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Purpose: Heritability (h2, the proportion of the phenotypic variance attributable to additive 
genetic effects) is traditionally assumed to be constant throughout the distribution of the 
phenotype. However, the heritabilities of circulating C-reactive protein, interleukin-6, plasmi-
nogen activator inhibitor type-1 (PAI-1), and monocyte chemoattractant protein-1 (MCP-1) 
concentrations depend upon whether the phenotype is high or low relative to their distributions 
(quantile-dependent expressivity), which may account for apparent gene–environment inter-
actions. Whether the heritabilities of other inflammatory biomarkers linked to cardiovascular 
disease are quantile-dependent remain to be determined.
Patients and Methods: Quantile-specific offspring-parent (βOP) and full-sib regression 
slopes (βFS) were estimated by applying quantile regression to the age- and sex-adjusted 
phenotypes of families surveyed as part of the Framingham Heart Study. Quantile-specific 
heritabilities were calculated as: h2=2βOP/(1+rspouse) and h2={(1+8rspouseβFS)0.5–1}/(2rspouse).
Results: Heritability (h2 ± SE) of lipoprotein-associated phospholipase A2 (Lp-PLA2) mass 
concentrations increased from 0.11 ± 0.03 at the 10th percentile, 0.08 ± 0.03 at the 25th, 0.12 ± 
0.03 at the 50th, 0.20 ± 0.04 at the 75th, and 0.26 ± 0.06 at the 90th percentile, or 0.0023 ± 0.0006 per 
each one-percent increase in the phenotype distribution (Plinear trend= 0.0004). Similarly, h2 increased 
0.0029 ± 0.0011 (Plinear trend= 0.01) for sP-selectin, 0.0032 ± 0.0009 (Plinear trend= 0.0001) for soluble 
intercellular adhesion molecule 1 (sICAM-1), and 0.0026 ± 0.0006 for tumor necrosis factor 
receptor 2 (TNFR2) (Plinear trend= 5.0 × 10−6) per each one-percent increase in their distributions 
when estimated from βOP. Osteoprotegerin and soluble ST2 heritability also increased significantly 
with increasing percentiles of their distributions when estimated from βFS. Lp-PLA2 activity, CD40 
ligand, TNFα, interleukin-18, and myeloperoxidase heritability showed no significant quantile- 
dependence.
Conclusion: The heritabilities of circulating Lp-PLA2-mass, sP-selectin, sICAM-1, TNFR2, 
osteoprotegerin and soluble ST2 concentrations are quantile-dependent, which may contri-
bute to purported genetic modulations of: 1) sP-selectin’s relationships to venous thrombosis, 
pulmonary hypertension, type 2 diabetes and atorvastatin treatment; 2) sICAM-I’s relation-
ships to brain abscess and atorvastatin treatment; and 3) Lp-PLA2’s relationships to myo-
cardial infarction and preeclampsia.
Keywords: gene–environment interaction: heritability, P-selectin, intercellular adhesion 
molecule-1, lipoprotein-associated phospholipase A2, osteoprotegerin

Introduction
Biomarkers of systemic inflammation and oxidative stress are associated with 
cardiovascular disease,1 metabolic syndrome,2 frailty,3 diabetes,4 obesity,5,6 and 
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chronic renal disease.7 The Framingham Heart Study has 
reported that additive genetic effects explain significant 
portions of the phenotypic variance of these markers (her-
itability, h2): 0.17 for CD40 ligand,8 0.34 for intercellular 
adhesion molecule-1 (ICAM-1),8 0.25 for lipoprotein- 
associated phospholipase A2 (Lp-PLA2) mass,9 0.41 for 
Lp-PLA2 activity,9 0.24 for myeloperoxidase,8 0.45 for 
P-selectin,8 0.34 for tumor necrosis factor receptor II 
(TNFR2),8 0.45 for soluble ST2,10 and 0.16 for tumor 
necrosis factor-alpha (TNFα)8 when log-transformed. 
Traditionally, these estimates are assumed to apply 
throughout the phenotype distribution.11

“Quantile-dependent expressivity” refers to the pheno-
typic expression of a genetic variant being dependent on 
whether the trait is high or low relative to its distribution.12 

For example, the heritability of total and HDL 
cholesterol,13–15 triglycerides,16 leptin,17 glucose,18 

insulin,18 uric acid19 and adiponectin concentrations,20 

coffee and alcohol consumption,21,22 adiposity,12,23 and 
postprandial lipemia24 increase with increasing quantiles 
of each trait, whereas intakes of other macronutrients and 
height do not.12,22,23 One potential consequence of quan-
tile-dependent expressivity is that sampling by character-
istics that distinguish high- vs low-valued phenotypes may 
produce genetic differences traditionally ascribed to gene– 
environment, gene–drug and gene–diet interactions when 
a simpler explanation of quantile-dependence might 
suffice.15

We have previously demonstrated quantile-dependent 
expressivity for C-reactive protein,25 a nonspecific acute- 
phase reactant,26 and interleukin-6,27 a primary stimulator 
for the production of most acute-phase proteins.28 

Specifically, their heritabilities increased significantly 
with their increasing serum concentrations, such that larger 
genetic effects at higher vis-à-vis lower concentrations 
might contribute to published examples of their gene– 
drug, gene–diet, and gene–environment interactions. 
Using data from the Framingham Heart Study,29,30 the 
current report furthers these analyses by examining 
whether quantile-dependent heritability might also affect 
other biomarkers representing different aspects of inflam-
matory cascade: inflammatory cytokines (TNFα, TNFR2, 
interleukin-18), leukocyte tethering (P-selectin), cellular 
immunity (CD40 ligand), leukocyte adhesion (ICAM-1), 
and monocyte adhesion and endothelial sensitization 
(osteoprotegerin).31–36 Soluble ST2 was examined because 
it functions as a decoy receptor for interleukin-33 that 
prevents ST2/IL-33 signaling.10 Lp-PLA2 and 

myeloperoxidase concentrations were included as mea-
sures of oxidative stress.37 Quantile-regression does not 
require statistical normality and therefore tests for genetic 
effects on these phenotypes as originally measured.

Materials and Methods
The Framingham Study data were obtained from the 
National Institutes of Health FRAMCOHORT, GEN3, 
FRAMOFFSPRING Research Materials obtained from 
the National Heart, Lung, and Blood (NHLBI) Biologic 
Specimen and Data Repository Information Coordinating 
Center. The hypothesis tested is not considered as part of 
the initial Framingham Study design and is exploratory. 
The Offspring Cohort included 5124 adult children of the 
Original Cohort and their spouses who were initially 
examined between 1971 and 1975, reexamined eight 
years later, and then every three to four years 
thereafter.29 The Third Generation Cohort was composed 
of the prodigy of the Offspring Cohort.30 Subjects used in 
the current analyses were at least 16 years of age and were 
self-identified as non-Hispanic White.

Lawrence Berkeley National Laboratory Human 
Subjects Committee (HSC) approved the analyses of 
these data for protocol “Gene–environment interaction vs 
quantile-dependent penetrance of established SNPs 
(107H021)”. LBNL holds the Office of Human Research 
Protection's Federal Wide Assurance Number FWA 
00006253. Approval number: 107H021-13MR20. All sur-
veys were conducted under the direction of the 
Framingham Heart Study human use committee guide-
lines, with signed informed consent from all participants 
or parent and/or legal guardian if <18 years of age.

Phlebotomy was performed on fasting participants who 
had rested for 5 to 10 minutes in a supine position, typi-
cally between 8 and 9 AM. Specimens were stored at 
−80°C without freeze-thaw cycles until assay. Collected 
blood was spun at 5000 rpm for 20 minutes in a balanced 
oxalate tube. The inflammatory biomarkers were measured 
in the Offspring Cohort at clinical examination 6 (soluble 
ST2), examination 7 (sICAM-1, myeloperoxidase, Lp- 
PLA2, osteoprotegerin, sP-selectin, TNFR2, CD40 ligand, 
TNFα, interleukin-18) and examination 8 (sICAM-1, Lp- 
PLA2, osteoprotegerin, sP-selectin, TNFR2) and in the 
Generation Three Cohort at examination 1 (ICAM-1, 
LpPLA2, osteoprotegerin, sP-selectin, TNFR2). Offspring 
Cohort examination 6 took place between 1996 and 1998, 
examination 7 between 1998 and 2001, and examination 8 
between 2004 and 2008. The Third Generation Cohort 
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examination one occurred between 2002 and 2005. Details 
of the assays have been published36,38 and are available 
online.39

Statistics
The statistical analyses have been described elsewhere,12–25 

and summarized briefly here. Individual subject values are 
the average of the age- and sex-adjusted concentrations over 
all available exams. Offspring-parent regression slopes (βOP) 
were computed using parents from the Offspring Cohort and 
their Third Generation Cohort children. Full-sibling regres-
sion slopes (βFS) were calculated for the sibships identified in 
the Offspring and Third Generation Cohorts by forming all ki 

(ki-1) sib pair combinations for the ki siblings in sibship i and 
assigning equal weight to each sibling.40 Heritability in the 
narrow sense (h2) was calculated as h2= 2βOP/(1+rspouse) and 
h2={(1+8βFSrspouse)0.5–1}/(2rspouse), where rspouse is the 
spouse correlation.11

Simultaneous quantile regression was performed using 
the sqreg command of Stata (version 11, StataCorp, 
College Station, TX).41 One thousand bootstrap samples 
were drawn to estimate the variance-covariance matrix for 
the 91 quantile regression coefficients between the 5th and 
95th percentiles of the offspring’s distribution.42 Quantile- 
specific expressivity was assessed by: 1) estimating quan-
tile-specific β-coefficients (±SE) for the 5th, 6th, …, 95th 
percentiles of the sample distribution; 2) plotting the quan-
tile-specific β coefficient vs the quantile of the trait dis-
tribution; and 3) testing whether the resulting graph was 
constant, or changed as a linear, quadratic, and cubic 
functions of the percentile of the trait distribution using 
orthogonal polynomials.43 Statistics are reported ± one 
standard error. “Quantile-specific heritability” refers to 
the heritability statistic, whereas “quantile-specific expres-
sivity” is the biological phenomenon of the trait expression 
being quantile-dependent.

Published examples of gene–disease and gene–envir-
onment interactions were identified through keyword 
search on PubMed. Data from these studies were re- 
analyzed using genotype-specific means or medians pre-
sented in the original articles 44–56 or by extracting these 
values from published graphs 57–62 using the Microsoft 
PowerPoint formatting palette as previously described.24 

Specifically, histograms were created that display 
a precision medicine perspective of genotype-specific 
patient-control differences or treatment effects. These 
were compared to line graphs showing a larger genetic 
effect size when average circulating concentrations were 

high, ie, a quantile-dependent expressivity perspective. 
The juxtaposition of the histograms and line graphs 
shows that both interpretations warrant consideration. 
Our interpretations of these other studies are not necessa-
rily those of the original authors.

Data Availability
The data are not being published in accordance with the 
data use agreement between the NIH National Heart Lung, 
and Blood Institute and Lawrence Berkeley National 
Laboratory. However, the data that support the findings 
of this study are available from NIH National Heart Lung, 
and Blood Institute Biologic Specimen and Data 
Repository Information Coordinating Center directly 
through the website https://biolincc.nhlbi.nih.gov/my/sub 
mitted/request/.

Results
Table 1 displays the sample characteristics by sex and 
cohort. Estimated age and sex-adjusted spouse correlations 
(rspouse) were 0.0921 for sP-selectin, 0.1110 for sICAM-1, 
0.0525 for Lp-PLA2 mass, −0.0171 for Lp-PLA2 activity, 
0.0067 for osteoprotegerin, 0.0561 for CD40 ligand, 
−0.0376 for interleukin-18, 0.0238 for TNFα, 0.0835 for 
TNFR2, 0.0845 for myeloperoxidase, and 0.0538 for solu-
ble ST2. Table 2 presents the traditional estimates of 
heritability for the untransformed inflammatory markers, 
which were strongest for sP-selectin concentration, soluble 
ST2 concentration, and Lp-PLA2 activity, modest for cir-
culating sICAM-1, Lp-PLA2-mass, osteoprotegerin, 
TNFR2, and myeloperoxidase concentrations, and non-
significant for TNFα and CD40 ligand.

Quantile-Specific Heritability
Figure 1A presents the offspring-parent regression slopes 
(βOP) for selected quantiles of the offspring’s age and sex- 
adjusted Lp-PLA2 mass concentrations. Each ng/mL 
increment in the parents’ Lp-PLA2 concentration corre-
sponded to a 0.057±0.018 ng/mL Lp-PLA2 increase at the 
10th percentile of the offspring’s Lp-PLA2 distribution 
(P = 0.001), a 0.042±0.014 ng/mL increase at the 25th 

percentile (P = 0.003), a 0.063±0.014 ng/mL increase at 
the 50th (P = 8.4x10−6), a 0.106±0.020 ng/mL increase at 
the 75th percentile (P = 6.3x10−8), and a 0.139±0.031 ng/ 
mL increase at the 90th percentile (P = 7.9x10−6). These 
correspond to h2±SEs of 0.109±0.034 at the 10th, 0.080 
±0.026 at the 25th, 0.119±0.027 at the 50th, 0.201±0.037 
at the 75th, and 0.264±0.059 at the 90th percentile. These 
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quantile-specific regression slopes were included with 
those of other quantiles to create the quantile-specific 
heritability function in Figure 1B, ie, where the offspring- 
parent slopes (Y-axis) are plotted as a function of the 
quantile of the offsprings’ sample distribution (X-axis). 
If the offspring-parent slope was the same for all off-
spring quantiles as traditionally assumed, then 
Figure 1A would display parallel regression lines, and 
Figure 1B would present a flat horizontal graph. In fact, 
the graph shows that the slopes become progressively 
greater with increasing quantiles above about the 70th 

percentile, such that on average each 1-percent increase 
in the offspring’s distribution was associated with 
a 0.0023±0.0006 unit linear increase in h2 (Plinear trend 

=0.0004). The heritability function is, in fact, convex 
(Pquadratic=0.01) meaning that the increase in heritability 
with increasing percentiles of the offspring’s Lp-PLA2 

distribution is accentuated at higher concentrations. 
Figure 1C presents a significant increase in βFS- 
estimated heritability with increasing quantiles of the sib 
Lp-PLA2 mass distribution.

Table 3 presents quantile regression analyses for the 
additional inflammatory markers. Figure 2 shows that the 

heritabilities of sP-selectin, sICAM-1, and TNFR2 
increase significantly with increasing percentiles of the 
offspring phenotype distribution. Moreover, these 
increases in heritability were further accelerated at higher 
concentrations of sICAM-1 (Pquadratic=0.05) and TNFR2 
(Pquadratic=0.03). Figure 3 presents the significant increases 
in h2 for osteoprotegerin and soluble ST2 concentrations. 
The results for osteoprotegerin were mixed, with increas-
ing βFS with increasing percentiles of the sibling concen-
trations, but not βOP. Lp-PLA2 activity and circulating 
concentrations of CD40 ligand, TNFα, interleukin-18 and 
myeloperoxidase heritability showed no significant quan-
tile-dependence.

Logarithmically Transformed Phenotypes
Supplementary Table 1 shows that the logarithmic trans-
formation generally alters, rather than eliminates, quantile- 
dependent heritability, ie, greater heritability at lower (not 
higher) concentrations for log sP-selectin, log Lp-PLA2 

activity, and log TNFR2, and increasing convexity for Lp- 
PLA2-mass and CD40 ligand. The increase in heritability 
with increasing sICAM-1 concentrations persisted when 
log-transformed. Estimated age and sex-adjusted spouse 

Table 1 Sample Characteristics

Third Generation Cohort Offspring Cohort

Male Female Male Female

Sample size (N) 1804 2050 1328 1531

Age, years 40.36 (8.65) 39.91 (8.75) 63.78 (9.23) 63.67 (9.12)

BMI, kg/m2 28.00 (4.67) 26.04 (6.11) 28.56 (4.48) 27.41 (5.73)

sP-selectin ng/mL 54.57 (19.97) 44.43 (16.46) 41.90 (14.79) 37.84 (11.60)

sIntercellular Adhesion Molecule 1 (sICAM-1) ng/mL 260.56 (76.02) 251.11 (74.40) 263.32 (82.02) 264.87 (86.29)

Lipoprotein-associated phospholipase A2 (Lp-PLA2) mass ng/mL 298.88 (49.02) 282.20 (46.40) 289.31(63.26) 267.67 (63.30)

Lipoprotein-associated phospholipase A2 (Lp-PLA2) activity mmol/min/mL 160.66 (33.09) 123.49 (29.48) 155.03 (30.80) 130.45 (27.90)

Osteoprotegerin pmol/l 4.025 (1.252) 4.784 (1.776) 5.252 (1.728) 5.565 (1.780)

CD40 ligand ng/mL 3.187 (4.728) 3.551 (4.995)

High-sensitivity TNF-alpha (TNFα) pg/mL 1.434 (1.085) 1.577 (1.520)

Interleukin-18 pg/mL 282.45 (114.33) 239.76 (127.14)

Soluble ST2 ng/mL 24.66 (9.08) 19.81 (7.19)

Tumor necrosis factor receptor 2 (TNFR2) pg/mL 2312.51 (722.32) 2203.04 (564.24) 2474.36 (941.00) 2381.79 (831.79)

Myeloperoxidase ng/mL 51.88 (35.46) 46.20 (27.90)

Note: Mean (standard deviation).
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correlations (rspouse) were 0.0898 for log sP-selectin, 
0.1121 for log sICAM-1, 0.1161 for log Lp-PLA2 mass, 
0.0330 for log Lp-PLA2 activity, 0.0795 for log 

osteoprotegerin, 0.0345 for log CD40 ligand, 0.1392 for 
log TNFα, 0.0760 for log TNFR2, 0.0873 for log myelo-
peroxidase, and 0.0688 for log soluble ST2.

Table 2 Traditional Estimates of Offspring-Parent (βOP) and Full-Sib Regression Slopes (βFS) with Estimated Heritability

Correlation Regression Slope Significance Heritability

sP-selectin

Offspring parent 0.18 0.2463±0.0226 <10−15 0.451±0.041

Full sibling 0.21 0.2061±0.0171 <10−15 0.398±0.034

sICAM-1

Offspring parent 0.12 0.1041±0.015 4.2x10−12 0.187±0.027

Full sibling 0.14 0.1420±0.0174 2.2x10−16 0.276±0.043

Lp-PLA2 mass

Offspring parent 0.11 0.0804±0.0126 1.7x10−10 0.153±0.024

Full sibling 0.13 0.1516±0.0208 2.8x10−13 0.304±0.035

Lp-PLA2 activity

Offspring parent 0.19 0.2038±0.0177 <10−15 0.415±0.036

Full sibling 0.24 0.2364±0.0170 <10−15 0.477±0.034

Osteoprotegerin

Offspring parent 0.08 0.0750±0.0158 2.0x10−6 0.149±0.031

Full sibling 0.13 0.1301±0.0173 6.0x10−14 0.260±0.035

CD40 ligand

Full sibling 0.05 0.0515±0.0319 0.10 0.102±0.064

High-sensitivity TNF-alpha (TNFα)

Full sibling 0.01 0.0101±0.0398 0.80 0.020±0.079

Interleukin-18

Full sibling 0.12 0.1176±0.0327 0.0003 0.233±0.065

Soluble ST2

Full sibling 0.18 0.1801±0.0305 3.7x10−9 0.353±0.061

Tumor necrosis factor receptor 2 (TNFR2)

Offspring parent 0.16 0.1161±0.0121 <10−15 0.214±0.022

Full sibling 0.15 0.1481±0.0225 4.4x10−11 0.289±0.035

Myeloperoxidase

Full sibling 0.12 0.1207±0.0323 <10−15 0.237±0.064

Notes: Number of offspring with one and two parents were: 1711 and 1696, respectively for sP-selectin; 1709 and 1761, respectively for sICAM-1; 1710 and 1780, 
respectively for LpPLA2-mass and LpPLA2-activity; 1706 and 1785, respectively for osteoprotegerin; and 1720 and 1787, respectively for TNFR2. There were 5113 siblings in 
1840 sibships with sP-selectin; 5081 siblings in 1830 sibships with sICAM-1, 5113 siblings in 1839 sibships with LpPLA2-mass, 5111 siblings in 1838 sibships with LpPLA2- 
activity; 5114 siblings in 1840 sibships with osteoprotegerin, 1615 siblings in 632 sibships with CD40-ligand, 1072 siblings in 441 sibships with TNF-α, 1498 siblings in 606 
sibships with interleukin-18, 1697 siblings in 659 sibships with soluble ST2, 3068 siblings in 1133 sibships with TNFR2; and 1553 siblings in 608 sibships with myeloperoxidase.
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Reassessing Published Gene–Disease and 
Gene–Treatment Interactions
Heritability lacks the specificity of directly measured gen-
otypes; therefore, we also examined published studies that 
measured genetic variants directly from the perspective of 
quantile-dependent expressivity to establish external valid-
ity and generalizability. Figures 4 and 5 are derived from 
published examples that show larger genetic effect sizes 
for conditions that elevate P-selectin, ICAM-1, Lp-PLA2- 
mass, and osteoprotegerin concentrations, consistent with 
their quantile-specific heritability. Specifically, the histo-
grams present patient-control differences by genotype for 
venous thromboembolism, coronary heart disease with 
pulmonary hypertension, T2DM, brain abscess, myocar-
dial infarction, intervertebral disc degeneration and carotid 
artery unstable plaque, and genotype-specific reductions in 
sP-selectin and sICAM-1 due to statin treatment. 
Alternatively, the line graphs present the results from the 
perspective of quantile-dependent expressivity, ie, larger 
cross-sectional differences between genotypes at the 
higher mean concentration of the diseased state or prior 
to statin treatment.

Discussion
These analyses suggest that the heritability of circulating sP- 
selectin, sICAM-1, Lp-PLA2-mass, TNFR2, and soluble ST2 
concentrations increase with increasing percentiles of their 
phenotype distributions. Relative to the 10th percentile, the 
heritability at the 90th percentile was 43% greater for sP- 
selection, 3.8-fold greater for sICAM-1 (P = 0.0009), 
2.4-fold greater for Lp-PLA2 mass (P = 0.01), and 2.3-fold 
greater for TNFR2 (P = 0.0009) when estimated from βOP. 
Similar differences were obtained for sICAM-1 (3.5-fold 
greater, P = 0.006), Lp-PLA2 mass (61% greater, P = 0.04), 
and TNFR2 (2.3-fold greater, P = 0.03) when estimated from 
βFS. These differences in heritability between the 90th and 
10th percentiles are smaller than those previously reported for 
circulating C-reactive protein (17.7-fold difference)25 and 
IL-6 (14-fold difference),27 but similar to those reported for 
two other inflammatory markers–plasminogen activator inhi-
bitor type-1 (2.9-fold difference)63 and monocyte chemoat-
tractant protein-1 concentrations (3.0-fold difference).64 The 
different results for osteoprotegerin heritability when esti-
mated from βOP (Ptrend=0.48) and βFS (Ptrend=0.002) may 

Figure 1 (A) Offspring-parent regression slopes (βOP) for selected quantiles of the 
offspring’s untransformed Lp-PLA2-mass concentrations with corresponding esti-
mates of heritability (h2=2βOP/(1+rspouse)),

11 where the correlation between 
spouses was rspouse=0.0525. The slopes became greater (ie, steeper) with increasing 
quantiles of the Lp-PLA2 distribution. (B) The selected quantile-specific regression 
slopes were included with those of other quantiles to create a quantile-specific 
heritability function. Significance of the linear, quadratic and cubic trends and the 
95% confidence intervals (shaded region) were determined by 1000 bootstrap 
samples. (C) Quantile-specific full-sib regression slopes (βFS) with corresponding 
estimates of heritability as calculated by h2={(8rspouseβFS+1)0.5–1}/(2rspouse).

11
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Table 3 Quantile Regression Analyses of Offspring-Parent and Full-Sib Phenotypes from the Framingham Heart Study

Increase in Slope per 1% Increase in the Offspring’s 
Distribution

Difference in Slope 
Between the 90th and 
10th Percentiles

Linear Effect Nonlinear Effects

Slope±SE Linear P Quadratic P Cubic P Difference 
±SE

P

sP-selectin

Offspring parent 0.0016±0.0006 0.01 0.99 0.99 0.094±0.060 0.12

Full sibling 0.0014±0.0005 0.007 0.33 0.67 0.106±0.061 0.08

sICAM-1

Offspring parent 0.0018±0.0005 0.0001 0.05 0.78 0.146±0.044 0.0009

Full sibling 0.0023±0.0006 5.7x10−5 0.27 0.52 0.190±0.068 0.006

Lp-PLA2 mass

Offspring parent 0.0012±0.0003 0.0004 0.01 0.79 0.082±0.033 0.01

Full sibling 0.0012±0.0005 0.02 0.32 0.63 0.072±0.064 0.26

Lp-PLA2 activity

Offspring parent −0.0004±0.0005 0.44 0.33 0.90 −0.042±0.054 0.43

Full sibling 0.0001±0.0004 0.73 0.73 0.36 0.004±0.045 0.94

Osteoprotegerin

Offspring parent 0.0003±0.0005 0.48 0.64 0.17 0.025±0.041 0.55

Full sibling 0.0015±0.0005 0.002 0.55 0.36 0.129±0.040 0.001

CD40 ligand

Full sibling 0.0022±0.0014 0.11 0.93 0.27 0.153±0.181 0.40

High-sensitivity TNF-alpha (TNFα)

Full sibling 0.0014±0.0012 0.25 0.31 0.47 0.157±0.129 0.23

Interleukin-18

Full sibling 0.0018±0.0011 0.10 0.14 0.02 0.195±0.144 0.18

Soluble ST2

Full sibling 0.0027±0.0010 0.008 0.52 0.50 0.227±0.159 0.15

Tumor necrosis factor receptor 2 (TNFR2)

Offspring parent 0.0014±0.0003 5.0x10−6 0.03 0.92 0.101±0.031 0.0009

Full sibling 0.0017±0.0006 0.02 0.39 0.63 0.126±0.076 0.10

Myeloperoxidase

Full sibling 0.0026±0.0014 0.06 0.29 0.66 0.182±0.148 0.22

Abbreviations: ICAM-1, intercellular adhesion molecule-1; Lp-PLA2, lipoprotein-associated phospholipase A2.
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relate to shared environmental effects or genetic dominance 
affecting sibling but not offspring-parent associations.11 

Importantly, Lp-PLA2 activity, CD40 ligand, TNFα, and 

myeloperoxidase heritability exhibited no significant quan-
tile-dependence, showing that not all inflammatory markers 
exhibit quantile-dependent expressivity.

Figure 2 Quantile-specific heritability by percentiles of the offspring or sib phenotypic distribution for: sP-selectin concentrations (A and B); sICAM-1 concentrations 
(C and D); and tumor necrosis factor receptor type 2 (TNFR2) concentrations (E and F).
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A potential consequence of quantile-dependent expres-
sivity is that the selection of patients by characteristics that 
distinguish high- vs low-value phenotypes may display 
different size genetic effect.14,15 These genetic differences 
are often interpreted from the perspective of precision 
medicine, ie, genotypic markers that predict treatment 
efficacy or disease severity, when a simpler explanation 
of quantile-dependent expressivity might suffice.

sP-Selectin
Adhesion molecules are found to be membrane-bound 
forms that mediate leukocyte attachment and 
internalization,65 and soluble forms produced by the shed-
ding or enzymatic cleavage of the membrane-bound 

molecules.66 P-selectin belongs to the selectin family of 
adhesion molecules.67 Elevated sP-selectin concentrations 
have been associated with diabetes,68 cardiovascular 
disease,69,70 obstructive sleep apnea,71 and obesity.72 sP- 
selectin concentrations in serum are about 2.5-fold greater 
than their plasma concentrations due to in vitro platelet 
activation and sP-selectin release.48

Others report that the heritability of sP-select is mod-
erately strong, ie 46±10% in the Fels longitudinal study,73 

45% in the Framingham Offspring Study,8,74 70% in the 
San Antonio Family Heart Study,75 and 78% in the Emory 
Twin Studies.76 P-selectin is encoded by the SELP gene on 
chromosome 1q21-q24 spanning >50 kb,77 and includes 
three SNPs that have been associated with disease: 
Ser290Asn (rs6131) in exon 7, G1980T Leu599Val 
(rs6133) in exon 12, and A2331C Thr715Pro (rs6136) in 
exon 13.77,78 Barbalic et al reported that 9.3% of variance 
in sP-selectin concentrations was attributable to SELP 
genetic variants in their genome-wide association study 
(GWAS) of 4115 subjects,79 with the strongest association 
for the SELP rs6136 polymorphism (P = 4.1x10−61). sP- 
selectin concentrations were also significantly related to 
polymorphisms located near the ABO blood group gene 
(rs579459, P = 1.9x10−41), which may affect P-selectin 
(and ICAM-1) shedding from cell membranes by altering 
their glycosylation.79

P-selectin concentrations are elevated immediately 
following venous thrombosis and remain elevated for 
months thereafter, either as a cause or the consequence 
of the thromboembolism.57 Ay et al57 reported signifi-
cantly higher plasma P-selectin concentrations in 116 
patients with confirmed recurrent venous thrombosis 
than in 129 age and sex matched controls (47.3±1.4 vs 
36.8±1.0 ng/mL, P < 0.001). Figure 4A histogram sug-
gests that the difference was specific to Thr/Thr homo-
zygotes of the Thr715Pro (rs6136) polymorphism (P < 
0.001) whilst the patient-control difference for Pro715 
allele carriers was nonsignificant (P = 0.63). 
Alternatively, the associated line graph shows the signifi-
cant interaction between genotype and condition 
(Pinteraction=0.002) could also be ascribed to a larger dif-
ference between genotypes (17.3±2.4 ng/mL) at the 
higher patient concentrations vis-à-vis the smaller geno-
type difference (7.5±1.9 ng/mL) at the lower average 
concentrations of controls. Whereas the histogram repre-
sents a precision medicine perspective (genotype-specific 
health effect), the line graph represents a quantile- 

Figure 3 Quantile-specific heritability by percentiles of the sib phenotypic distribu-
tion for: (A) soluble ST2 concentrations in citrated plasma, and (B) serum osteo-
protegerin concentrations.
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Figure 4 Precision medicine perspective of genotype-specific sP-selectin differences (histogram inserts) vs quantile-dependent expressivity perspective (line graphs showing larger 
genetic effect size when average sP-selectin concentrations were high) for: (A) Ay et al 2007 report on the serum sP-selectin difference between 116 venous thromboembolism (VTE) 
patients and 129 age and sex-matched controls by SELP rs6136 (Thr715Pro) genotypes;.57 (B) Li et al 2015 report on the sP-selectin difference between congenital heart disease patients 
with pulmonary hypertension and healthy controls by −825T/C genotypes in the SELP promoter region; 44 (C) Kaur et al 2019 report on the sP-selectin difference between type 2 
diabetes mellitus (T2DM) patients and healthy controls by SELP rs6136 genotypes;45 (D) Di Nisio et al 2004 report on the decrease in sP-selection concentrations following 20 mg/d 
atorvastatin by toll-like receptor-4 (TLR-4) gene variants (Asp299Gly and Thr399Ile vs wild type);46 (E) Bolewski et al 2008 report showing greater reductions in mean sP-selectin 
concentrations following 3 months of 20 mg/d atorvastatin treatment in 8 hypercholesterolemic patients with LDLR mutations vs 26 unmutated patients: 58 (F) Souza-Costa et al 2007 
report on the decrease in sP-selection concentrations following 10 mg/d atorvastatin in 15 CC homozygotes and 15 TT homozygotes of the T-786C polymorphism of the endothelial 
nitric oxide synthase (eNOS) gene. 59
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dependent expressivity interpretation (larger genetic 
effect size at the higher mean concentration).

Li et al44 reported that plasma sP-selectin concentrations 
were markedly higher in congenital heart disease patients 
with pulmonary hypertension than in healthy age- and sex- 
matched controls (P < 0.0001). Figure 4B histogram shows 
that the patient minus control sP-selectin difference was 
greater in TT homozygotes than TC heterozygotes of the 
−825T/C polymorphism in the SELP promoter region (4.7 
vs 2.4 ng/mL), which quantile-dependent expressivity might 
attribute to the larger difference between genotypes at the 
higher sP-selectin concentrations of the patients (genotype 
difference of 5.2 ng/mL in patients vs 3.0 ng/mL in controls).

Kaur et al45 reported significantly higher serum sP- 
selectin concentrations in Type 2 diabetics than healthy 
controls (169.0±7.2 vs 132.5±5.4 ng/mL, P < 0.001), par-
ticularly in AA homozygotes (P < 0.001) and less so in AC 
heterozygotes (P = 0.11, Figure 4C histogram) of the SELP 
rs6136 polymorphism. Correspondingly, the line graph 
shows that the difference between AA and AC genotypes 
was greater at the higher average concentrations of the 
diabetics (27.4 vs 16.6 ng/mL).

Three studies report reductions in sP-selection concen-
trations following 10 to 20 mg/d of atorvastatin. They 
include Di Nisio et al46 report of somewhat greater reduc-
tions in sP-selectin concentrations in noncarriers of the 
Thr399Ile or Asp299Gly polymorphisms of the toll-like 
receptor-4 (TLR-4) gene (ie wild type, Figure 4D histo-
gram), Bolewski et al58 report of greater sP-selectin reduc-
tions in hypercholesterolemic patients having mutations in 
low-density lipoprotein receptor (LDLR) gene than in 
those lacking mutations (Pinteraction<0.05, Figure 4E), and 
Souza-Costa et al 59 report of significant (P < 0.05) sP- 
selectin reductions in CC homozygotes of the T-786C 
polymorphism of the endothelial nitric oxide synthase 
(eNOS) gene but not in TT homozygotes (Figure 4F). In 
all three cases, the associated line graphs show a greater 
difference between genotypes at the higher pre-treatment 
than lower post-treatment average sP-selectin concentra-
tions. From a precision medicine perspective, the original 
reports concluded that CC homozygote of the T-786C 
polymorphism and carriers of the LDLR mutations might 
identify patients most likely to benefit from atorvastatin- 
induced sP-selectin reduction. Alternatively, from the per-
spective of quantile-dependent expressivity, these genetic 
markers may simply track the reduction in the genetic 
effect size associated with lower sP-selectin 
concentrations.

Quantile-dependent expressivity would not explain the 
significant rs6136 by smoking interactions reported by 
Carter et al47 and Barbaux et al48 due to a larger genotype 
difference at the lower average P-selectin concentrations 
of the nonsmokers.

Intercellular Adhesion Molecule-1
ICAM-1 (aka CD54) is an intercellular adhesion molecule 
belonging to the immunoglobulin gene superfamily that 
facilitates leukocyte endothelial transmigration.80 sICAM- 
1 heritability was estimated to be 24±10% in the Fels 
longitudinal study,73 24.0% and 34.1% in the 
Framingham Study,8,81,82 55% in the Longitudinal Study 
of Aging of Danish Twins,83 55% in the Emory Twin 
Studies,76 and 56% in the San Antonio Family Heart 
Study.84 Barbalic et al reported that sICAM-1 concentra-
tions showed the strongest association with rs3093030 
within the ICAM-1 gene (P = 3.5x10−23) and was also 
significantly related to the aforementioned rs579459 poly-
morphism located near the ABO blood group gene (P = 
1.2x10−15).79

The study by Bolewski et al58 showed that statin treat-
ment decreased sICAM-1 by 21% for those with LDLR 
mutations and by 7% for those without mutations 
(Figure 5A, Pinteraction<0.01). Alternatively, the line graph 
shows a greater difference between genotypes at the higher 
average pre-treatment sICAM-1 concentrations vis-à-vis 
the smaller genotype differences after their average con-
centrations had decreased following treatment.

Brain abscess, the result of parenchymal infection by 
pyogenic bacteria, can cause focal neurological deficits, 
loss of mental acuity, and seizures. Mishra et al60 reported 
that average serum sICAM-1 concentrations were 30-fold 
higher in patients with brain abscesses compared to 
matched healthy controls (P < 0.001). The histogram of 
Figure 5B shows that the patient-control differences were 
substantially greater in ICAM-1 rs5498 EE-homozygotes 
vis-à-vis carriers of the K-allele. Consistent with quantile- 
dependent expressivity, the associated line graph shows 
that the cross-sectional genotype difference between EE- 
homozygotes and K-allele carriers was much greater at the 
higher concentrations of the affected patients.

Three studies lack genotype-specific information in 
healthy controls, which is needed to assess their consistency 
with quantile-dependent expressivity. Japanese encephalitis 
is a fatal condition in approximately one third of cases and 
produces permanent neurological sequelae in about one- 
half of survivors due to virus-induced tissue damage and 
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Figure 5 Precision medicine perspective of genotype-specific differences in inflammatory biomarkers (histogram inserts) vs quantile-dependent expressivity perspective (line 
graphs showing larger genetic effect size when average concentrations were high) for: (A) Bolewski et al 2008 report on three-month atorvastatin-induced changes in sICAM-1 
concentrations in 8 patients with mutations in the low-density lipoprotein receptor (LDLR) gene vs 26 un-mutated patients;.58 (B) Mishra et al 2016 report on differences in serum 
sICAM-1 concentrations between 100 brain abscess patients and 100 controls by ICAM-1 K469E (rs5498) genotypes;60 (C) Zhang et al 2019 report on differences in serum Lp- 
PLA2 mass concentrations between 297 myocardial infarction (MI) patients and 262 healthy controls by Lp-PLA2 D166E genotypes; 51 (D) Tuten et al 2021 report on differences in 
serum Lp-PLA2 mass concentrations between 149 women with preeclampsia and 49 with normal pregnancies by LPA rs9355296 genotypes; 61 (E) Xue et al 2016 report on 
differences in serum osteoprotegerin concentrations between intervertebral disc degeneration patients and matched controls by TNFRSF11B 950T/C (rs2073617) genotypes;52 and 
(F) Straface et al 2011 report on differences in serum osteoprotegerin concentrations between 74 internal carotid artery stenosis patients with unstable plaques and 95 with stable 
plaque by TNFRSF11B 950T/C (rs2073617) genotypes. 53
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host-induced immune response.85 Baluni et al86 reported 
that patients infected with Japanese encephalitis virus had 
significantly higher ICAM-1 concentrations than healthy 
controls (P = 0.002), and significantly higher ICAM-1 con-
centrations in EE homozygotes than EK heterozygotes (P = 
0.01) or KK homozygotes (P = 0.007) of the ICAM-1 
K469E polymorphism but did not describe the genotype- 
specific effects in the healthy controls.

Pseudoxanthoma elasticum (PXE), an autosomal- 
recessive disorder caused by mutations in the ATP binding 
cassette transporter gene (ABCC6), is characterized by 
calcification and fragmentation of elastic fibers, proteogly-
can accumulation in the extracellular matrix, skin lesions, 
and loss of visual acuity.87 Hendig et al reported that in 
addition to having significantly higher serum ICAM-1 
concentrations than healthy controls (303 vs 241 mg/L, 
P < 0.02),49 PXE patients with two nonsense ABCC6 
mutations or one nonsense mutation plus one missense 
mutation had significantly higher ICAM-1 concentrations 
than those lacking these mutations (314±16 vs 259±17 ng/ 
mL, P < 0.03), but did not provide genotype-specific 
ICAM-1 concentrations in controls.

A third study by He et al50 reported significantly higher 
mean ICAM-1 serum concentrations in migraine patients 
than controls (4372±78 vs 679±21, P < 0.01). They also 
reported that patients with the E-allele had higher ICAM-1 
concentrations than K-allele carriers of the ICAM1 K469E 
polymorphism (5493±137 vs 3971±80, P < 0.01) but did 
not provide the genotype-specific ICAM-1 concentrations 
in controls (which may reflect their nonsignificant 
differences).

Lipoprotein-Associated Phospholipase A2
Abnormal plasma Lp-PLA2 (aka platelet-activating factor 
acetylhydrolase, PAF-AH) mass, activity, or its distribu-
tion across lipoproteins is associated with inflammatory 
diseases, such as hypertension, cerebral ischemia, cardiac 
infarction,88 sepsis, asthma, polycystic ovary syndrome 
(PCOS), and gestational diabetes mellitus. The enzyme, 
encoded by the PLA2G7 gene, is secreted primarily by 
macrophages, and circulates bound to low-density lipopro-
teins, high-density lipoproteins, and Lp(a).88 Reported Lp- 
PLA2 heritability by others range from 25% to 37% for its 
mass concentration and from 37% to 62% for enzymatic 
activity.9,89–91 However, Lp-PLA2 mass and activity mea-
surements do not correlate strongly (ρ=0.24,92 r = 0.5193) 
presumably due to variation in catalytic activity in addition 

to enzyme availability affecting the latter. In particular, 
loss of catalytic activity has been reported for the missense 
mutation V279F and A379V polymorphisms.88 The ana-
lyses of the Framingham data sets showed that the herit-
abilities of Lp-PLA2 mass concentration and Lp-PLA2 

activity differed with respect to both strength (15–30% 
vs 42–48%, Table 2) and quantile-dependence (Plinear 

=0.0004 vs Plinear=0.44, Table 3).
Zhang et al51 reported significantly higher Lp-PLA2 

serum mass concentrations in patients sampled within 24 
hours of hospital admission for a myocardial infarction 
(MI) compared to age- and sex-matched controls (375.7 
±3.7 vs 112.5±1.7 ng/mL, P < 0.001). When these differ-
ences were examined with respect to the PLA2G7 D166E 
polymorphism, Figure 5C shows that the case-control dif-
ference is greatest for GG, intermediate for CG and least 
for CC genotypes. The line graph shows that this corre-
sponds to a significant difference between genotypes at the 
higher mean concentrations of the MI patients (P < 0.001) 
but not at the lower concentrations of the control group 
(P = 0.23).

Tuten et al61 reported significantly higher Lp-PLA2 

mass concentrations in women experiencing preeclampsia 
than controls (P < 0.01). As shown in Figure 5D, the net 
effect of preeclampsia on Lp-PLA2 mass concentrations 
was greater in G-allele carriers of the LPA rs9355296 
polymorphism. They also reported significant differences 
in Lp-PLA2 mass concentrations between rs9355296 
G-allele carriers compared with AA homozygotes in 
women with preeclampsia (<0.01) but not their healthy 
counterparts.

Osteoprotegerin
Osteoprotegerin is synthesized primarily by osteoblasts and 
participates in the regulation of osteoblasts/osteoclasts bal-
ance and bone formation/absorption.94 Specifically, osteo-
protegerin competitively binds to the receptor activator for 
nuclear factor-κB ligand (RANKL) so as to modulate bone 
re-absorption, decrease osteoclasts number, and regulate 
bone homeostasis via osteoblast-osteoclast cross-talk.95 

Thus, factors affecting osteoprotegerin gene regulation 
influence bone mass and risks for fractures, osteoporosis 
and osteoarthritis.96 The osteoprotegerin gene 
(TNFRSF11B) is located on chromosome 8q23-24 and 
includes several polymorphisms affecting serum osteopro-
tegerin concentrations, including rs3134069 (245T/G) in 
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the promoter region, rs2073617 (950T/C) in the 5' untrans-
lated region, and rs2073618 (1181G/C) in exon 1.52

Osteoprotegerin plays an important role in the pathol-
ogy of intervertebral disc degeneration (IDD, aka degen-
erative disc disease), a debilitating condition characterized 
by lower back pain, intervertebral disc herniation and 
spinal canal stenosis.97 Xue et al reported significantly 
higher osteoprotegerin serum concentrations in IDD 
patients than matched controls (7.62±0.17 vs 6.39±0.16 
ng/mL).52 Figure 5E shows a greater osteoprotegerin dif-
ference between patients and controls in carriers of the 
C-allele than TT homozygotes of the OPG rs2073617 
polymorphism (1.47±0.35 vs 0.89±0.30 ng/mL). 
Consistent with quantile-dependent expressivity, the line 
graph shows a greater difference between genotypes at the 
higher mean osteoprotegerin concentration of the patients 
(OsteoprotegerinC+ - Osteoprotegerin TT: 0.65±0.33 ng/ 
mL) than at the lower mean concentration of the controls 
(0.07±0.32 ng/mL).

Elevated osteoprotegerin concentrations have also 
been associated with acute myocardial infarction, 
unstable angina, peripheral artery disease and heart fail-
ure severity, symptomatic carotid stenosis, and vulner-
able carotid plaques.53 Straface et al53 reported that 
carotid artery stenosis patients who underwent carotid 
endarterectomy had significantly higher osteoprotegerin 
than age and sex-matched controls (4.02 vs 2.94 ng/mL, 
P < 0.01), and those with unstable plaque had higher 
concentrations than the carotid artery stenosis patients 
with stable plaque (5.86 vs 3.53 ng/mL, P < 0.01). 
Figure 5F shows that the net osteoprotegerin difference 
associated with carotid artery stenosis and plaque 
instability was greater in the rs2073617 CC homozy-
gotes than in the T-allele carriers. Correspondingly, the 
osteoprotegerin difference between rs2073617 geno-
types was greater at the higher concentrations of the 
carotid stenosis patients with unstable plaque.

Osteoprotegerin is also linked to insulin resistance.98 

Nanda et al99 reported that osteoprotegerin concentra-
tions were significantly higher in women with gestational 
diabetes mellitus vs nondiabetic pregnancies (55.9 vs 
45.6 pg/mL, P = 0.02) and significantly higher in CT 
heterozygotes than TT homozygotes of the rs2073617 
polymorphism in those with gestational diabetes (P < 
0.05). The authors did not report the osteoprotegerin 
differences between genotypes in women with normal 
pregnancies.

Tumor Necrosis Factor Receptor Type 2
Tumor necrosis factor receptor type 2 (TNFR2, aka p75 
and TNFRSF1B) is one of the two distinct cell surface 
receptors that mediate the biological effects of 
TNFα.100,101 The receptor is encoded by the TNFRSF1B 
(aka TNFRII) gene located on the short arm of chromo-
some 1 (1p36).102 Alternative splicing/shedding of mem-
brane-bound TNFR2 produces its soluble form (sTNFR2) 
whose elevated concentrations during inflammation is 
thought to reflect upregulation of the membrane-bound 
TNFR2 receptor.103 Higher circulating sTNFR2 concentra-
tions have been associated with rheumatoid arthritis,57,104 

inflammatory bowel disease,105 sarcoidosis,106 primary 
progressive multiple sclerosis,107 coronary heart disease, 
endometriosis, and amyotrophic lateral sclerosis.

Ronnemma et al attributed two-thirds,108 and Raggi 
et al attributed 63% of sTNFR2 variance to additive 
genetic effects,76 while others estimated the sTNFR2 her-
itability to be slightly less (34%,8 50%109). The most 
widely reported TNFR2 genetic variant is the 
+676T>G polymorphism (rs1061622) that replaces the 
amino acid methionine (M) with arginine (R) at TNFR2 
position 196 (M196R). Data presented by Oregón-Romero 
et al showed larger differences between MM homozygotes 
and R-allele carriers in rheumatoid arthritis patients than in 
healthy controls (255 vs 75 pg/mL) corresponding to the 
significantly higher average TNFR2 concentrations in the 
patients (2914 vs 2078 pg/mL, P = 0.0001).62 Differences 
between the 196M carriers and RR homozygotes in the 
rheumatoid arthritis patients reported by Glossop et al54 

were greater than the difference in the normal volunteers 
reported by Stark et al (661±264 vs 161±70 pg/mL),55 

consistent with the higher average sTNFR2 concentrations 
of the patients (5132±121 vs 1200±24 pg/mL). Tolusso 
et al also reported larger M196R genotype differences in 
rheumatoid arthritis patients than healthy blood donors 
(1190 vs 560 pg/mL) consistent with the patients’ higher 
TNFR2 concentrations (5350 vs 3110 pg/mL, P < 
0.0001).56 Some of these effects could, in part, be related 
to TNFR2 quantile-dependent genetic effects.

Limitations
Quantile-dependent expressivity represents an alternative 
explanation to the more traditional gene–disease or gene– 
treatment interactions that warrants consideration, but the 
analyses presented herein do not disprove gene–environ-
ment interactions as proposed by the original authors. The 
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use of Falconer’s formula may underestimate the complex-
ity of genetic and nongenetic contributions to biomarkers 
of inflammation and oxidative stress. Because only a small 
percentage of the sP-selectin, sICAM-1, Lp-PLA2-mass, 
osteoprotegerin, and sTNFR2 heritabilities are attributable 
to specific genotypes, the effects of individual genotypes 
on their circulating concentrations are not necessarily con-
strained by the heritability plots of Figures 1–3. The 
examples of Figures 4 and 5 are admittedly selective. 
This is because quantile-dependent expressivity is 
a novel concept, and, therefore, many studies do not pro-
vide the information required to evaluate its applicability, 
namely genotype-specific differences for both healthy and 
affected subjects. Finally, quantile regression does not 
depend upon statistical normality, and the analyses pre-
sented are for circulating concentrations as originally mea-
sured; however, the estimated quantile-specific heritability 
is not independent of data transformations. With few 
exceptions,47,48,57 reports of gene–environment interaction 
are mostly described for the untransformed44,45,59,60 or 
median values.46,56,86 Supplementary Table 1 suggests 
that logarithmic transformations mostly alter the shape 
heritability function rather than eliminate its quantile- 
dependence.

Conclusion
The analyses of the Framingham Heart Study family sets 
presented in this paper suggest that genetic influences on 
circulating sP-selectin, sICAM-1, Lp-PLA2, osteoprote-
gerin, and TNFR2 concentrations are quantile dependent, 
and that larger genetic effect size at higher circulating 
concentrations could potentially explain many of the 
gene–disease and gene–treatment interactions that have 
been previously described. These results suggest caution 
is warranted when assigning clinical significance to gene- 
specific associations from a precision medicine 
perspective.
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NHLBI, National Heart Lung and Blood Institute; PAF- 
AH, platelet-activating factor acetylhydrolase; PXE, 
Pseudoxanthoma elasticum; rspouse, spouse correlation; 
RANKL, Receptor activator for nuclear factor-κB 
ligand; SD, Standard deviation; SE, Standard error; 
SELP, Selectin P gene; SNP, Single nucleotide poly-
morphism; TLR-4, Toll-like receptor-4; TNFα, Tumor 
necrosis factor-alpha; TNFR2, Tumor necrosis factor 
receptor 2.
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