics Committee of the hos-
pital. After that, we validated the protein level of selected 
PRGs through IHC experiment. All specimens were fixed 
with 10% formalin at room temperature, embedded in paraffin, 
and sectioned (4um). Briefly, the specimen slices were 
dewaxed, then hydrated and boiled in citrate buffer (pH=6) 
for 8 minutes to recover the antigen. The slices were treated 
with methanol containing 3% hydrogen peroxide to inactivate 
the endogenous peroxidase. The 3% bovine serum albumin 
(BSA) was incubated in phosphate buffer saline (PBS) for 30 
minutes to block non-specific binding. In addition, the slices 
were stained with primary antibody and incubated overnight at 
4°C. These sections were treated with three 5-min mild wash-
ing in PBS, followed by staining with secondary antibody 
(HRP polymer) for 50 minutes. Diaminobenzidine was applied 
before being counterstained with hematoxylin. Finally, the 
samples were sealed, viewed and photographed by light micro-
scope. The primary antibodies used in this work were summar-
ized in Supplementary Table S3. Image-ProPlus 6.0 software 
was used to quantify the expression of protein, which was 
presented as the ratio of integral optical density (IOD): IOD 
= average optical density × positive area.

Statistical Analysis
PERL programming language (version 5.32.0) was used to 
preprocess the RNA-seq data. R software (version 4.0.2) 
were applied for all statistical analyses and graph visuali-
zations. The Chi-square test was executed for the compar-
ison of categorical variables between PRGPI subgroups. 
The Mann–Whitney U-test was utilized to compare the 
continuous variables (including PRGPI, immune score, 
stromal score, ESTIMATE score, tumor purity, fraction 
of immune cells, TMB, and the expression of immune 
checkpoints) between two groups. The expression levels 
and the IOD of PRGs were compared by using the 
Wilcoxon test. The correlation between TMB and PRGPI 
was assessed through Spearman correlation analysis. Two- 
tailed p < 0.05 was considered statistically significant.

Results
Pyroptosis-Related Genes
The expression levels of 31 PRGs were compared between 
the glioma tissues from TCGA dataset and the normal 
brain tissues from GTEx dataset. Among these 31 PRGs, 
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30 DEGs were identified, including 15 upregulated genes 
(AIM2, CASP1, CASP3, CASP5, CIB1, DPP8, EEF2K, 
GSDMA, GSDMC, NFKB1, NLRC4, NLRP3, SIRT1, 
TOMM20 and TXNIP) and 15 downregulated genes 
(BAX, CARD8, CASP11, CASP4, CASP8, CIB2, DPP9, 
GSDMB, GSDMD, GSDME, MAP1LC3B, MAPK8, 
NLRP1, NR1H2 and PLEP1) in glioma tissues compared 
with normal brain tissues (Figure 1A). Additionally, the 
expression levels of most PRGs were significantly corre-
lated with WHO grades (Supplementary Figure S1A and 
B). These results suggested that the PRGs might exert an 
influence on the malignant progression of glioma.

The interactions among the PRGs were illustrated as 
the PPI network (Figure 1B). The top 10 significantly 
enriched GO terms and KEGG pathways for these PRGs 
were presented separately in Figure 1C and D. As can be 
seen from the GO analysis, PRGs were mainly enriched in 
inflammasome complex, pyroptosis and regulation of 
interleukin-1 beta and interleukin-1 production. The 
KEGG pathway analysis showed that PRGs were closely 
enriched in NOD-like receptor signaling pathway.

We then assessed the prognostic significance of theses 31 
PRGs by performing the univariate Cox regression analysis 
in both CGGA693 cohort and TCGA cohort (Figure 1E and 
Supplementary Figure S2). A total of 20 OS-associated 
PRGs (all p < 0.05) were identified in CGGA693 cohort, 
including 17 risky factors (BAX, CARD8, CASP1, CASP3, 
CASP4, CASP5, CASP8, GSDME, DPP9, EEF2K, 
GSDMA, GSDMD, NEXN, NFKB1, NLRC4, NR1H2 and 
CASP11) and 3 protective factors (MAPK8, PELP1 and 
TOMM20) for prognosis. The result of univariate Cox 
regression analysis in TCGA cohort was broadly consistent 
with that in CGGA693 cohort.

Prognosis Differences Between PRGPI 
Subgroups
In CGGA693 cohort, twenty OS-associated PRGs were 
incorporated into the LASSO regression, ten of which 
were screened out for further multivariate Cox regression 
analysis (Figure 2A and B). Consequently, only five PRGs 
(CASP3, DPP9, MAPK8, PELP1 and TOMM20) were 
independent predictors for OS (Figure 2C). The Kaplan– 
Meier survival curves of five selected PRGs were shown 
in Supplementary Figure S2. Then, a prognostic index was 
constructed and calculated by the following formula: 
PRGPI = (0.400 * expression level of CASP3) + (0.330 
* expression level of DPP9) + (−0.236 * expression level 

of MAPK8) + (−0.427 * expression level of PELP1) + 
(−0.323 * expression level of TOMM20).

With the median PRGPI as the cut-off value, we cate-
gorized glioma patients into different PRGPI subgroups. In 
CGGA693cohort, PRGPI-high patients had a shorter OS 
than PRGPI-low patients (Figure 2D). The heterogeneity 
of OS between PRGPI-high/-low patients remained signif-
icant in the subgroups based on different clinicopathologi-
cal characteristics (Supplementary Figure S3). PRGPI and 
survival status distributions showed that patients with 
higher PRGPI had shorter OS and more dead status 
(Figure 2E). Moreover, significant differences were 
observed between PRGPI subgroups with respect to age, 
WHO grade, IDH status and 1p19q status (Supplementary 
Table S4). According to Univariate Cox regression analy-
sis, age, WHO grade, IDH status, 1p19q status, MGMTp 
status and PRGPI were significantly correlated with the 
OS of glioma patients (Figure 2F). It was confirmed by 
Multivariate Cox regression analysis that PRGPI was an 
independent prognostic factor after being adjusted for 
other clinicopathological characteristics (Figure 2G and 
Supplementary Table S5). The ROC curves showed that 
PRGPI had a strong ability to predict OS (1-year AUC = 
0.720, 3-year AUC = 0.771, 5-year AUC = 0.775; 
Figure 2H–J). The accuracy of PRGPI was highest in 
predicting 3-year and 5-year OS compared with other 
clinicopathological characteristics.

Then, the prognostic power of PRGPI was validated in 
CGGA325 and TCGA cohorts. A significantly shorter OS 
was observed in PRGPI-high patients (Figure 3A and B). 
PRGPI and survival status distributions also showed that 
the higher the PRGPI, the shorter OS and the more dead 
status (Figure 3C and D). The ROC curves confirmed the 
potent capability of PRGPI to predict OS in both 
CGGA325 cohort (1-year AUC = 0.724, 3-year AUC = 
0.793, 5-year AUC = 0.816; Figure 3E) and TCGA cohort 
(1-year AUC = 0.817, 3-year AUC = 0.847, 5-year AUC = 
0.796; Figure 3F). Furthermore, PRGPI was still verified 
as an independent prognostic factor after being adjusted 
for other clinicopathological characteristics in these two 
cohorts (Supplementary Figure S4 and Supplementary 
Table S5).

Nomogram Construction and Evaluation
Based on the independent prognostic indicators in 
CGGA693 cohort, we constructed a nomogram to predict 
the 1-, 3- and 5-year OS of glioma patients (Figure 4A). The 
C-indices of this nomogram were 0.81 ± 0.03 in CGGA693 
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cohort, 0.83 ± 0.05 in CGGA325 cohort, and 0.81 ± 0.03 in 
TCGA cohort. The calibration plots exhibited a perfect fit 
between the actual and nomogram-predicted probability of 
1-, 3- and 5-year OS in all three cohorts (Figure 4B–D). 
Importantly, these results indicated that the nomogram had 
the potential to develop into a quantitative tool to predict the 
prognosis of glioma patients.

Immune Characteristics of Different 
PRGPI Subgroups
In CGGA693 cohort, the gene set enrichment analysis 
(GSEA) revealed that the gene sets of PRGPI-high patients 
were enriched in immune-related pathways (p < 0.05, FDR 
< 0.25; Figure 5A), including antigen processing and pre-
sentation, B cell receptor signaling pathway, T cell receptor 

Figure 1 Expression, function and prognosis analyses of 31 PRGs in glioma. (A) The expression comparison of PRGs between glioma tissues (TCGA) and normal brain 
tissues (GTEx). (B) PPI network of PRGs. Elements not connected to others were hidden. (C, D) GO and KEGG pathway analysis of PRGs. (E) Univariate Cox regression 
analysis of PRGs in CGGA693 cohort. * p<0.05, *** p<0.001, and ns No significance.
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Figure 2 Construction and validation of the PRGPI in CGGA693 cohort. (A and B) The LASSO regression was performed with the minimum criteria. (C) Multivariate Cox 
regression was used to construct a PRGPI. (D) Kaplan–Meier curves of PRGPI subgroups for survival. (E) The distribution plots of PRGPI, survival status and expression of 
five selected PRGs. (F and G) Univariate and multivariate Cox regression analyses for identifying independent prognostic factors. (H–J) ROC curve analysis of PRGPI and 
clinicopathological characteristics in predicting 1-, 3- and 5-year OS.
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signaling pathway and interferon gamma response, etc. 
Further analysis showed that the PRGPI-high patients had 
significantly higher immune, stromal, and ESTIMATE 
scores, but lower tumor purity compared with the PRGPI- 
low patients (Figure 5B). Next, we compared the distribu-
tion of immune cells in different PRGPI subgroups. 
Significant difference in the distribution of immune cells 

was observed in PRGPI-high patients with higher infiltration 
of CD4+ T cells memory resting, T cells gamma delta, M0- 
type macrophages, M1-type macrophages, M2-type macro-
phages, activated dendritic cells and neutrophils, but lower 
infiltration of B cells memory, CD8+ T cells, CD4+ T cells 
naïve, activated NK cells and monocytes (Figure 5C). The 
proportion of immune cells, and the clinicopathologic 

Figure 3 Validation of PRGPI in CGGA325 and TCGA cohorts. (A and B) Kaplan–Meier curves of PRGPI subgroups for survival in CGGA325 and TCGA cohorts. (C and 
D) The distribution plots of PRGPI, survival status and expression of five selected PRGs in CGGA325 and TCGA cohorts. (E and F) ROC curve analysis of PRGPI in 
predicting 1-, 3- and 5-year OS in CGGA325 and TCGA cohorts.

https://doi.org/10.2147/JIR.S341774                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2022:15 24

Zheng et al                                                                                                                                                           Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


characteristics of different PRGPI subgroups, are displayed 
in Figure 5D. Moreover, similar differences in the immune 
characteristics of different PRGPI subgroups were observed 
in TCGA cohort (Supplementary Figure S5).

Mutation Profile of Different PRGPI 
Subgroups
To get further insight into the immunologic nature of 
different PRGPI subgroups, we analyzed the genetic 
mutation profile in TCGA cohort. We identified the top 
20 genes with the highest mutation rates in PRGPI sub-
groups (Figure 6A and B). The mutation of TP53, IDH1, 
ATRX and TTN were frequent in both PRGPI-high and 

PRGPI-low groups. The top 1 gene was TP53 in PRGPI- 
high group, and IDH1 in PRGPI-low group. The mutation 
of EGFR was more common in PRGPI-high group, but 
the mutation of CIC was more common in PRGPI-low 
group. Next, we found that TMB of PRGPI-high patients 
was significantly higher than that of PRGPI-low patients 
(Figure 6C), and there was a positive correlation between 
TMB and PRGPI (Figure 6D). The Kaplan–Meier survi-
val curve for the combination of PRGPI and TMB 
showed significant differences in survival outcome, 
which was the worst for patients with high PRGPI and 
high TMB, but the best for patients with low PRGPI and 
low TMB (Figure 6E).

Figure 4 Construction and evaluation of a nomogram. (A) A nomogram was constructed based on PRGPI, 1p19q codeletion status and WHO grade in CGGA693 cohort. 
(B–D) Calibration curves showing the concordance between predicted and observed 1-, 3- and 5-year OS in CGGA693, CGGA325 and TCGA cohorts.
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Figure 5 The immune microenvironment of different PRGPI subgroups in CGGA693 cohort. (A) Gene set enrichment analysis (GSEA) in PRGPI-high group (p < 0.05, FDR 
< 0.25). (B) The comparison of immune score, stromal score, ESTIMATE score and tumor purity between PRGPI-high and PRGPI-low groups. (C) The infiltration of 22 
immune cells in PRGPI-high and PRGPI-low groups. (D) The proportions of 22 immune cells, and the clinicopathologic characteristics of different PRGPI subgroups. * 
p<0.05, ** p<0.01, *** p<0.001, and ns No significance.
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Response to ICI Therapy of Different 
PRGPI Subgroups
In order to investigate the response to ICI therapy of 
different PRGPI subgroups, we first compared the expres-
sion levels of representative immune checkpoints between 
PRGPI-high and PRGPI-low groups. In both CGGA693 
and TCGA cohorts, PRGPI-high patients had significantly 
higher expression levels of all seven immune checkpoints 
compared with PRGPI-low patients (Figure 7A and B). As 
clearly seen from the correlation analysis, the risky PRGs 
(CASP3 and DPP9) were positively correlated with nearly 
all immune checkpoints, but the protective gene, MAPK8, 
had a negative correlation with most immune checkpoints 
(Figure 7C and D). We then used TIDE algorithm to 
evaluate the potential response to ICI therapy of different 
PRGPI subgroups. The output information of TIDE 

algorithm in CGGA693 cohort and TCGA cohort was 
detailed in Supplementary Tables S6 and S7, respectively. 
In both cohorts, there were more responders of ICI therapy 
in PRGPI-high group compared with PRGPI-low group 
(CGGA693: 89/319 vs 10/319, p<0.0001 and TCGA: 36/ 
275 vs 1/275, p<0.0001; Figure 7E and F). Consistent 
results were observed in subgroup analysis based on 
WHO grade (Supplementary Figures S6A and B, S7). 
Additionally, the PRGPI of responders was significantly 
higher than that of non-responders (Figure 7G and H). The 
ROC curves revealed high accuracy of PRGPI in predict-
ing the response to ICI therapy (AUC of CGGA693 = 
0.795, AUC of TCGA = 0.814; Figure 7I and J). Taken 
together, PRGPI may has the potential to serve as an 
indicator for predicting the response to ICI therapy in 
glioma.

Figure 6 The mutation profile and tumor mutation burden (TMB) of different PRGPI subgroups in TCGA cohort. (A) Mutation profile in PRGPI-high group. (B) Mutation 
profile in PRGPI-low group. (C) The comparison of TMB between PRGPI-high group and PRGPI-low group. (D) The correlation of TMB with PRGPI. (E) Kaplan–Meier 
curves of different TMB and PRGPI subgroups for survival. *** p<0.001.
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Expression Patterns of Selected PRGs
To validate the expression patterns of five selected PRGs, we 
detected their mRNA expression in cell lines and their protein 
level in glioma and adjacent non-tumor tissues. According to 
the results of qRT-PCR, the mRNA expressions of CASP3 and 
DPP9 were overall elevated in human glioma cell lines com-
pared with NHA cell lines, while the mRNA expressions of 
MAPK8, PELP1 and TOMM20 showed an overall downward 
trend in human glioma cell lines (Figure 8A). The protein level 
of these five PRGs was quantified by IOD in IHC staining. 
Compared with adjacent non-tumor tissues, DPP9 was up- 
regulated, but MAPK8, PELP1 and TOMM20 were down- 

regulated in glioma tissues. There was no significant differ-
ence in the protein level of CASP3 between glioma and 
adjacent non-tumor tissues (Figure 8B). Representative pic-
tures of IHC staining are shown in Figure 8C.

Discussion
Genes associated with PCD have been confirmed to func-
tion as reliable prognostic biomarkers for glioma, such as 
autophagy-related genes and ferroptosis-related genes.23,24 

However, the role of PRGs in glioma has never been 
systematically investigated. As an emerging type of 
PCD, pyroptosis was thought to play a dual role in cancer. 

Figure 7 Evaluation of the PRGPI in indicating the response to ICI therapy. (A and B) The expression of immune checkpoints between PRGPI subgroups in CGGA693 and 
TCGA cohorts. (C and D) The correlations between immune checkpoints and five selected PRGs in CGGA693 and TCGA cohorts. (E and F) The distribution of ICI 
therapy responders in different PRGPI subgroups. (G and H) The comparison of PRGPI between responders and non-responders in CGGA693 and TCGA cohorts. (I and 
J) ROC curve analysis of PRGPI in predicting the response to ICI therapy in CGGA693 and TCGA cohorts. * p<0.05, ** p<0.01 and *** p<0.001.
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On one hand, inflammatory factors released by pyroptosis 
can promote the transformation of normal cells into tumor 
cells.25 On the other hand, inducing pyroptosis of tumor 
cells is a promising strategy to kill tumor cells.17 In addi-
tion, some studies suggested that pyroptosis is associated 
with tumor immune microenvironment and response to ICI 
therapy due to its potent proinflammatory effect.26,27 

These previous findings piqued our intense interest in 
revealing the prognostic value of PRGs, and their correla-
tion with anti-tumor immunity in glioma.

In this study, we identified a total of 31 currently 
known PRGs, most of which were differentially expressed 
between glioma and normal brain tissues, and were also 
correlated with OS of glioma patients. Next, five PRGs 
stood out to construct the PRGPI. Both in the training 
cohort and validation cohorts, PRGPI showed robust capa-
city in predicting the survival outcomes of glioma patients, 
with worse survival in PRGPI-high group and better sur-
vival in PRGPI-low group. Moreover, the prognostic value 
of PRGPI remained significant in patients with different 

Figure 8 The expression patterns of five selected PRGs in cell lines and pathological specimens. (A) The expression of five selected PRGs in normal cell line, NHA, and 
three glioma cell lines, U87, U251, and T98G. (B) The protein level of five selected PRGs quantified by IOD in immunohistochemistry (IHC) staining. (C) Representative 
IHC staining of five selected PRGs in glioma and adjacent non-tumor tissues. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 and ns No significance.
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clinicopathological characteristics. Univariate and multi-
variate Cox regression analysis demonstrated that PRGPI 
was an independent prognostic factor for OS. These results 
confirmed that PRGPI had stable power of prognosis pre-
diction, and it could be widely applicable to glioma 
patients with various clinicopathological characteristics.

PRGPI was composed of five PRGs, which were CASP3, 
DPP9, MAPK8, PELP1 and TOMM20. Caspase 3 (CASP3) 
was an executioner caspase of caspases family.28 Activated 
CASP3 could degrade intracellular structural proteins and 
functional proteins, thereby inducing cell death.29 A study 
suggested that chemotherapy drug-activated CASP3 could 
trigger pyroptosis by cleaving GSDME.30 Dipeptidyl pepti-
dase 9 (DPP9), a member of the S9B family in clan SC of the 
serine proteases, could cleave Xaa-Pro dipeptides from the 
N-termini of proteins. It has been reported that inhibiting 
DPP9 by Val-boroPro induce pyroptosis in human acute 
myeloid leukemia (AML) cell lines.31 As for mitogen- 
activated protein kinase 8 (MAPK8), also known as JNK1, 
played a pivotal role in many cellular events, including 
pyroptosis. The latest research reported that the phosphoryla-
tion of MAPK8 caused by lobaplatin-elevated ROS could 
activate caspase-3, and ultimately inducing the cleavage of 
GSDME and pyroptosis of colon cancer cells.32 Proline, 
glutamate and leucine-rich protein 1 (PELP1), 
a transcriptional coregulator, acted as scaffolding oncogenic 
protein interacting with different epigenetic modifiers.33 

A study found that the miR-497-PELP1 axis targeted by 
metformin could induce GSDMD-mediated cell pyroptosis 
in esophageal squamous cell carcinoma.34 As for translocase 
of outer mitochondrial membrane 20 (TOMM20), it was 
responsible for the recognition and translocation of cytosoli-
cally synthesized mitochondrial preproteins. There was 
experimental evidence indicating that the oxidation and oli-
gomerization of TOMM20 could promote pyroptotic death 
of melanoma cell via the BAX-CASP3-GSDME axis.35 In 
summary, these five selected PRGs were directly or indir-
ectly involved in the regulation of pyroptosis in cancer. 
According to the available evidences, three PRGs (CASP3, 
MAPK8 and TOMM20) were pyroptosis promoters, and 
another two PRGs (DPP3 and PELP 1) were pyroptosis 
inhibitors. Such classification was not exactly matched with 
the classification of protective or risky factors for survival. 
One explanation is that pyroptosis may play a dual role as 
pro-cancer and anti-cancer simultaneously. There is currently 
no way to completely clear the association between pyropto-
sis and prognosis of patients. Another explanation is that 
these PRGs are correlated with other biological 

characteristics. For instance, CASP3 was also recognized as 
a marker of apoptosis.28 Furthermore, it should be mentioned 
that the role and mechanism of these five PRGs in pyroptosis 
of glioma has not been reported yet. Future experiments are 
deeply needed to provide more evidences.

Recently, several studies have demonstrated how pyrop-
tosis affects the tumor microenvironment (TME) and antic-
ancer immunity. The expression of GSDMB or GSDME was 
reported to sensitize cancer cells to cytotoxic lymphocyte- 
induced pyroptosis in a granzyme-dependent manner.36,37 

Wang et al showed that pyroptosis induction in less than 
15% of tumor cells led to the entire T cell-dependent clear-
ance of mammary tumor, accompanied with increased 
T cells, NK cells, M1-type macrophages and decreased reg-
ulatory T cells, M2-type macrophages, neutrophils, and mye-
loid-derived suppressor cell populations.27 To get further 
biological insight into the immunologic nature of the 
PRGPI subgroups, we first performed GSEA, which revealed 
that the gene sets of the PRGPI-high patients were enriched 
in several immune-related pathways. Further analyses indi-
cated that higher immune, stromal, and ESTIMATE scores, 
and lower tumor purity were observed in PRGPI-high group 
compared with PRGPI-low group. The composition of some 
immune cells was also different between two PRGPI sub-
groups. There is a fact that up to 30–50% of the immune cells 
in glioma are tumor-associated macrophages (TAMs).38 

Previous investigators have classified TAMs into M1-type 
macrophages, a proinflammatory phenotype associated with 
a favorable survival outcome, and M2-type macrophages, an 
immunosuppressive phenotype associated with a poor survi-
val outcome.39 Our results suggested that M2-type macro-
phages had an overwhelming advantage in numbers 
compared with other immune cells, and the PRGPI-high 
group with poor survival outcome had significantly higher 
enrichment of M2-type macrophages. These findings sup-
ported the previous conclusions to a certain extent. 
Furthermore, M2-type macrophages contribute to the forma-
tion of immunosuppressive microenvironment, which ham-
per for tumor-killing cells eradicating the tumor cells. 
Therefore, the infiltration of CD8+ T cells and activated 
NK cells in the PRGPI-high group was less than that in 
PRGPI-low group in our study, which implied that PRGPI- 
high group was characteristics of immunosuppression.

Next, we speculated that PRGPI-based differences in the 
immune characteristics might reflect different response to ICI 
therapy. TMB is strongly associated with the number of neoan-
tigens arising in TME and has emerged as a novel potential 
biomarker in ICI therapy.40,41 In our study, the PRGPI-high 
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group with higher TMB might yield a better response to ICI 
therapy. Another promising biomarker for ICI therapy is the 
expression of immune checkpoints, including PD-1, PD-L1, 
and CTLA-4 et al, which act as an immunosuppressive role by 
suppressing the activation of protective immune cells.42 Our 
results showed that PRGPI-high group had higher expression 
of immune checkpoints, which further indicated that ICI ther-
apy might be more effective in PRGPI-high group. Recently, 
a computational method, called TIDE, has been developed to 
predict the ICI therapy response. It was reported that TIDE 
achieved a higher accuracy in predicting the outcome of mel-
anoma patients treated with first-line anti-PD1 or anti-CTLA4 
than other biomarkers, such as PD-L1 level and TMB.22 Thus, 
we applied the TIDE algorithm to estimate the response to ICI 
therapy in PRGPI subgroups. The results showed that there 
were more responders of ICI therapy in PRGPI-high group 
compared with PRGPI-low group in both cohorts. Consistent 
results were observed in subgroup analysis based on WHO 
grade. Further investigations revealed that the responders had 
higher PRGPI than non-responders. The ROC analysis con-
firmed a high discriminative ability of PRGPI for the response 
to ICI therapy. All the above results suggested that the PRGPI 
was a promising biomarker for predicting the response to ICI 
therapy in glioma.

Nonetheless, some limitations should be addressed in our 
study. Firstly, there is little research available on pyroptosis, 
especially on its mechanism in cancer. The known PRGs may 
be just a tip of the iceberg. Due to a lack of experimental 
evidence, we could not determine whether the selected PRGs 
also exert corresponding roles in pyroptosis pathways of 
glioma. Thus, further experiments would be essential to pro-
vide more conclusive evidence. Secondly, the data of genetic 
alterations was not available in CGGA database. We could 
only analyze the genetic mutation profile in TCGA cohort. 
Thirdly, the TIDE algorithm has only been validated in several 
melanoma datasets and a limited dataset of non-small cell lung 
cancer (NSCLC). Additional research is required to verify the 
relevance between TIDE results and ICI therapy benefits in 
glioma. Finally, the PRGPI was constructed and validated with 
retrospective data from public databases. Using prospective 
data to assess its value would be more convincing.

Conclusion
To sum up, our work fills a research gap on the prognostic 
analysis of PRGs in glioma. The PRGPI constructed in this 
study showed robust power in predicting survival outcomes 
of glioma patients and was correlated with immune micro-
environment of glioma patients and their response to ICI 

therapy. We believe that our findings are able to provide 
valuable insights for subsequent studies and clinical practice.
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