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Introduction: Accumulating evidence suggests that both sleep loss and gut dysbiosis can
lead to metabolic disorders. However, less is known about the impact of total sleep depriva-
tion (SD) and sleep recovery on the composition, function, and metabolic dynamics of the
gut microbiota.
Methods: Specific-pathogen free Sprague–Dawley rats were subjected to 48 h of SD with
gentle handling and then allowed to recover for 1 week. Taxonomic profiles of fecal
microbiota were obtained at baseline, 24 h of SD, 48 h of SD, and 1 week of recovery.
We used 16S rRNA gene sequencing to analyze the gut microbial composition and function
and further characterize microbiota-derived metabolites in rats.
Results: The microbiota composition analysis revealed that gut microbial composition and
metabolites did not change in the rats after 24 h of SD but were significantly altered after 48
h of SD. These changes were reversible after 1 week of sleep recovery. A functional analysis
was performed based on Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations,
indicating that 19 KEGG pathways were significantly altered in the gut microbiota in SD
rats. These functional changes occurred within 24 h of SD, were more apparent after 48 h of
SD, and did not fully recover after 1 week of sleep recovery.
Conclusion: These results indicate that acute total SD leads to significant compositional and
functional changes in the gut microbiota, and these changes are reversible.
Keywords: gut microbiota, sleep deprivation, short-chain fatty acid, function prediction

Introduction
Sleep plays a critical role in physical and mental health maintenance and well-being
throughout an individual’s lifetime. Sleep loss is typically associated with impair-
ments in performance, negative health consequences, and lower survival.1,2 Sleep
deprivation (SD) is a widespread phenomenon that is associated with adverse
metabolic consequences,3–5 such as obesity, insulin resistance, diabetes, and cardi-
ovascular disease, that ultimately promote the emergence of metabolic dysfunction
for reasons that are still unclear.6

The gut microbiome is a vital component of the intestinal environment. It has been
identified as a critical environmental factor that contributes to the development of
obesity,7 insulin resistance,8 and diabetes.9 The gut microbiota-brain axis has become
an increasingly popular research focus.10 Alterations of the intestinal microbiota have
been linked to the pathophysiology of many psychiatric disorders, such as autism
spectrum disorder,11 schizophrenia,12 and depression,13–15 suggesting that the gut
microbiota affects multiple aspects of brain development and neuroendocrinological
function. Research also demonstrates that microbiota-derived metabolites, such as

Correspondence: Wen-Hao Chen; Wei Yan
Peking University Sixth Hospital/Peking
University Institute of Mental Health, 51
Huayuanbei Road, Haidian District, Beijing,
100191, People’s Republic of China
Tel +86-10-82801342;
Tel +86-10-62723704
Email chenwenhao@bjmu.edu.cn;
weiyan@bjmu.edu.cn

Nature and Science of Sleep 2022:14 121–133 121
© 2022 Wang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the

work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Nature and Science of Sleep Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 19 August 2021
Accepted: 31 December 2021
Published: 25 January 2022

N
at

ur
e 

an
d 

S
ci

en
ce

 o
f S

le
ep

 d
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://orcid.org/0000-0002-0781-0300
http://orcid.org/0000-0002-1715-2698
mailto:chenwenhao@bjmu.edu.cn
mailto:weiyan@bjmu.edu.cn
http://www.dovepress.com/permissions.php
https://www.dovepress.com


short-chain fatty acids (SCFAs),16 are primarily produced in
the large intestine through anaerobic bacterial fermentation
and can maintain both intestinal immune function and gut
barrier function.17 Accumulating evidence indicated that
SCFAs played an important role in maintaining health and
preventing disease.18 Recent studies showed that butyrate
treatment led to rapid and robust increases in non-rapid-eye-
movement (NREM) sleep in rats,19 highlighting the associa-
tions between sleep and gut microbial metabolites.

The gut microbiota fluctuates in response to circadian
rhythm and routine schedules.20,21 Awidely held presump-
tion is that there is a relationship between sleep and the gut
microbiome. Both sleep loss and dysbiosis of the gut
microbiome are associated with metabolic diseases, such
as obesity and diabetes.7,9,22 Several studies reported pre-
liminary evidence that the gut microbiota was involved in
sleep disorders in both murine models and human patients.
Insomnia was shown to lead to significant structural and
functional changes in the gut microbiota.23,24 A previous
study found that the composition of the gut microbiota was
subtly affected, with a higher Firmicutes/Bacteroidetes
ratio in human subjects with sleep restriction.25 In con-
trast, recent work suggested that a single brief period of
SD (5 h) did not alter the overall microbial composition.26

These preliminary studies highlighted the potential rela-
tionship between SD and changes in the gut microbiota. To
date, no studies have comprehensively examined the
impact of total SD and sleep recovery on the composition,
function, and metabolic dynamics of the gut microbiota.
The present study investigated the effects of acute total SD
and 1 week of sleep recovery on microbiota populations.
We used 16S ribosomal RNA (rRNA) gene sequencing to
evaluate the compositional and functional changes in the
gut microbiota in response to SD and sleep recovery.

Materials and Methods
Rat Sleep Deprivation and Sample
Collection
Adult male specific-pathogen free Sprague-Dawley rats (7–8
weeks old) were housed individually under a 12 h/12 h light/
dark cycle (lights on from 8:00 AM to 8:00 PM) and
a controlled temperature of 21–22°C and humidity of 55% ±
5%. Standard laboratory irradiated chow food (Cobalt 60) and
sterile drinking water were provided ad libitum. The rats
(n = 8) were subjected to 48 h of SD and then allowed to
recover for 1 week. The rats were in their home cages during
SD. To reduce the rats’ stress, they were kept awake by gently

tapping and shaking the cage by an experimenter.27,28 The
control group (n = 8) had a regular sleep-wake cycle in the
same environment (Figure 1A). The weight of the rats was
recorded over the deprivation period. Each day, the same
amount of food was provided to the SD and non-SD groups.
Fecal pellets were freshly collected (8:00AMof d4, d5, d6 and
d13), snap-frozen, and stored at −80°C for later analysis. The
animal protocols were carried out in accordance with the
Administration System of Laboratory Animals in China and
were approved by the Research Ethics Committee of Peking
University Sixth Hospital.

16S rRNA Gene Sequencing
The procedures for preparing fecal samples were described
previously.14 Briefly, DNA from fecal samples was
extracted using the Qiagen QIAmp Fast DNA Stool Mini
Kit (Qiagen, Valencia, CA, USA) coupled with an initial
bead-beating step as previously described.29 DNA was
quantified with a Qubit fluorometer using the Qubit
dsDNA BR Assay kit (Invitrogen, Carlsbad, CA, USA).
Quality was checked by running an aliquot on 1% agarose
gel. Polymerase chain reaction (PCR) enrichment was
performed in a 50 μL reaction that contained 30 ng of
the template, fusion PCR primer, and PCR master mix.
The PCR products were purified with Ampure XP beads
and eluted in elution buffer. Total RNA was quantified by
spectrofluorimetry and qualified by capillary electrophor-
esis using Agilent Bioanalyzer 2100 (Agilent, Palo Alto,
CA, USA). The validated libraries were used for 2×300 bp
paired-end sequencing with the Illumina HiSeq platform
(BGI, Shenzhen, China) following the standard pipelines.

Determination of Short-Chain Fatty Acid
Concentrations
SCFA levels were determined by gas chromatography-mass
spectrometry (GC-MS) in frozen fecal samples that were
freshly collected from the rats. The method was adopted
from Zhang et al.30 Helium was used as the carrier gas at
a constant flow rate of 1 mL/min. The initial oven tempera-
ture was held at 60°C for 5 min, increased to 250°C at 10°C/
min, and finally held at 250°C for 5 min. The temperatures of
the front entrance, transmission line, and electron impact (EI)
ion source were set to 280°C, 250°C, and 230°C, respec-
tively. Data processing was performed using an AgilentMSD
ChemStation (Agilent). The reported values were normalized
to the weight of the original samples that were used.
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Statistical Analysis
The statistical analyses were performed using SPSS 20.0
software (IBM, Chicago, IL, USA). The data were
assessed for a normal distribution and are expressed as
the mean ± SEM. Differences were assessed using
repeated-measures analysis of variance (ANOVA) fol-
lowed by the Bonferroni post hoc test. Values of
p < 0.05 were considered statistically significant.

Results
Effects of Sleep Deprivation on Microbial
α-Diversity
Different diversity indices (ie, Observed species index,
Chao1 index, Shannon index, and Simpson index) were
used to assess gut microbiota α-diversity (Figure 1B-E).
During SD, the mixed-design ANOVA, with group (sleep
deprivation and normal sleep control) as the between-groups
factor and time of day as the within-groups factor, revealed
a main effect of time of day (F3,42 = 9.26, p < 0.001) on the
Shannon index of α-diversity and a significant time of day ×
group interaction (F3,42 = 6.54, p < 0.001; Figure 1D). The
ANOVA analysis also showed a significant main effect of
time of day (F3,42 = 5.56, p = 0.003) on the Simpson index
and a significant time of day × group interaction (F3,42 =
4.95, p = 0.005; Figure 1E).We also found a significant effect
of time of day on the Observed species index (F3,42 = 9.23,
p < 0.001). The post hoc tests revealed no difference in the α-
diversity of the gut microbiota between baseline (Shannon
index: p = 0.471; Simpson index: p = 0.318) and after 24 h of
SD (Shannon index: p = 0.223; Simpson index: p = 0.329) in
SD rats compared with control rats but a significant reduction
(Shannon index: p = 0.017; Simpson index: p = 0.021) after
48 h of SD, and this difference disappeared (Shannon index:
p = 0.693; Simpson index: p = 0.529) after 1 week of sleep
recovery. These results indicate that 48 h of SD reduced α-
diversity of the gut microbiota, which fully recovered after 1
week of sleep recovery.

Effects of Sleep Deprivation on Microbial
β-Diversity
We further examined the effects of SD on microbial β-
diversity, which was performed based on a weighted
UniFrac analysis.31 We applied the weighted UniFrac
rank (Figure 2A), which provided a measure of the evolu-
tionary distance between microbiotas. We found that the
difference between groups was significantly greater than
the difference within groups (R = 0.16, p = 0.001).

Microbial communities clustered using principal coordi-
nates analysis (PCoA) of the weighted UniFrac matrix.
The percentage of variation that was explained by the
principal coordinates was indicated on the axes in
Figure 2B. PCoA1 represented the main percentage varia-
tion (57.82%), revealing significant main effects of time
of day (F3,42 = 7.43, p < 0.001) and group (F1,14 = 5.41,
p = 0.036) and a significant time of day × group interaction
(F3,42 = 2.92, p = 0.045). The PCoA weighted Unifrac
matrix analysis showed that the gut microbiome exhibited
a trend towards differences (p = 0.068) after 24 h of SD,
which became more significant after 48 h of SD (p =
0.004), compared with the normal sleep control group.
These differences disappeared (p = 0.597) after 1 week
of sleep recovery. These results indicated that 48 h of SD
altered β-diversity of the gut microbiota, which fully
recovered after 1 week of sleep recovery.

Effects of Sleep Deprivation on Microbial
Composition at the Genus Level
To more closely examine the impact of SD on the micro-
biome, we examined the changes in microbiota composi-
tion at the genus level in response to our intervention. The
mixed-design ANOVA, with group (SD and normal sleep
control) as the between-groups factor and time of day as
the within-groups factor, revealed six genera that signifi-
cantly changed after SD, with a significant time of day ×
group interaction. There were no significant differences in
these altered genera after 24 h of SD (all p > 0.05). After
48 h of SD, the relative abundance of g_Butyricicoccus
(p = 0.028), g_Butyricimonas (p = 0.020), g_Alistipes (p =
0.006), g_Intestinimonas (p = 0.001), and g_Lactobacillus
(p = 0.014) decreased (Figure 3A-E), whereas the relative
abundance of g_Streptococcus (p = 0.040) increased
(Figure 3F). After 1 week of sleep recovery, most of the
different microbial species recovered such that no differ-
ences from the control were found.

Changes in the Stool Content of
Short-Chain Fatty Acids Following Sleep
Deprivation
Our results showed that the abundance of SCFAs-producing
microbes, such as g_Butyricicoccus,32 g_Butyricimonas,33

and g_Alistipes,34 markedly decreased after SD. We further
analyzed the levels of total SCFAs and five different SCFAs
in samples that were obtained before and after SD and after 1
week of sleep recovery (Figure 4). We found a significant
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effect of time of day on acetate (F3,42 = 6.00, p = 0.002),
propionate (F1.82,25.48 = 12.61, p < 0.001), valerate (F3,42 =
4.73, p = 0.006), and the total amount of fecal SCFAs (F3,42 =
6.27, p = 0.001). We found a significant time of day × group
interaction for butyrate (F3,42 = 2.86, p = 0.048), which was
significantly reduced after 48 h of SD (p = 0.012). After 1
week of sleep recovery, butyrate concentrations returned to
similar levels as controls (p = 0.227; Figure 4D). The corre-
lation analysis showed that fecal butyrate concentrations
positively correlated with the relative abundance of
g_Butyricimonas (r = 0.39, p = 0.001; Figure 4G). We did
not find any interaction for the total amount of SCFAs and
other four SCFAs.

Sleep Deprivation Led to Significant
Functional Changes in the Gut Microbiota
A phylogenetic investigation of communities by the recon-
struction of unobserved states (PICRUSt) algorithm was
performed to assess the functional differences by plotting
differential pathways against the KEGG database with
significantly different abundances between SD and control
rats.35,36 A total of 637 taxonomies and KEGG ontologies
were parsed and mapped into 328 KEGG modules.
Compared with the control group, a total of 17 KEGG
pathways (energy metabolism, oxidative phosphorylation,
carbohydrate metabolism, glycolysis/gluconeogenesis,

Figure 1 Effects of sleep deprivation (SD) on microbial α-diversity in rats. (A) Experimental design and protocol. (B–E) Comparison of (B) Observed species index, (C)
Chao1 index, (D) Shannon index, and (E) Simpson index between SD and control groups following SD and recovery. The data are presented as mean ± SEM. *p < 0.05.
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lipid metabolism, fatty acid metabolism, propanoate meta-
bolism, butanoate metabolism, amino acid metabolism,
and tryptophan metabolism, among others) significantly
decreased, and two KEGG pathways (lipopolysaccharide
biosynthesis and lipopolysaccharide biosynthesis proteins)
significantly increased in SD rats (Figure 5A). These dif-
ferential pathways are mainly involved in four biological
processes, especially in various metabolic pathways, such
as amino acid metabolism. These results suggested that
amino acids, carbohydrates, and lipid metabolism were
predominantly disturbed after SD. These functional
changes appeared after 24 h of SD and were even more
significant after 48 h of SD but with partial restoration
after 1 week of sleep recovery. To explore functional
correlations between gut microbiota dysbiosis and altera-
tions of fecal metabolites, a correlation matrix was gener-
ated using Spearman correlation coefficients between
microbial communities at the genus level, SCFAs, and
significantly altered KEGG pathways. Overall, the co-
correlation analysis showed that KEGG metabolism path-
ways formed strong and broad co-correlation relationships
with both bacterial species and fecal metabolites
(Figure 5B).

Discussion
In the present study, we found that total SD led to sig-
nificant compositional and functional changes in the gut
microbiota, and these changes were partially reversible
after 1 week of sleep recovery. We examined the impact
of 24 h and 48 h of SD and 1 week of sleep recovery on
gut microbiota composition in rats. There were no signifi-
cant differences in gut microbiota composition after 24
h of SD. Significant alterations of gut microbiota composi-
tion were observed after 48 h of SD, and this change
disappeared after 1 week of sleep recovery. We also
found that functional changes in the gut microbiota
occurred within 24 h of SD, which were more apparent
after 48 h of SD and not fully recovered after 1 week of
sleep recovery.

The microbial composition analysis revealed signifi-
cant alterations of α- and β-diversities after 48 h of SD,
indicating that SD may be linked to dynamic changes in
intestinal microbiota composition. Similar to the present
study, previous studies found that α- and β-diversities of
the gut microbiota were significantly altered in patients
with insomnia.23,24 A previous study that used an 1-week

sleep restriction protocol in both rats and humans found no
significant changes in β-diversity or changes in
Operational Taxonomic Unit abundance of the gut
microbiome.37 A recent study examined a single short
period of SD in mice and found no major shifts in gut
microbiota composition.26 Consistent with these results, in
the present study, no significant difference in gut micro-
biota composition was found after 24 h of SD. Another
study examined the microbiome in humans after 2 days of
partial sleep restriction and found that the Firmicutes/
Bacteroidetes ratio but not β-diversity was altered by
sleep restriction.25 Furthermore, Poroyko et al. found
a significant shift in the microbiome in mice after long-
term (4 weeks) sleep fragmentation.38 These findings indi-
cated that the microbiome might be resistant to a certain
degree of sleep loss, and discrepancies in changes in the
gut microbiota might be attributable to the differences in
the duration of sleep loss. A short period and slight degree
of SD may not be sufficient to exert apparent conse-
quences with regard to dysbiosis of the gut microbiota.

We also identified six significantly altered microbiota
at the genus level after 2 days of SD, in which we com-
pared relative abundance between SD and control rats.
Sleep-deprived rats exhibited significantly lower propor-
tions of g_Butyricicoccus, g_Butyricimonas, g_Alistipes,
g_Intestinimonas, and g_Lactobacillus and significantly
higher proportions of g_Streptococcus. Correlation analy-
sis showed that the relative abundance of g_Streptococcus
was negatively correlated with the concentration of fecal
butyrate and positively correlated with the KEGG pathway
of lipopolysaccharide biosynthesis. g_Streptococcus are
gram-positive aerobic organisms that cause many disor-
ders, including pharyngitis, pneumonia, wound and skin
infections, sepsis, and endocarditis.39 The sleep-wake
cycle likewise regulates the normal functioning of the
immune system, people have been aware of the sleep
loss that accompany many diseases, including multiple
microbial infections.40 Sleep loss may enhance the trans-
location of viable bacteria from the intestine, which pro-
vides another means by which sleep–microbe interactions
may impact health.41

Total SD is the most common laboratory-based method
for studying sleep. Many people often experience SD as
a consequence of shift work (eg, truck drivers, physicians,
etc.).28,42 Compared with chronic sleep restriction and
sleep fragmentation, total SD causes more acute and
severe impairment.43 However, the effect of total SD
with more than one circadian rhythm on the gut microbiota
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Figure 2 Effects of sleep deprivation on microbial β-diversity in rats. (A) Weighted Unifrac Anosim analysis of the microbiome in rats following SD and recovery. (B)
Weighted Unifrac PCoA analysis of microbiome in rats following SD and recovery. Boxes represent the interquartile ranges. Lines inside the boxes denote medians. Circles
are outliers. **p < 0.01.
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remains unclear. In previous studies, several methods were
used for total SD, such as rotating drums and gentle
handling. In the present study, the rats were subjected to
48 h of total SD by gentle handling, a technique of gentle
stimulation with physical contact used to disrupt the cir-
cadian system and sleep. This method of SD may reduce
the animals’ stress.44 Other techniques that have been used
for SD in rodents included using a water platform and the
presentation of unpleasant stimuli. These techniques,

however, are more stressful for the animals than gentle
handling.45 Furthermore, environmental factors can con-
tribute to variations in the gut microbiota, leading to
inconsistent results.23 To eliminate the influence of the
environmental factors and dietary habits on gut microbial
communities, we maintained a strict, standard laboratory
environment during the experiment.

Evidence suggested that gut bacteria were a source of
sleep-inducing signals.46 To determine whether our total

Figure 3 Effects of SD and recovery on the relative abundance of gut microbiota at the genus level, including (A) g_Butyricicoccus, (B) g_Butyricimonas, (C) g_Alistipes, (D)
g_Intestinimonas, (E) g_Lactobacillus, and (F) g_Streptococcus. The data are expressed as mean ± SEM. *p < 0.05, **p < 0.01.
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Figure 4 Effects of SD and recovery on the fecal content of SCFAs, including (A) total short-chain fatty acids, (B) acetate, (C) propionate, (D) butyrate, (E) isobutyrate, and
(F) valerate. (G) Correlation between fecal butyrate content and the relative abundance of g_Butyricimonas. The data are expressed as mean ± SEM. *p < 0.05.
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SD paradigm functionally affected the intestinal micro-
biome, we assessed the abundance of fecal SCFAs pro-
duced by microbes, such as g_Butyricicoccus,32

g_Butyricimonas,33 and g_Alistipes,34 markedly decreased

after SD, which might potentially influence the production
of SCFAs. We found a significant effect of time of day on
acetate, propionate, valerate, and the total amount of fecal
SCFAs. We also found a significant time of day × group

Figure 5 Sleep deprivation and recovery lead to significant functional changes in the gut microbiota. (A) To predict the metagenome function, the PICRUSt analysis heatmap
showed several significantly changed KEGG pathways between groups after SD and recovery. (B) Correlation analysis between signature genus, functional changes, and
metabolites of the gut microbiota. Edges between nodes indicate Spearman’s negative (light red) or positive (light blue) correlations. Edge thickness indicates a range of
correlation coefficient values (all p < 0.05).
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interaction for butyrate, in which fecal butyrate signifi-
cantly decreased after SD compared with the control
group. Butyrate is a four-carbon SCFA produced from
the fermentation of dietary fibers by microbiota.47

Previous studies found that oral or intraportal butyrate
administration robustly increased NREM sleep in rats
and induced slow, high-amplitude electroencephalographic
wave sleep in rabbits.19,48 Our results were different from
previous studies that imposed sleep restriction. In these
previous studies, SCFAs did not change after partial SD.
This discrepancy in SCFA levels may be attributable to
differences in the degree of sleep loss. The present study
also found that fecal SCFA content did not change after
24 h of SD.

Sleep deprivation is a biological stressor that alters meta-
bolic parameters. The gut microbiota is now widely accepted
to significantly shape several metabolic pathways in the
host.12,49 The biological and physiological functions of the
gut microbiota can be defined in several ways. Taxonomic
composition and diversity are poorly conserved across indi-
viduals, whereas genetic composition and functional capa-
city are evolutionarily conserved across individuals.50 Thus,
to decipher the metabolic switch of the gut microbiota, the
PICRUSt algorithm was applied to map the bacterial genetic
pathway against the KEGG database.23 Compared with the
control group, a wide range of pathways were altered in the
SD group. These functional changes appeared after 24 h of
SD and were even more significant at 48 h of SD. This
suggested that some functional changes already appeared
during SD before changes in the composition of the gut
microbiota were evident. Interestingly, energy metabolism
and oxidative phosphorylation pathways significantly
decreased in the gut microbiota in SD rats, indicating that
SD disturbed energy metabolism.51 Previous study found
that SD affected the capacity of mitochondrial bioenergetics,
decreasing respiration with the oxidative phosphorylation
and electron transport systems.52 The final common meta-
bolic pathway for carbohydrates, lipids, and amino acids is
the tricarboxylic acid (TCA) cycle, which is the most effec-
tive way for the body to obtain energy through metabolism.53

We found that the carbohydrate, lipid, and amino acid meta-
bolism pathways in the gut microbiota decreased after SD.
We also found that glyoxylate, dicarboxylate, and pyruvate
metabolism, which belong to the energy and carbohydrate
metabolism that were critical for the TCA cycle, were down-
regulated in the gut microbiota after SD.51,54 Sleep disruption
was reported to decrease energy metabolism in rats, suggest-
ing a causal effect of sleep loss on weight gain.55,56

Moreover, lipopolysaccharide biosynthesis pathways also
increased in the gut microbiota in SD rats.
Lipopolysaccharide causes an inflammatory reaction mainly
via activation of the Toll-like receptor 4/nuclear factor κB
inflammatory pathways. Human and rodent studies found
that sleep loss increased peripheral markers of
inflammation.57–59 Chronic sleep loss can alter the gut micro-
biota and induce systemic inflammation in mice.38

Disturbances in the metabolism of amino acid neurotrans-
mitters, such as tryptophan, glutamate, and γ-aminobutyric
acid (GABA), are prominent after SD. Recent studies
showed that the gut microbiome might indicate the onset of
mental disorders by modulating amino acid neurotransmit-
ters, such as GABA and serotonin. As a precursor for pro-
duction of the neurotransmitter serotonin, tryptophan
metabolism has also been found to be altered by SD and
linked to various neurodegenerative diseases.60,61 In the pre-
sent study, we found that the levels of fecal amino acid
neurotransmitters (ie, glutamate, tryptophan, aspartate, and
glycine) decreased in SD rats, suggesting a decrease in amino
acid neurotransmitter content in the intestine after SD. These
findings suggested that fecal amino acid metabolism might
be modulated by gut microbes, which might reflect detri-
mental consequences of sleep loss.

There are some limitations of the current study. First,
this study used 16S rRNA gene sequencing analysis with-
out further metagenomic analysis. Although more data and
information can be obtained through the shotgun metage-
nomics, 16S rRNA gene sequencing is currently more
commonly used and popular in microbiome research.62

Second, unique perturbations to the ileal microbiota that
register even after acute SD suggest that analysis of fecal
material alone may not be appropriate when assessing
dysbiosis of the gut microbiome.20 Third, we have only
conducted correlation analysis for gut microbiota and
metabolism pathways, which could not provide evidence
of causality. We also recognize that the sample size in each
group was limited. We plan to explore the mechanism
using large sample sizes in future studies.

Conclusion
In the present study, we examined the impact of 24 and 48 h of
total SD and 1 week of sleep recovery on gut microbiota
composition and function. We found that 48 h but not 24
h of total SD significantly altered composition of the gut
microbiota, which were reversible after 1 week of sleep recov-
ery. We also found that functional changes in the gut micro-
biota occurred within 24 h of SD, which was more apparent
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after 48 h of SD and did not fully recover after 1 week of sleep
recovery. These findings indicated that SD might be linked to
dynamic changes in composition and function of the intestinal
microbiota. Future studies should elucidate the molecular
mechanisms that are responsible for these changes and how
they contribute to behavioral and neurophysiological pheno-
types that are associated with sleep loss.
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