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Background: Numerous reports have highlighted that pyroptosis is closely linked to 
tumorigenesis and drug resistance of tumors. However, the potential role of pyroptosis in 
regulating immune cell infiltration in tumor microenvironment (TME) remains unclear.
Methods: Here, we performed consensus clustering analysis based on the expression of 10 
typical pyroptosis-related regulators (PRRs) to construct pyroptosis-mediated tumor pattern 
clusters and pyroptosis-related gene signature in breast cancer (BC). GSVA combined with 
ssGSEA methods were applied to evaluate the differences in biological pathway and immune 
cell infiltration level, respectively. The PCA method was employed to construct the pyro- 
score to quantify the pyroptosis pattern level of individual BC patient.
Results: We determined three distinct pyro-clusters among 1852 BC samples, which exhib-
ited different survival outcomes and enriched biological processes. The TME features 
demonstrated that these three clusters corresponded to three established immune profiles: 
immune-desert, immune-excluded and immune-inflamed phenotype, respectively. Based on 
pyroptosis-related signature genes, we constructed the pyro-score and stratified BC patients 
into high and low pyro-score group. Patients with high pyro-score exhibited favorable 
outcome and increased infiltration of immune cells. Further investigation revealed that 
high pyro-score was also related to high expression of immunosuppressive molecules, 
decreased tumor mutation burden (TMB) and high rate of mutation in significantly mutated 
genes (SMGs) (eg, PIK3CA and CDH1).
Conclusion: This research emphasizes the indispensable role of pyroptosis in TME com-
plexity and diversity. Assessing the pyroptosis pattern level of individual BC patient will 
assist us in better understanding TME features and directing more effective immunother-
apeutic approaches.
Keywords: breast cancer, immune landscape, immunotherapy, pyroptosis, tumor 
microenvironment

Background
Pyroptosis (also named pyroptotic cell death), which is a caspase-dependent and 
inflammasome-mediated inflammatory form of cell death,1–3 is closely related to 
multiple pathological processes. As a novel procedural cell death, pyroptosis is 
controlled by specific genes encoding signals: pyroptosis-related regulators 
(PRRs).4 The expression and function of these PRRs exert important influence on 
pyroptosis and exploration of these PRRs could better understand the potential 
mechanisms of pyroptosis in diseases.5,6 Mounting evidence has revealed that 
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genetic variation and expression perturbations of PRRs 
were correlated with the occurrence and development of 
malignant tumors and abnormal immunity.7–9 

Comprehensive analysis of genetic change and dysregu-
lated expression underlying tumor heterogeneity will be 
beneficial to identify potential therapeutic targets from the 
perspective of pyroptosis.

Breast cancer (BC) remains the most prevalent malig-
nant tumor and the main cause of cancer-related mortality 
for women globally and its incidence and fatality rate were 
24.2% and 15.0%, respectively.10,11 In recent years, with 
the deepening research on tumor microenvironment 
(TME) features (containing tumoral, immune and stromal 
compartment, and secreted cytokines), the role of immune 
cells in tumor development and progression has been 
emphasized.12–14 For instance, the simple immune score 
assessed by the density and location of CD3+ and cyto-
toxic CD8+ T cells could serve as an accurate predictor 
for BC prognosis and recurrence.15 Moreover, current 
immunotherapies have contributed to improve BC 
patients’ survival status and most notably, immune check-
point inhibitors (ICIs): PD-1, PD-L1 and CTLA4 block-
ades have been approved for BC treatment by FDA.16,17 

Assessment of immune infiltration from the perspective of 
TME constituents has become an essential method to pre-
dict the efficacy of ICIs.18,19 Currently, many researchers 
have proposed three basic immune profiles by parsing 
TME constituents: immune-inflamed/excluded/desert phe-
notype, characterized by distinct TME features and immu-
notherapeutic efficacy.20 Thus, identification of immune 
phenotypes from the perspective of TME constituents 
will be helpful to guide and predict immunotherapeutic 
responsiveness.21,22

Recent studies have identified the relationship between 
pyroptosis and immune cells in TME. Tang et al demon-
strated that CD8+ T cells could release GZMA and GZMB 
to induce pyroptosis. Induced cell pyroptosis could acti-
vate macrophages-derived IL-1β to regulate anti-tumor 
immune response.23 Erkes et al found that BRAF and 
MEK inhibitors could activate CD4+ and CD8+ T cells 
infiltration and enhance anti-tumor immune response via 
GSDME gene-associated pyroptosis. Loss of GSDME 
gene will show defective HMGB1 release and decreased 
infiltration of T cells.24 However, due to technical limita-
tions, current studies only focused on one or two PRRs 
and immune cells. Thus, comprehensive analysis of multi-
ple PRRs-mediated TME cell-infiltrating features will be 

necessary and assist us in understanding anti-tumor 
immunity.

In our research, we incorporated genomic and tran-
scriptomic data of 1852 BC samples from TCGA and 
GEO datasets to comprehensively evaluate the relationship 
between pyroptosis-mediated tumor pattern clusters and 
TME cell infiltration characteristics. Three distinct pyro- 
clusters using consensus clustering analysis were identi-
fied, which were characterized by three previously 
reported immune profiles: immune-inflamed/excluded/ 
desert phenotype,20 indicating that pyroptosis takes on an 
indispensable role in the formation of diverse TME. 
Besides, to quantify the pattern level mediated by pyrop-
totic cell death in individual BC patient, we constructed 
a pyro-score using principal component analysis (PCA), 
which could predict ICIs response, suggesting that pyrop-
tosis performed an essential role in guiding therapy 
for BC.

Methods
Obtainment and Preprocessing of BC 
Datasets
Transcriptome expression data and clinical information 
of BC patients were acquired from public repositories of 
the TCGA (https://portal.gdc.cancer.gov/) and GEO 
(https://www.ncbi.nlm.nih.gov/geo/) databases. The inclu-
sion criteria for GEO datasets were based on: (1) datasets 
with adequate sample size greater than 80 were selected; 
(2) datasets were derived from the same platform: 
Affymetrix Human Genome U133 Plus 2.0 Array; (3) 
datasets without clinical characteristics and survival out-
come were removed. A total of 6 eligible BC datasets 
(containing 1852 samples) were incorporated into this 
study, including TCGA-BRCA (N = 1109), GSE20685 
(N = 327),25 GSE20711 (N = 88),26 GSE42568 (n = 
104),27 GSE58812 (N = 107),28 GSE88770 (N = 117)29 

datasets (Table 1). For TCGA datasets, RNA sequencing 
data with FPKM value were obtained and then trans-
formed into transcripts per kilobase million (TPM), 
which are more similar to those deriving from GEO micro-
array datasets. Due to the fact that all GEO microarray 
data were derived from Affymetrix, we extracted expres-
sion matrix from the raw “CEL” and implemented robust 
multiarray averaging method provided by “affy” and “sim-
pleaffy” packages to achieve background correction and 
quantile normalization. The “combat” algorithm of “sva” 
package was used to achieve the batch-effect removal,30 
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while merging the expression matrix of TCGA and GEO 
datasets. The genomic mutation data acquired from the 
UCSC Xena database was used for copy number variation 
(CNV) and somatic mutation analysis. The chromosomal 
location of CNV alterations in PRRs was plotted using 
“Rcircos” package.

Definition of PRRs
Previous studies revealed that GSDMD could be cleaved 
by inflammasome-activated CASP1 and LPS-activated 

CASP4/5, thus executing the pyroptosis.31,32 Then, 
CASP8 was found to serve as a regulator of GSDMD 
cleavage.33 From then on, many researchers paid more 
attention to the role of gasdermins in cells. Mounting 
evidence revealed that cell apoptosis could be converted 
into pyroptosis when GSDME is cleaved by CASP3 and 
GZMB.34,35 Besides, GZMA are capable of cleaving 
GSDMB, thus converting apoptosis into pyroptosis.36 

Accordingly, a total of 10 genes (GSDMD, CASP1, 
CASP4, CASP5, CASP8, GSDME, CASP3, GZMB, 

Table 1 Baseline Characteristics of Breast Cancer Patients in TCGA and GEO Datasets

TCGA-BRCA GSE20685 GSE20711 GSE42568 GSE58812 GSE88770

No. of patients 1109 327 88 104 107 117
Platform Illumina RNAseq Affymetrix U133 

Plus 2.0 Array

Affymetrix U133 

Plus 2.0 Array

Affymetrix U133 

Plus 2.0 Array

Affymetrix U133 

Plus 2.0 Array

Affymetrix U133 

Plus 2.0 Array

Age
≤65 775 (70.7%) 305 (93.3%) NA 68 (65.4%) 72 (67.3%) NA

>65 321 (29.3%) 22 (6.7%) NA 36 (34.6%) 35 (32.7%) NA

Gender
Male 12 (1.1%) 0 (0%) NA NA NA 0 (0%)

Female 1084 (98.9%) 327 (100%) NA NA NA 117 (100%)
Stage

I 183 (17.1%) NA NA NA NA NA

II 621 (57.9%) NA NA NA NA NA
III 248 (23.1%) NA NA NA NA NA

IV 20 (1.9%) NA NA NA NA NA

Unknown 24 (2.2%) NA NA NA NA NA
ER status

Positive 789 (77.4%) NA 42 (48.3%) 67 (66.3%) 0 (0%) 106 (90.6%)

Negative 231 (22.6%) NA 45 (51.7%) 34 (33.7%) 107 (100%) 11 (9.4%)
Unknown 78 (7.1%) NA 1 (1.1%) 3 (2.9%) NA NA

PR status

Positive 685 (67.4%) NA NA NA 0 (0%) 79 (68.1%)
Negative 332 (32.6%) NA NA NA 107 (100%) 37 (31.9%)

Unknown 81 (7.4%) NA NA NA NA 1 (0.9%)

HER-2 status
Positive 162 (15.8%) NA 26 (29.5%) NA 0 (0%) 7 (6.1%)

Negative 865 (84.2%) NA 62 (70.5%) NA 107 (100%) 108 (93.9%)

Unknown 71 (6.5%) NA NA NA NA 2 (1.7%)
Subtype

Luminal A 305 (28.6%) NA 13 (14.8%) NA 0 (0%) NA

Luminal B 253 (23.7%) NA 22 (25.0%) NA 0 (0%) NA
HER-2 145 (13.6%) NA 26 (29.5%) NA 0 (0%) NA

Basal 228 (21.4%) NA 27 (30.7%) NA 107 (100%) NA

Normal 136 (12.7%) NA 0 (0%) NA 0 (0%) NA
Unknown 31 (2.8%) NA NA NA NA NA

Survival status

Alive 947 (86.4%) 244 (74.6%) 63 (71.6%) 69 (66.3%) 78 (72.9%) 89 (76.1%)
Deceased 149 (13.6%) 83 (25.4%) 25 (28.4%) 35 (33.7%) 29 (27.1%) 28 (23.9%)
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GZMA, GSDMB) were defined as PRRs in this study. 
Then, functional enrichment analysis of these PRRs was 
performed by using online database: Metascape (https:// 
metascape.org/)37 and gene ontology (GO) provided by 
R “clusterProlifer” package.38

Consensus Clustering Analysis of PRRs
Based on the expression of these PRRs, we applied unsu-
pervised clustering analysis to construct distinct tumor 
pattern clusters mediated by pyroptosis and stratified 
patients for further analysis. To determine the optimal 
number of clusters and guarantee their stability, the con-
sensus clustering algorithm provided by 
“ConsensusClusterPlus” package was performed repeat-
edly for 100 times. Consensus clustering, as a highly use-
ful technique in cancer research, could detect unknown 
groups in a dataset based on intrinsic biological features 
and no external information. Besides, this method could 
provide quantitative and visual stability evidence derived 
from repeated subsampling and clustering. Based on these 
merits, the expression of these PRRs was repeatedly fac-
torized and the outputs aggregated to obtain consensus 
clustering of BC samples.

Gene Set Variation Analysis (GSVA) and 
Exploration of Tumor-Infiltrating Immune 
Cells
R “GSVA” package was utilized to perform GSVA enrichment 
analysis,39 which could explore the difference in biological 
processes between distinct pattern clusters mediated by pyr-
optosis. The gene set of “c2.cp.kegg.v7.4.symbols.gmt” down-
loaded from MsigDB database was used as the well-defined 
biological signature. Adjusted P-value less than 0.05 was 
regarded as statistically different. To investigate the immune 
infiltration landscape between distinct clusters, single-sample 
gene set enrichment analysis (ssGSEA) was implemented to 
calculate the infiltration levels of 23 different types of immune 
cells.40 Based on a Gaussian fitting model and multidimen-
sional scaling, we estimated the bio-similarity of immune cells, 
calculated the enriched score of each immune cell and uni-
formly distributed the normalized score from 0 to 1.

Establishment of Differentially Expressed 
Genes (DEGs) Between Distinct Clusters 
Mediated by Pyroptosis
Distinct tumor clusters have been identified by the above 
consensus clustering analysis. Subsequently, to investigate 

DEGs between different clusters, we applied the empirical 
Bayesian approach of R “limma” package41 to analyze the 
expression of genes and screen out the DEGs using 
adjusted P-value <0.001 as the significance criteria.

Construction of the Pyro-Score
To quantify the pyroptosis pattern level of individual BC 
patient, we developed a scoring scheme by the follow-
ing procedures. Firstly, the prognostic analysis of the 
overlapping DEGs identified between different tumor 
pattern clusters was performed by univariate Cox regres-
sion analysis and genes with prognostic impact were 
extracted. Then, feature selection of these genes with 
prognostic value was analyzed by recursive feature 
elimination with random forest and the 10-fold cross- 
validation method provided by “caret” package. Finally, 
the expression profile of the determined genes was 
employed to perform PCA analysis and we extracted 
principal components 1 and 2 as the signature score. 
The advantage of this method is focusing on the score 
on the set with the largest block of well correlated (or 
anticorrelated) genes in the set, while down-weighting 
contributions from genes that do not track with other set 
members. The pyro-score was defined using a formula 
similar to previous studies42–44 :∑(PC1i+PC2i), in 
which i represents the expression of PRRs.

Statistical Analysis
All data processing was generated in R-4.1.0. For quan-
titative data, we performed Student’s t-tests and the 
Wilcoxon rank-sum test to estimate the statistical sig-
nificance for normally and nonnormally distributed vari-
ables, respectively. For comparisons of more than two 
groups, we used one-way analysis of variance and 
Kruskal–Wallis tests as parametric and nonparametric 
methods, respectively. To analyze the relationship 
between tumor pattern clusters mediated by pyroptosis 
and prognosis, we applied R “Survminer” package to 
perform Kaplan–Meier survival analysis and the Cox 
proportional hazards model. The surv-cutpoint function 
provided by R “survival” package was used to divide 
patients into high and low pyro-score and tumor muta-
tion burden (TMB) group. All statistical P-values were 
two-side, with P-value <0.05 as statistical difference and 
adjusted P-value was calculated using the Benjamini– 
Hochberg correction.
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Results
Landscape of Genetic Alterations of PRRs 
in BC
A total of 10 PRRs were finally investigated in this 
study. Metascape and GO enrichment analysis of these 
regulators were performed, and the results revealed that 
biological processes associated with pyroptosis were 
indeed significantly enriched (Figure S1A and B). 
Figure 1A depicts the prevalence of somatic mutations 
of 10 PRRs among 986 BC samples with available 
variant classification and variant type information, out 
of which 26 (2.64%) experienced genetic alterations of 
PRRs, mainly including missense mutation and non-
sense mutation. Considering that CASP8 exhibited the 
highest mutation frequency, we investigated the differ-
ence in expression of PRRs between 965 CASP8-wild 
tumor samples and 15 mutant ones and a total of 3 
PRRs (CASP1, CASP5 and GZMA) were found differ-
entially expressed (Figure S2). Further exploration of 10 
PRRs revealed a prevalent CNV. GSDMD, GSDMB, 
GZMB, CASP8, GSDME had prevalent CNV amplifica-
tion, whose mean levels were 1.009, 1.436, 0.475, 0.384 
and 0.509, respectively, while CASP4, CASP1, CASP5, 
CASP3 and GZMA showed widespread heterozygous 
deletions (Figure 1B and Table S1). The chromosomal 
locations of CNV alterations of PRRs are summarized in 
Table 2 and Figure S1C. Besides, principal component 
analysis based on these PRRs was performed and BC 
samples and normal ones could not be distinguished at 
all (Figure 1C). To explore whether the above genetic 
variations affected PRRs expression, we calculated the 
difference in gene expression values between BC and 
normal samples and observed that CASP3, CASP8, 
GSDMD, GZMA were significantly increased in BC 
tissues, whereas CASP1, CASP4, GSDMB, GSDME 
were markedly downregulated in tumor tissues 
(Figure 1D). Compared with normal samples, PRRs 
with CNV amplification exhibited remarkedly higher 
expression in BC samples, such as CASP8, GSDMD, 
while other RPGs with deleted CNV, such as CASP1, 
CASP4 were significantly decreased in tumor tissues 
(Figure 1B and D), indicating that there was high het-
erogeneity of genomic and transcriptomic landscape of 
PRRs between BC samples and normal ones and this 
expression imbalance of PRRs performed a vital role in 
the tumorigenesis and BC progression.

Construction of Tumor Pattern Clusters 
Mediated by PRRs
TCGA-BRCA and 5 GEO datasets (GSE20685, 
GSE20711, GSE42568, GSE58812, GSE88770), whose 
survival information was available, were merged into one 
meta-cohort. Univariate Cox regression and Kaplan–Meier 
analysis were performed to determine the prognostic value 
of PRRs in BC samples and P-value <0.05 was regarded as 
the criteria for infiltering. Figure 2A comprehensively 
illustrates the landscape of the interactions and connec-
tions of PRRs and their prognostic value in BC. This 
network suggested that the cross-talk between these 
genes was significantly associated with survival outcome 
of BC patients and performed a vital role in the develop-
ment of diverse tumor pattern clusters mediated by PRRs. 
Based on the expression of these PRRs, the consensus 
clustering analysis was conducted to classify patients 
with qualitatively different pyroptosis-mediated patterns. 
We discovered that k = 3 appeared to be an optimal 
selection for sorting the whole BC samples and 3 distinct 
clusters were finally obtained (Figure S3). We defined 
these clusters as pyro-cluster A, B and C, which included 
762, 688 and 384 samples, respectively. The predictive 
ability of these 3 pyro-clusters in survival outcome demon-
strated that pyro-cluster C possessed the significant prog-
nostic benefit and pyro-cluster A exhibited the worst 
survival outcome (Figure 2B). Figure 2C depicted the 
difference of gene expression profiles and clinical charac-
teristics between distinct pyro-clusters, and we observed 
that CASP1, CASP4, CASP5, GZMA, GZMB were evi-
dently elevated in pyro-cluster C.

The Pyro-Clusters Characterized by 
Distinct Immune Profiles
To understand the biological behaviors underlying these 
3 distinct clusters mediated by PRRs, we conducted 
GSVA analysis and found that compared with pyro- 
cluster A and B, pyro-cluster C with favorable prognosis 
presented immune activation enrichment pathways, 
including allograft rejection, cytokine–cytokine receptor 
interaction, chemokine signaling pathway, T/B cell 
receptor signaling pathway, natural killer cell mediated 
cytotoxicity and Toll-like receptor signaling pathway 
(Figure 3A and C). Besides, some transcripts of immune 
activation, including TNF, IFNG, GZMB, CD8A, PRF1, 
GZMA, CXCL9, CXCL10 were also found highly 
expressed in pyro-cluster C (Figure 3D). Pyro-cluster 
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B was prominently enriched in pathways associated with 
carcinogenic activation and stromal pathway, including 
TGF beta signaling pathway, ECM receptor interaction, 
while pyro-cluster A was remarkedly associated with 
biological process associated with immune suppression. 
Besides, we performed ssGSEA to evaluate the infiltra-
tion levels of 23 different types of immune cells in TME 

among distinct pyro-cluster. As shown in Figure 3E, 
with the exception of neutrophils (mainly elevated in 
pyro-cluster A), other immune cells were significantly 
elevated in pyro-cluster C and B, especially antitumor 
lymphocyte cell subpopulations, such as activated CD4+/ 
CD8+ T cells, B cells and natural killer cells. However, 
pyro-cluster B did not exhibit favorable prognosis, 

Figure 1 Landscape of genetic and transcriptomic variation of pyroptosis-related regulators in breast cancer. (A) 26 of the 986 BC patients experienced genetic alterations 
of 10 PRRs, with a frequency of 2.64%, mostly including missense mutation and nonsense mutation. (B) The CNV frequency of 10 PRRs was prevalent. The column 
represented the alteration frequency. The deletion frequency, green dot; The amplification frequency, pink dot. (C) PCA of 10 PRRs to distinguish BC from normal samples. 
(D) The difference of mRNA expression levels of 10 PRRs between BC and normal samples. The asterisks represented the statistical P-value (**P < 0.01; ***P < 0.001).
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compared with pyro-cluster C. Previous researches 
revealed that immune-excluded phenotype consisted of 
abundant immune cells. However, these immune cells 
did not penetrate the tumor parenchyma but instead 
were positioned in the stroma surrounding tumor cell 
nests. The abundant stromal elements were regarded as 
T-cell suppressive. The GSVA findings have revealed 
that pyro-cluster B was remarkedly correlated with stro-
mal activation. Thus, we speculated that stromal activa-
tion in pyro-cluster B suppressed the antitumor activity 
of immune cells. Subsequent analysis revealed that 
pyro-cluster B definitely exhibited stromal activation, 
as some transcripts of TGF beta/EMT pathway, includ-
ing CLDN1, TGFBR2, SMAD9, VIM, ACTA2, SNAI2, 
TWIST1 were highly expressed in pyro-cluster 
B (P-value <0.001) (Figure 3F). Considering that immu-
nosuppressive molecule is an effective predictor of 
immunotherapeutic responsiveness, we also calculated 
PD-L1, PD-1, CTLA4, TIM-3, TIGIT and LAG3 
expression level among distinct clusters and observed 
a prominent upregulation of pyro-cluster C (Figure 3G). 
Based on these findings, we determined that these 3 
pyro-clusters were characterized by distinct immune 
infiltration landscapes. As expected, we considered that 
pyro-cluster B as immune-excluded phenotype, charac-
terized by weakened immune cell infiltration and stro-
mal activation; cluster C as immune-inflamed phenotype 
consisting of abundance of infiltrating immune cells and 
immune activation and cluster A as immune-desert phe-
notype, characterized by immune suppression. 
Moreover, we performed PCA to distinguish between 3 
pyro-clusters based on the expression of PRRs and 
observed that they were generally separated with 
a relatively clear resolution (Figure 3H).

Identification of Pyro-Gene Clusters and 
Exploration of Their Functional 
Annotations
Based on the expression of PRRs, the consensus clustering 
analysis could stratify BC patients into 3 pyro-clusters. 
However, the transcriptional perturbations underlying these 
3 clusters were not fully elucidated. Thus, the expression 
change of 16,437 genes between distinct pyro-clusters 
in BC was investigated by “limma” package and a total of 
2632 overlapping DEGs among the 3 pyro-clusters were 
determined and regarded as the crucial pyroptosis-related 
gene signature distinguishing 3 pyro-clusters (Figure 4A). 
Somatic mutation analysis of these DEGs demonstrated that 
922 out of 986 (93.51%) tumor samples carried genetic 
alterations. Further analysis of CNV alterations revealed 
that these genes exhibited either amplification or deletion. 
GO enrichment analysis of these DEGs revealed that biolo-
gical processes associated with immune regulation and 
inflammatory response were prominently enriched 
(Figure 4B). KEGG enrichment analysis also demonstrated 
that these DEGs played an immunomodulatory role in TME 
(Figure 4C). Based on the 2632 pyroptosis-related signature 
genes, we conducted unsupervised consensus clustering 
analysis by using “ConsensusClusterPlus” package38 and 
identified 3 distinct pyroptosis-related signature subtypes 
(Figure S4). We termed these 3 subtypes as pyro-gene 
clusters I, II and III, among which the difference in expres-
sion of PRRs was significant (Figure 4D). Besides, analysis 
of clinicopathological features among these 3 pyro-gene 
clusters revealed that patients with basal phenotype, ER-, 
PR- and HER2+ were mainly concentrated in cluster 
I (Figure S5). Further prognostic analysis revealed that 
pyro-gene cluster I exhibited the worse survival outcome 

Table 2 The Chromosomal Locations of Copy Number Variation of 10 Pyroptosis-Related Regulators in Breast Cancer

Chromosome Start End bp CNV Frequency

CASP8 Chr2 201,233,463 201,286,594 53,132 Gain

CASP3 Chr4 184,627,696 184,649,509 21,814 Loss

GZMA Chr5 55,102,646 55,110,252 7607 Loss
GSDME Chr7 24,698,355 24,757,939 59,585 Gain

GSDMD Chr8 143,557,913 143,563,062 5150 Gain

CASP4 Chr11 104,942,866 104,968,574 25,709 Loss
CASP5 Chr11 104,994,240 105,023,168 28,929 Loss

CASP1 Chr11 105,025,508 105,035,250 9743 Loss

GZMB Chr14 24,630,954 24,634,190 3237 Gain
GSDMB Chr17 39,904,597 39,918,650 14,054 Gain
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Figure 2 Tumor pattern clusters mediated by pyroptosis-related regulators. (A) The interaction of expression on 10 PRRs in BC. The lines connecting PRRs represented 
their interaction with each other. The size of each circle represented the prognosis effect of each regulator and scaled by P-value. Protective factors for patients’ survival 
were indicated by a green dot in the circle center and risk factors indicated by the purple dot in the circle center. (B) Kaplan–Meier curves of OS for 1834 BC patients in one 
meta cohort with different pyro-clusters. The numbers of patients in pyro-cluster A, B and C were 762, 688 and 384, respectively. (C) Unsupervised clustering of PRRs in 
one meta cohort. The pyro-cluster, gender, ER+, PR+, HER2+, phenotype, stage and survival status were used as patient annotations. Red represented the high expression of 
regulators and blue represented low expression.
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Figure 3 Biological pathway and tumor microenvironment characteristics in distinct pyro-clusters. (A–C) Heatmap showed the GSVA score of representative Hallmark 
pathways in distinct pyro-clusters. The TCGA-BRCA and GEO cohort (GSE20685, GSE20711, GSE42568, GSE58812, GSE88770) compositions were used as sample 
annotations. (D) Difference in the immune-activation related gene expression among three pyro-clusters. (E) The fraction of tumor-infiltrating cells in three pyro-clusters 
using the ssGSEA. Within each group, the scattered dots represented TME cell expression values. The thick line represented the median value. The bottom and top of the 
boxes were the 25th and 75th percentiles (interquartile range). The statistical difference of three pyro-clusters was compared through the Kruskal–Wallis H-test. (F) 
Difference in the TGF/beta-EMT pathway-related gene expression among three pyro-clusters. (G) Difference in the immune-checkpoint related gene expression among 
three pyro-clusters. (H) PCA of PRRs to distinguish between pyro-cluster A, B and C. ***P < 0.001, ns, not significant.
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Figure 4 Construction of pyro-gene signature and functional annotation. (A) 2632 pyroptosis-related DEGs between three pyro-clusters were shown in the Venn diagram. 
(B and C) Functional annotation for pyroptosis-related signature genes using GO and KEGG enrichment analysis. (D) The expression of PRRs in three pyro-gene clusters. 
The upper and lower ends of the boxes represented an interquartile range of values. The lines in the boxes represented the median value. The asterisks represented the 
statistical P-value The one-way ANOVA test was used to test the statistical differences among three pyro-gene clusters. (E) The survival curves of the pyro-gene clusters 
were estimated by the Kaplan-Meier plotter (P <0.001). ***P < 0.001.
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and pyro-gene cluster II was proven to be related to favor-
able prognosis (Figure 4E).

Construction and Validation of the 
Pyroptosis-mediated Prognostic Model
To help clinicians predict the likelihood of survival for BC 
patients, we constructed a prognostic model from the 
perspective of pyroptosis. R “caret” package was utilized 
to randomly assigned (at a ratio of 1:1) 1832 BC patients 
into discovery (916 samples) and validation (916 ones) 
cohorts. We then applied prognostic pyroptosis-related 
signature genes into LASSO regression algorithm and 
determined a total of 357 overall survival (OS)-related 
genes, based on the optimum λ value and minimum partial 
likelihood deviance (Figure S6A and B), for the subse-
quent multivariate Cox regression analysis. According to 
the optimum AIC value, we incorporated 18 genes into the 
prognostic model, whose formula was presented as 
follows:

Risk score = (expression of BCL2A1 * −0.238470 
252350429) + (expression of TRDV3* −0.34692542 
9019898) + (expression of SPNS2 * 0.18530994391 
3867) + (expression of GNG8 * −0.18979432978 
6803) + (expression of GP1BA * −0.4054847880 
43643) + (expression of TMEM200C * −0.37333480 
0071322) + (expression of DDX60L * −0.1905147 
93988741) + (expression of GRHL2 * 0.24096865 
9418045) + (expression of TBPL1 * 0.2988739689 
52058) + (expression of GSTM3 * −0.11607251367 
5859) + (expression of IL17RB * −0.1915258542 
34791) + (expression of ESM1 * 0.165800870027823) 
+ (expression of PCSK6 * −0.177033178053132) + 
(expression of NDUFA5 * −0.546965749404047) + 
(expression of CLDN7 * 0.219203629474111) + 
(expression of BACE1 * 0.439324243330006) + 
(expression of CARD14 * 0.219615672010187) + 
(expression of HEATR3 * 0.325749622674532).

The median risk score calculated based on the formula 
was utilized to stratify BC patients into 2 groups 
(Figure 5A). The distribution plot of the risk score and 
survival analysis revealed that high-risk groups were more 
likely to suffer from earlier death and exhibited a dismal 
outcome, compared with low-risk group (Figure 5B–D). 
The AUC of 5-year ROC in the all, discovery and valida-
tion dataset was 0.736, 0.789 and 0.700, respectively 
(Figure 7D). To further assess the predictive ability of 
this signature in OS, we compared this pyroptosis-related 

gene signature with the previously established autophagy 
and ferroptosis-related models in BC and observed that our 
signature exhibited better predictive abilities (Figure S6C 
and D).

Development of the Pyro-Score and 
Evaluation of Its Clinical Significance
The above analyses have revealed that pyroptosis played 
an essential role in survival outcome and immune regula-
tion of tumor-infiltrating cells. However, these findings 
were only based on the patient population and could not 
accurately predict the patterns of pyroptotic cell death in 
individual tumor. Consequently, we constructed a scoring 
system based on identified pyroptosis-related signature 
genes and defined it as pyro-score to quantify the pattern 
mediated by pyroptotic cell death in individual BC patient. 
Considering that the quantification of pyroptosis is com-
plex, we used the alluvial diagram to illustrate the work-
flow of pyro-score construction (Figure 6A). The results 
revealed that pyro-gene clusters II and III were linked to 
high pyro-score, while pyro-gene cluster I was related with 
low pyro-score. Moreover, Kruskal–Wallis test demon-
strated that pyro-cluster C exhibited the highest pyro- 
score, followed by pyro-cluster B and pyro-cluster 
A (Figure 6B). Spearman analysis was performed to exam-
ine the relationship between the pyro-score and immune 
landscape. The correlation matrix revealed that the pyro- 
score was positively associated with tumor-infiltrating 
lymphocytes, including activated CD4+/CD8+ T cells, 
activated B cells and natural killer T cells and negatively 
correlated with tumor-associated neutrophils, demonstrat-
ing the crosstalk between pyro-score and tumor-infiltrating 
immune cells (Figure 6C). Furthermore, the predictive 
ability of pyro-score for BC prognosis was estimated by 
stratifying patients into high- and low-score group, accord-
ing to the cutoff value of −4.50714330196327. 
Unexpectedly, patients in high-score group exhibited 
a prominent survival benefit (Figure 6D). Considering the 
highly complex heterogeneity of BC, we further explored 
the prognostic impact of pyro-score in distinct classifica-
tions of BC and observed the similar results in clinical 
subtypes: luminal A, B and basal-like (Figure S7A). The 
relationship between the pyro-score and ER status, PR 
status, HER2+ status and molecular subtype was also 
analyzed. As shown in Figure 6E, ER+, PR+ were corre-
lated with a high pyro-score, while HER2+ and Basal 
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Figure 5 Construction of the pyroptosis-mediated prognostic model. (A and B) Ranked dot and scatter plots showing the risk score distribution and patient survival status. 
(C) Kaplan–Meier analysis of the OS between the two groups in the all, discovery and validation dataset, respectively. (D) ROC curves to predict the sensitivity and 
specificity of 1-, 3- and 5-year survival according to the prognostic model in the all, discovery and validation dataset, respectively.
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Figure 6 Construction of pyro-score and exploration of its clinical features. (A) Alluvial diagram of pyro-clusters in groups with different pyro-gene clusters, and pyro-score. 
(B) Distribution of pyro-score in the different pyro-clusters and pyro-gene clusters. (C) Correlations between pyro-score and the immune landscape using Spearman 
analysis. The negative correlation was marked with blue and positive correlation with red. The star signified the statistical difference (*P-value <0.05). (D) Kaplan–Meier 
curves for patients with high and low pyro-score subgroups. (E) Bar plot showing pyro-score in groups with ER+, PR+, HER2+, phenotypes. The differences between 
different groups were compared through the Kruskal–Wallis test.
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Figure 7 Characteristics of pyro-score in tumor somatic mutation and immunotherapies. (A and B) Correlation analysis between pyro-score and TMB. (C) Relative 
distribution of TMB in high versus low pyro-score group. (D) Kaplan–Meier curves for high and low TMB patient groups (P= 0.001). (E) Kaplan–Meier curves for subgroup 
patients stratified by both pyro-score and TMB (P< 0.001). (F and G) Mutational landscape of SMGs in TCGA-BRCA stratified by high (left panel) versus low pyro-score 
(right panel) groups. Individual patients were represented in each column. The upper bar plot showed TMB, the right bar plot showed the mutation frequency of each gene in 
separate pyro-score groups. (H) Relative distribution of immunosuppressive molecules expression in high pyro-score versus low pyro-score groups. (I) Relative distribution 
of immunotherapeutic efficacy in high pyro-score versus low pyro-score groups.
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subtype were significantly associated with a low pyro- 
score.

Estimation of the Role of Pyro-Score in 
Tumor Somatic Mutation, Immunotherapy 
and Chemotherapeutic Efficacy
Accumulating evidence has revealed that cancer-specific 
antigens generated by somatic mutations could influence 
the responsiveness to immunotherapy. Thus, the distribu-
tion pattern of TMB was investigated between high and 
low pyro-score groups. The results demonstrated that 
pyro-score was negatively correlated with TMB and high- 
score group had lower TMB (Figure 7A–C). BC patients 
were categorized into high- or low-TMB group based on 
the cutoff value of 0.421052631578947. Survival analysis 
further demonstrated that high-TMB group exhibited an 
unfavorable survival outcome and, as expected, combined 
high-TMB and low pyro-score group had the worst prog-
nosis (Figure 7D and E). Significantly mutant genes 
(SMGs) analysis was also conducted between different 
pyro-score group and the SMGs landscape revealed that 
PIK3CA (38% vs 25%) and CDH1 (16% vs 5%) exhibited 
higher somatic mutation rate in high-score group, whereas 
TP53 (38% vs 28%) had higher somatic mutation rate in 
low-score group (Figure 7F and G).

Immunotherapy based on immunosuppressive mole-
cules, such as PD-1/CTLA-4 has achieved a considerable 
breakthrough in antitumor response. Many well-known 
predictors, such as PD-L1 were extensively used to assess 
immune response. Our analysis showed that the expression 
levels of common immunosuppressive molecules, includ-
ing PD-1, PD-L1 and CTLA4 and novel immune check-
point proteins, including TIM-3, LAG3, TIGIT, were 
pronouncedly elevated in the high pyro-score group 
(Figure 7H), indirectly demonstrating the essential role of 
pyro-score in mediating immune response. As a superior 
predictor of responsiveness of anti-PD-1 and CTLA-4 
therapies, IPS could calculate the determinants of tumor 
immunogenicity and depict the cancer antigenomes and 
intra-tumoral immune profiles.45 This scoring scheme 
derived from a panel of immune-related genes, which 
belong to four classes: suppressor cells, effector cells, 
immunomodulators or checkpoints, and MHC-related 
molecules. By averaging the samplewise Z scores of the 
four classes within the respective category, the sum of the 
weighted averaged Z score was calculated as the IPS. We 
observed that patients in high pyro-score group exhibited 

significant therapeutic benefits from ICIs treatment repre-
sented by IPS (CTLA4-/PD-1-, CTLA4+/PD-1-, CTLA4-/ 
PD-1+ and CTLA4+/PD-1+), indirectly suggesting that 
pyro-score played an essential role in predicting response 
to immunotherapies (Figure 7I).

To assess whether pyro-score was associated with the 
half inhibitory concentration (IC50) of common antitumor 
drugs and chemotherapeutic efficacy, we applied 
“pRRophetic” package in R. By constructing the ridge 
regression model based on Genomics of Drug Sensitivity 
in Cancer (GDSC) (www.cancerrxgene.org/) cell-line 
expression spectrum and TCGA gene expression profiles, 
the package could apply pRRophetic algorithm to predict 
drug IC50. We compared the difference of drug IC50 
between different pyro-score group and determined that 
patients in high pyro-score group were negatively corre-
lated with IC50 of cisplatin, doxorubicin, gemcitabine, 
methotrexate, roscovitine, vinblastine and vinorelbine, 
demonstrating that they were the potentially beneficial 
candidates from these commonly used chemotherapeutic 
drugs (Figure S7B).

Discussion
Accumulating evidence has revealed that regulators 
involved in pyroptosis perform an indispensable role in 
inflammation and antitumor immunity.46,47 As plenty of 
studies are restricted to single TME infiltrating immune 
cell or PRR, comprehensive analysis of the overall TME 
immune features mediated by multiple PRRs is not con-
ducted. Thus, identification of distinct tumor pattern clus-
ters mediated by pyroptosis in TME will deepen our 
understanding of antitumor immunity and direct more 
effective immunotherapeutic plans.

In this research, three pyro-clusters characterized by 
distinct immune profiles were identified. Pyro-cluster 
A was characterized by immune suppression, correspond-
ing to an immune-desert phenotype. Pyro-cluster B was 
characterized by the infiltration of immune cells and acti-
vation of stroma, corresponding to an immune-excluded 
phenotype. Pyro-cluster C was characterized by immune 
activation and anti-tumor lymphocyte infiltration, corre-
sponding to immune-inflamed phenotype. Recent 
researches revealed that TME components performed an 
essential role in tumor progression and immune 
response.19 Baseline infiltration level of CD4/8+ T cells, 
natural killer cells, M1 macrophages and secreted cyto-
kines were prominently related to immunotherapeutic 
efficacy.19,48,49 We also found that pyro-cluster C was 
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prominently related to anti-tumor lymphocyte infiltration 
and high expression level of immunosuppressive mole-
cules, indicating its potential value in predicting immu-
notherapeutic benefits. A previous study found that 
activation of TGF beta and EMT-related signaling pathway 
could impede the lymphocytes from penetrating into the 
tumor parenchyma.50 TGF beta-targeted molecular agents 
have been found to take on an important role in reshaping 
TME and restoring anti-cancer immunity.22,51 Thus, we 
speculated that combination of ICIs and TGF beta block-
ade may be beneficial to pyro-cluster B patients.

Moreover, DEGs identified between three pyro- 
clusters were prominently elevated in biological path-
ways associated with inflammatory response and 
immune regulation, indicating that these DEGs were 
regarded as pyroptosis-related gene signature. Based 
on these pyroptosis-related genes, three transcriptomic 
clusters were constructed and characterized by different 
survival outcomes, which were in great accord with the 
results of pyro-clusters. Furthermore, a scoring scheme 
named as pyro-score was established to quantify the 
pyroptosis pattern level of individual BC patient and 
direct therapeutic interventions more precisely. As 
a result, pyro-cluster C characterized by immune- 
inflamed phenotype showed high pyro-score, while 
pyro-cluster B and A characterized by immune- 
excluded and desert phenotype, respectively, exhibited 
low pyro-score. In addition, we observed that pyro- 
score could serve as a prognostic biomarker in BC 
and significantly correlated with molecular phenotype, 
indicating that this pyro-score plays an important com-
plementary role to clinical predictors. Besides, sub-
group analysis of classical classifications of BC 
demonstrated that pyro-score performed a vital role in 
predicting clinical outcome in luminal A, B and basal- 
like subtypes. Further analyses demonstrated that pyro- 
score was markedly linked to immunosuppressive 
molecules and immunotherapy, implying that pyro- 
score could influence therapeutic efficacy. Based on 
these findings, we believed that pyroptosis could be 
used in clinical practice to identify immune profiles 
and direct therapeutic strategies.

Assessment of mutated genes capable of driving 
tumors is one milestone towards cancer detection and 
therapeutic approach selection. Here, we observed that 
compared with low pyro-score group, PIK3CA and 
CDH1 exhibited elevated mutation rate in high pyro- 

score group, while TP53 showed augmented mutation 
rate in low pyro-score group. Recent researches 
revealed that CDH1 and PIK3CA mutations in geneti-
cally modified mice could result in immune-related 
subtype for invasive lobular carcinoma of breast, 
which was characterized by enhanced immune infiltra-
tion and a strong signature of Treg cells and immuno-
suppressive molecule-based immune checkpoint 
activation.52 TP53 is a frequently mutated tumor sup-
pressor gene, which could enhance immune activity 
in BC.53 These pyro-score mediated driver gene muta-
tions remarkedly correlated with immune activity, 
highlighting the complicated connection between pyr-
optosis and tumor immunogenomic features.

Although we obtained ten typical regulators involved 
in pyroptosis in this research, a series of novel regula-
tors would be identified. Future researches were required 
to optimize the accuracy of pyroptosis-mediated patterns 
by integrating more PRRs. Besides, we constructed 
tumor pattern clusters and pyro-score using retrospective 
cohorts; thus, prospective datasets of BC samples were 
required to verify our results.

Conclusions
In conclusion, we comprehensively analyzed pyroptosis- 
mediated tumor patterns of 1852 BC patients based on 10 
typical PRRs, and systematically linked this pattern cluster 
with TME cell-infiltrating features. This integrated analysis 
demonstrated that pyroptosis takes on an indispensable role 
in regulation of antitumor immunity. More broadly, assessing 
the pyroptosis pattern level of individual tumor will assist us 
in better understanding TME characteristics and directing 
more effective immunotherapeutic approaches.
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