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Background: The aim of this study is to investigate the potential key genes related to 
Chronic rhinosinusitis with nasal polyps (CRSwNP).
Methods: Datasets GSE36830 and GSE72713 were obtained from Gene Expression 
Omnibus. Dataset GSE36830 was used to identify differentially expressed genes in 
CRSwNP patients. GO, KEGG analysis, and PPI network analysis were applied to further 
investigate the function of DEGs in CRSwNP. GSEA was also performed to explore the 
mechanisms of DEGs. Dataset GSE72713 was applied to validate the key gene. Moreover, to 
detect the expression of target gene, nasal polyp tissues and middle turbinate specimens were 
collected from CRSwNP patients (n = 20) and controls (n = 20), respectively. RT-PCR, 
Western blot, and immunofluorescence staining were applied. HE and AB-PAS staining were 
used to assess the infiltration of inflammatory cells. The proliferation and migration ability of 
human nasal epithelial cells (HNEpCs) were tested via Cell Counting kit-8, wound healing 
assay and Transwell migration assay. Air–liquid interface was used to culture primary human 
nasal epithelial cells (pHNECs) from health controls and nasal polyp tissues of CRSwNP 
patients.
Results: A total of 1035 DEGs were identified, and 661 genes were up-regulated and 374 
genes were down-regulated. According to PPI network analysis, the top 10 scored genes 
were identified. Among them, only EGF was down-regulated in CRSwNP. Meanwhile, 
GSEA result shows that EGF is significantly enriched in WNT activated receptor activity. 
CCK-8, wound healing assay, and transwell migration assay indicated that recombinant 
human EGF can promote the proliferation and migration of HNEpCs in vitro. 
Immunofluorescence staining shows that rhEGF can increase the expression of ZO-1 in 
pHNECs from nasal polyp tissues.
Conclusion: Bioinformatics analysis and in vitro experiments were used to explore the 
pathogenesis of CRSwNP, and the results showed that EGF may play an important role in the 
protection of nasal epithelial barrier.
Keywords: chronic rhinosinusitis with nasal polyps, bioinformatics analysis, GSEA, EGF, 
epithelial barrier

Introduction
Chronic rhinosinusitis (CRS) is a common chronic nasal mucosa inflammation 
disease, which affects approximately 7% to 27% of adult population.1–3 It is 
a group of heterogeneous diseases with common symptoms but different 
pathogenesis.4,5 Based on the presence or absence of nasal polyps (NP), CRS has 
been divided into CRS with NP (CRSwNP) and CRS without NP (CRSsNP).6 

CRSwNP is characterized by the nasal obstruction and inflammation of the nasal 
mucosa, which seriously reduces the quality of life of patients.7–10 The etiologies of 
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CRSwNP have been investigated worldwide and extraor-
dinary progress has been made.7,11,12 The nasal epithelium 
is the physical and immune barrier, and its dysfunction is 
an outstanding feature of CRSwNP.13–18 Epithelial cells 
play an important role in innate immune, and it can pro-
duce protective proteins and resist microbial invasion.19–22 

Meng et al revealed that the expression levels of ZO-1, 
E-cadherin, and occludin were down-regulated in mature 
polyps, and epithelial damage was most obviously in early 
stage.23 Meanwhile, several studies have reported the 
decreased expression of ZO-1, E-cadherin and occludin 
in polyps.23–28 It is currently believed that the regeneration 
and repairment of epithelium are changed in patients with 
CRSwNP, and the reduced barrier function of epithelium is 
a potent contributing factor to type 2 immunity.29–32 

However, the mechanisms underlying CRSwNP are not 
fully defined. Therefore, to develop a novel treatment for 
CRSwNP, further investigation is needed.

High throughput sequencing is an increasingly impor-
tant field. It has been widely applied in biological 
research. In the present study, the differentially expressed 
genes (DEGs) of nasal epithelium between CRSwNP 
patients and healthy individuals were analyzed based on 
the microarray datasets downloaded from the Gene 
Expression Omnibus (GEO) database. In the dataset 
GSE36830, Seshadri et al collected nasal tissues from 
patients with skull base tumor and patients with CRS.11 

Gene Ontology (GO) process, Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis, pro-
tein–protein interaction (PPI) networks, and Gene set 
enrichment analysis (GSEA) were performed to identify 
the key genes and pathways associated with CRSwNP in 
the dataset GSE36830. Dataset GSE72713 was down-
loaded and applied to validate the identified potential 
target gene in dataset GSE36830.33 Moreover, cell biol-
ogy experiments were used to investigate the effects of 
target gene in CRSwNP. As far as we know, the present 
study is one of the first to integrate GSEA and biological 
experiments to explore the mechanism involved in 
CRSwNP.

Methods
Microarray Data Processing
Dataset GSE36830 acquired from the GEO database was 
used to identify the key genes related to CRS. The plat-
form of GSE36830 dataset was GPL570 (Affymetrix 
Human Genome U133 Plus 2.0 Array). This dataset 

included NP tissues from 6 subjects with CRSwNP, unci-
nate tissues (UT) from 6 subjects with CRSsNP and 6 
control subjects. To validate the target gene, dataset 
GSE72713 was downloaded. In dataset GSE72713, the 
data of total RNA was extracted from NP tissues of 6 
CRSwNP patients and sphenoid sinus mucosa of 3 normal 
controls.

Identification of DEGs
R software (version 3.5.2, United States) was used to 
normalize the raw microarray data of GSE36830. The 
“limma” package in R software was carried out to identify 
the DEGs between the NP tissues of CRSwNP patients 
and the health controls. In addition, the DEGs between the 
UT tissues of the CRSsNP patients and the NP tissues of 
CRSwNP patients, and the UT tissues of the CRSwNP 
patients and the NP tissues of CRSwNP patients were 
identified. |log FC| (fold change) >1 and p < 0.05 were 
considered as statistical significance.

Construction of the PPI Networks
The Search Tool for the Retrieval of Interacting Genes 
(STRING) platform was used to construct the PPI net-
works of DEGs in different groups. The value of the 
correlation between proteins was set to greater than 0.4. 
Cytohubba, a plug-in of Cytoscape software (version 
3.7.1, UAS) was applied to identify the top 10 key genes 
of connectivity of DEGs in different groups.

GO and KEGG Analyses
Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) is usually used for functional analysis 
of genes and proteins. To further investigate the function 
of DEGs between the NP tissues of CRSwNP patients and 
the health controls, DAVID was applied to carry out the 
GO process and KEGG pathway analyses. False discovery 
rate (FDR) <0.05 was set as the cutoff point.

Gene Sets Enrichment Analysis (GSEA)
To further investigate the pathogenesis of CRSwNP, GO 
analysis of all genes of the NP tissues of CRSwNP and the 
health controls in GSE36830 was carried out by GSEA 
software (version 4.0.3, USA). This analysis can explore 
the major pathway that the target genes involved in.

Patients and Specimens
The tissue samples were obtained from patients in the 
Department of Otolaryngology-Head and Neck Surgery, 
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Eye, Ear, Nose, and Throat (Eye & ENT) Hospital of 
Fudan University. The normal control middle turbinate 
tissues were obtained from the patients (n = 20) who 
underwent skull base tumor excision or optic nerve 
decompression operation and had no history of upper air-
way inflammatory diseases. NP tissues were obtained from 
CRSwNP patients (n = 20) who underwent functional 
endoscopic sinus surgery. The exclusion criteria were as 
follows: age <18 or >80 years, a diagnosis of cystic 
fibrosis, immunodeficiency, aspirin intolerance, autoim-
mune disease, Churg-Strauss syndrome, asthma, or fungal 
sinusitis. This study complies with the Declaration of 
Helsinki and was approved by the Eye & ENT Hospital 
and all subjects gave informed consent.

Extraction of Total RNA and Quantitative 
RT-PCR
For extraction of total RNA, NP tissues and middle turbinate 
tissues were homogenized with 1 mL Trizol Reagent accord-
ing to the guidelines. The complementary DNA (cDNA) 
template was synthesized with PrimeScript RT Master mix 
(TaKaRa, Japan). Then, the mRNA expression of the target 
gene was analyzed using an RT-PCR Sequence Detection 
System (ABI, USA) with SYBR Green chemistry (TaKaRa, 
Japan). The specific RT-PCR primer for EGF: forward 5ʹ- 
GAAGCATTGGACAAGTATGCAT −3ʹ, reverse 5ʹ-CAGC 
TTCTGAGTCCTGTAGTAG-3ʹ. The relative expression 
level of the target gene was analyzed using the 2−ΔΔCT 

method.34

Western Blot
Protein samples (20μg) obtained from frozen NP tissues 
and middle turbinate tissues were resolved by 10% sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS- 
PAGE) and transferred onto polyvinylidene difluoride 
membranes (PVDF) (Millipore, USA). Then, it was incu-
bated with anti-EGF antibody (1:700, Santa, USA) accord-
ing to manufacturer’s protocol. The expression of β-actin 
(1:2000, Abcam, UK) was detected as an internal control. 
Densitometric analysis of the data was performed by 
Image J software (NIH, USA).

Histological Staining
To detect the infiltration of eosinophils and the hyperplasia 
of the mucous cells in the NP tissues and health controls, 
hematoxylin and eosin (HE) and Alcian blue-periodic acid 
Schiff (AB-PAS) staining were applied, as previously 

published.35–39 Slices were examined under microscope, 
and the number of eosinophils and mucous cells in differ-
ent stainings were counted in 5 random high-power fields.

Immunofluorescence Staining
Briefly, slices were incubated with anti-tryptase antibody 
(1:100, Santa, USA) and anti-EGF antibody (1:700, Santa, 
USA) at 4°C overnight, and then incubated with the sec-
ondary antibody at room temperature for 2h.40 

Immunofluorescence samples were observed and photo-
graphed with an inverted microscope (Leica, Germany). 
Image J software (NIH, USA) was used to analyze the 
mean fluorescence intensity.

Cell Culture
Human nasal epithelial cell (HNEpC) line was obtained 
from American Type Culture Collection (ATCC, USA). 
HNEpCs were cultured in RPMI1640 (Gibco, USA), sup-
plemented with 10% fetal bovine serum (Gibco, USA) and 
1% penicillin–streptomycin (Gibco, USA). Cells were cul-
tured at 37°C with 5% CO2 atmosphere.

Cell Proliferation Assay
Approximately 2 × 103 HNEpCs were cultured on 96-well 
culture plates in 100 μL of RPMI1640 medium with 10% 
FBS and 1% penicillin-streptomycin. HNEpCs were cul-
tured for 1~4 days at 37°C with 5% CO2 atmosphere. For 
EGF treatment group, cells were cultured with the above 
medium containing 100 ng/mL recombinant human EGF 
(rhEGF, PeproTech, USA). The proliferation was detected 
by Cell Counting Kit-8 (CCK-8) assay kit (Dojindo, 
Japan) according to the manufacturer’s instructions. 
Briefly, 10 μL of CCK-8 solution was added to each well 
for 1 h incubation, and the absorbance of the test wells was 
measured by using a microplate reader at 450 nm.

Wound Healing and Transwell Migration 
Assays
HNEpCs were seeded into 6-well culture plates. To form an 
artificial wound, cell monolayers were scraped off with a 200 
μL pipette tip. After scratching, to remove the detached cells 
and residual serum, the wells were washed three times with 
PBS and then serum-free 1640 medium was added. For EGF 
treatment group, cells were cultured with 1640 medium con-
taining 50 ng/mL and 100 ng/mL rhEGF. The wound healing 
of HNEpCs was imaged with an inverted microscope (Leica, 
Germany) at 0 h, 24 h and 48 h.
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The migration of HNEpCs was investigated in 
Transwell chambers (8-μm pore filters, Corning, USA). 
Approximately 1 × 104 cells suspended in 100 μL serum- 
free 1640 medium were placed in the upper chamber, and 
600 μL 1640 medium which contains 10% FBS or 10% 
FBS and 50, 100ng/mL rhEGF was added to the lower 
chamber, respectively. After 24 h and 48 h, the cells on the 
lower surface of the chamber were fixed, stained, and 
counted.

Primary Human Epithelial Cell Culture 
and rhEGF Stimulation
Primary human epithelial cells (pHNECs) were isolated 
from the above nasal tissues. Briefly, nasal samples were 
immediately immersed in DPBS (Ca2+/Mg2+-free) supple-
mented with 1% penicillin, streptomycin, and amphoter-
icin B (all reagents from Gibco). After washed three 
times, nasal tissues were digested with 0.1% Protease 
XIV (Sigma-Aldrich) overnight at 4°C. After filtering, 
all cells were immersed in DMEM/F12 media (Gibco, 
USA) which contains 10% FBS and 1% ITS for 2 h at 
37 °C with 5% CO2 atmosphere. Next, cells in super-
natant media were cultured in PneumaCult-Ex Medium 
(StemCell, Canada). In addition, cells from NP tissues 
were exposed to 100 ng/mL rhEGF for 48 h. After reach-
ing about 70%~80% confluence, cells were digested with 
Accutase (StemCell, Canada) for about 5 min, and then 
seeded on Transwell chamber (0.4 μm pore size; Corning, 
USA). To induce cell differentiation at ALI culture, the 
medium at the basal side of Transwell was replaced by 
PneumaCult-ALI Medium kit (StemCell, Canada) and the 
medium at the apical side was removed. PHNECs were 
fully mature after cultured for 21 days in ALI.

To identify the ALI cultured cells, HE, AB-PAS and 
immunofluorescence staining were applied. The expres-
sion of tubulin, p63, and mucin5AC (the marker of ciliated 
cell, basal cell and mucous cell) were detected by 
immunofluorescence.41 The slices were photographed 
with an inverted microscope (Leica, Germany). The sys-
tematic workflow of the study is shown in Figure 1.

Statistical Analysis
All experimental data were presented as means ± SD. 
Comparisons were calculated using one-way ANOVA or 
Student’s t-test. All statistical analyses were performed 
using GraphPad prism 8.0 software. P value < 0.05 was 
considered statistically significant.

Results
Identification of DEGs and Key Gene
In dataset GSE36830, a total of 1035 DEGs were iden-
tified between the NP tissues and health controls by 
R software (|logFC| >1, p < 0.05), and the top 50 
DEGs were shown in the heatmap (Figure 2A). Among 
them, 661 genes were up-regulated and 374 genes were 
down-regulated (Figure 2B). The PPI networks of DEGs 
were constructed based on the STRING database, and 
the cytohubba plug-in of Cytoscape was applied to 
identify the top 10 key genes (TYROBP, IL10, CD86, 
ITGB2, SPI1, EGF, LILRB2, CSF1R, CCR7, and 
FCGR2B) (Figure 2C and D). Only the expression of 
EGF was down-regulated in NP group among the top 10 
key genes (Supplemental Figure 1). In addition, the 
DEGs and identified key genes between the UT of 
CRSsNP and NP of CRSwNP group, and those between 
the UT of CRSwNP and NP of CRSwNP group are 
shown in Supplemental Figure 2.

Figure 1 Workflow diagram of data collection and analysis.
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GO and KEGG Analyses
DAVID online tool was used for functional analysis of the 
1035 DEGs between the NP tissues and health controls. GO 
functional enrichment analysis showed that the DEGs were 
mainly significantly enriched in immune response, extracellu-
lar region, and integral component of plasma membrane 
(top 3) (Figure 2E). Meanwhile, KEGG analysis showed that 
they were mainly significantly enriched in Staphylococcus 
aureus infection, Cytokine–cytokine receptor interaction, and 
Hematopoietic cell lineage (top 3) (Figure 2F).

GO Enrichment Analysis of All Detected 
Genes
According to GSEA, EGF was highly enriched in “Wnt- 
activated receptor activity” (Figure 2G and H). The enrich-
ment score (ES) = 0.57, and the normalized enrichment 
score (NES) = 1.65 (p<0.05).

The Validation of EGF in GSE72713 
Dataset and Patient Tissues
The expression of EGF was decreased in NP tissues in 
GSE72713 dataset (Figure 3A). However, there were only 

3 normal controls and 6 CRSwNP patients in GSE72713. 
To make the results more credible, patient tissues were 
collected in our hospital. The RT-PCR and WB results 
revealed that the expression levels of EGF mRNA and 
protein were significantly down-regulated in NP tissues 
compared with the normal controls (p<0.01) 
(Figure 3B–D).

Histological Staining Results
The HE, AB-PAS, and immunofluorescence staining 
showed that the number of eosinophils, mucous cells, 
and mast cells were significantly increased in NP tissues 
(Figure 3E–G). In addition, the results of immunofluores-
cence staining also revealed that the expression levels of 
EGF and ZO-1 were down-regulated in NP tissues 
(Figure 3H and I). EGF protein was mainly expressed in 
the ciliated cells and basal cells (Figure 3J).

EGF Regulates Proliferation and Migration 
of HNEpCs
To investigate the role of EGF in the proliferation and 
migration of HNEpCs, cells were treated with rhEGF. 

A B C D

E F G H

Figure 2 The results of bioinformatics analysis. (A) The top 50 DEGs identified by R software. The highly expressed genes in NP group were represented by the red areas 
and lowly expressed were represented by the green areas. (B) Volcano plot. Red dots represent the up-regulated genes and blue dots represent the down-regulated genes. 
(C) The top 10 key genes of DEGs identified by cytohubba. (D) The degree of the top 10 key genes was listed by R software. (E) GO functional enrichment result of DEGs. 
(F) KEGG functional enrichment result of DEGs. (G) EGF was highly enriched in “WNT-activated receptor activity” (ES=0.57, NES =1.65, p<0.05) according to GSEA. (H) 
The heatmap of GSEA showed genes distribution of “WNT-activated receptor activity”. 
Abbreviations: DEGs, differentially expressed genes; NP, nasal polyps; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set 
enrichment analysis; ES, enrichment score; NES, normalized enrichment score.
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A B C D

E

F

G

H

I

J

Figure 3 The expression level of EGF and the histologic appearance of nasal tissues. (A) The mRNA level of EGF were down-regulated in NP group in GSE72713. (B) The mRNA level 
of EGF were down-regulated in NP tissues of CRSwNP patients. (C) Western blot result of EGF in nasal tissues. (D) Densitometric analysis of EGF in nasal tissues. (E) Infiltration of 
eosinophils was examined using HE staining. (F) The hyperplasia of mucous cells was examined using AB-PAS staining. (G) Infiltration of mast cells was examined using 
immunofluorescence staining. (H) Immunofluorescence staining detect the expression of EGF in nasal tissues. (I) Immunofluorescence staining detect the expression of ZO-1 in 
nasal tissues. (J) Immunofluorescence staining localize the expression of EGF, P63, and Tubulin in nasal tissues. ****p < 0.0001, ***p < 0.001. (Original magnification, ×400). 
Abbreviations: NP, nasal polyps; HE, hematoxylin and eosin; AB-PAS, Alcian blue-periodic acid Schiff; IF, immunofluorescence staining.
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The results of wound healing, transwell migration, and 
CCK-8 assays showed that rhEGF can promote prolifera-
tion and migration of HNEpCs (Figure 4A–C).

EGF Regulates the Expression of ZO-1
To further investigate the role of EGF in CRS, NP tissues and 
health controls were obtained and pHNECs were cultured. 
Cytomorphology of pHNECs was observed under optical 
microscope (Figure 5A). Cells were cultured in ALI for 
about 21 days, then HE and AB-PAS staining were used to 

detect the differentiation. We can see the clear hair-like 
structures of ciliated cells and AB-PAS positive mucous 
cells (Figure 5B). Meanwhile, immunofluorescence staining 
revealed the positive reaction to p63, tubulin, and mucin5AC 
antibodies, which was the marker of ciliated cell, basal cell 
and mucous cell, respectively (Figure 5C). The expression of 
ZO-1 was down-regulated in pHNECs from NP tissues com-
pared with pHNECs from health controls, while the expres-
sion of ZO-1 was up-regulated in pHNECs from NP tissues 
which treated with 100 ng/mL rhEGF (Figure 5D).

A

B

C

Figure 4 RhEGF promote migration and proliferation of HNEpCs. (A) Images and statistical analysis of Transwell assay. (B) Images and statistical analysis of wound healing 
assay. (C) Effects of rhEGF on HNEpCs proliferation. **p < 0.01, *p < 0.05. 
Abbreviations: rhEGF, recombinant human; HNEpCs, human nasal epithelial cells.
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A

B

C

D

Figure 5 Identification of pHNECs and the effects of rhEGF. (A) Images of pHNECs identified with microscopy. (B) Images of pHNECs cultured in ALI (The arrow in HE 
shows the cilia structure; the arrow in AB-PAS shows the mucous cells). (C) Images of pHNECs cultured in ALI identified with immunofluorescence. (D) RhEGF up 
regulated the expression of ZO-1 in pHNECs from NP tissues. (Original magnification, ×400). 
Abbreviations: pHNECs, primary human nasal epithelial cells; rhEGF, recombinant human; ALI, air-liquid interface; AB-PAS, Alcian blue-periodic acid Schiff; NP, nasal 
polyps.
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Discussion
In the present study, GO, KEGG and PPI analyses were applied 
to investigate key genes involved in the pathogenesis of 
CRSwNP. By GO and KEGG analyses, immune response 
and Staphylococcus aureus infection were found to be the 
most significantly enriched terms, respectively (Figure 2E 
and F). The heterogeneity and clinical manifestations of CRS 
were dependent on the selective expression of type 1, 2, or 3 
immune responses.42–44 Staphylococcus aureus is more 
usually exists in patients with CRSwNP compared with 
CRSsNPs, and it can be found under the epithelial surface.45– 

49 Staphylococcus aureus exoproducts alter epithelial repair on 
pHNECs significantly, and it is more obvious in the patients 
with nasal polyps.50 Staphylococcus aureus has a key impact 
on the nasal epithelium barrier and immune system in patients 
with CRS.51–59 According to PPI analysis, the top 10 key genes 
were identified by Cytohubba, among them, only EGF was 
down-regulated in NP tissues (Supplemental Figure 1). EGF 
(epidermal growth factor) is a 160 kDa membrane glycopro-
tein. It is a ligand of EGF-receptor and plays 
important roles in cell differentiation, proliferation, and 
motility.60 Jacob et al indicated that EGF was significantly 
down-regulated in atopic dermatitis patients, and this low- 
expression state may impair anti-inflammatory immune 
response and proliferation in the skin.61–64 Duan et al revealed 
that EGF was localized within p63+ basal cells in health con-
trols, and there was a down-regulation of EGF in NP tissues.65 

While, Ding et al reported an elevated level of EGF in the sinus 
mucosa of CRSwNP patients.66 In the present study, to detect 
the expression level of EGF in NP tissues and health controls, 
RT-PCR, WB and immunofluorescence staining analyses were 
applied. The results showed that the expression levels of EGF 
mRNA and protein were significantly down-regulated in NP 
tissues (Figure 3B–D and H). Meanwhile, down-regulated 
expression of ZO-1 protein was detected in NP tissues 
(Figure 3I). The immunofluorescence staining results showed 
that EGF was localized in p63+ basal cells and ciliated cells 
(Figure 3J). As reported in previous study, EGF was expressed 
in ciliated and basal cells in bronchial epithelium.67 The 
decreased number of ciliated cells may be associated with the 
down-regulated expression of EGF in NP tissues. To further 
explore the effects of EGF in nasal epithelial cells, biological 
experiments were carried out. From the results of wound 
healing, Transwell migration, and CCK-8 assays, we can see 
that rhEGF can promote the migration and proliferation of 
HNEpCs in vitro (Figure 4A–C). Moreover, pHNECs were 
successfully cultured in ALI. The pHNECs from NP tissues 

have a lower expression of ZO-1 compared to those from 
health controls. However, the expression of ZO-1 was up- 
regulated by treating with 100ng/mL rhEGF (Figure 5D). As 
previous studies reported that there was a decrease of ZO-1 in 
NP tissues of CRS.17 Sheng et al revealed that EGF down- 
regulated the expression of ZO-1 in pancreatic cancer cells.68 

However, Okuyama et al reported the ability of EGF to prevent 
acid-induced decrease of ZO-1 in Human esophageal epithelial 
cells (TE-1).69 The relationship of EGF and ZO-1 in CRS still 
needs further research.

In addition, according to GSEA, we found that EGF 
was most enriched in WNT-activated receptor activity 
pathway (Figure 2G and H). Wnt signaling was found to 
become re-expressed in inflammatory diseases, and it 
played a huge part in injury repair.70–79 Boscke et al 
reported that Wnt signaling was up-regulated in NP tissues 
and this activation can promote the release of cytokines in 
HNEpCs.80 Meanwhile, the activation of Wnt pathway in 
HNEpCs can lead to the abnormal epithelial morphology 
and the loss of cellular differentiation. However, Whyte 
et al reported that Wnt signaling is responsible for the 
regenerating response of injured tissues.81 EGF and Wnt 
signaling are involved in the proliferation of intestinal 
epithelial stem cells and skin epithelial stem cells.82–88 

EGF can mediate the proliferation of mesenchymal stem 
cells via Wnt/β-catenin activation.89 As far as we know, 
there have been few relevant researches in CRS, and 
intensive study is needed to reveal the effects of EGF 
and Wnt signaling on nasal epithelium.

Conclusion
In conclusion, this study identified the key genes and 
pathways involved in CRSwNP by bioinformatics analy-
sis, and the key gene was verified by patient samples. 
Meanwhile, we demonstrated the promotional effects of 
EGF on the proliferation and migration of HNEpCs 
in vitro, and EGF can lead to an increased expression of 
ZO-1 in pHNECs from NP tissues.
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