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Abstract: Chromosomal instability is a major pathway of sporadic colon carcinogenesis. 

Chromosome arm 1p appears to be one of the “hot spots” in the non-neoplastic mucosa that, 

when deleted, is associated with the initiation of carcinogenesis. Chromosome arm 1p contains 

genes associated with DNA repair, spindle checkpoint function, apoptosis, multiple  microRNAs, 

the Wnt signaling pathway, tumor suppression, antioxidant activities, and defense against 

environmental toxins. Loss of 1p is dangerous since it would likely contribute to genomic 

instability leading to tumorigenesis. The 1p deletion-associated colon carcinogenesis pathways 

are reviewed at the molecular and cellular levels. Sporadic colon cancer is strongly linked to a 

high-fat/low-vegetable/low-micronutrient, Western-style diet. We also consider how selected 

dietary-related compounds (eg, excess hydrophobic bile acids, and low levels of folic acid, niacin, 

plant-derived antioxidants, and other modulatory compounds) might affect processes leading 

to chromosomal deletions, and to the molecular and cellular pathways specifically altered by 

chromosome 1p loss.

Keywords: chromosome 1p, colon carcinogenesis, molecular pathways, cellular pathways

Introduction
Chromosomal instability is a major feature of sporadic colon carcinogenesis.1–11 

 Eighty-five percent of colorectal cancers are aneuploid, the remaining 15% being 

diploid.5 Chromosome 1p deletions in colon tumors have been reported by laboratories 

from at least 15 countries around the world.12–49 Chromosome 1p deletions occur at 

an early stage of colon carcinogenesis,21,24,26–28,30,31,33,37,39,41–45 and are strongly linked to 

karyotypic evolution during colon cancer development.43

Many reports in the literature indicate that the macroscopically normal mucosa 

proximal or distal to a colon cancer exhibit aneuploidy (loss or gain of chromosomes or 

parts of chromosomes). Relevant to this review, Cianciulla et al44 reported that deletions 

of chromosome 1p were simultaneously found in both the distant  normal-appearing 

mucosa of 76% of patients who also harbored 1p deletions in their cancer. These 

 findings indicate that the loss of chromosome 1p may be one of the “hot spots” among 

the numerous defects in the non-neoplastic mucosa associated with the possible 

 initiation of colon carcinogenesis.50–70

The pioneering work of Paraskeva et al71–75 indicated the likely involvement 

of  chromosome 1p loss in in vitro immortalization72,74 and in the progression 

of adenomas to carcinomas.75 The functional importance of loss of distal 1p in 

colon tumorigenesis was demonstrated in 1993 by Tanaka et al76 who introduced 
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chromosomal band 1p36 into colon carcinoma cells and 

found that their tumorigenicity was suppressed.

Chromosome 1p deletions can affect distinct  pathways 

of sporadic colon carcinogenesis, including both chromo-

somal instability and chromosomal instability-negative 

pathways. The underlying mechanisms associated with 

the loss of chromosome 1p that may contribute to genomic 

instabilty and drive colon carcinogenesis are loss of 

genes associated with DNA repair, spindle checkpoint 

 function, apoptosis, multiple microRNAs (miRNAs), the 

Wnt  signaling pathway, tumor suppression, antioxidant 

 activities, and defense against environmental toxins.77,78 

Since centromeric instability and resulting telomeric 

fusions have been proposed as a mechanism for the loss 

of chromosome 1p,79 the loss of genes located on chromo-

some 1p that function to ensure centromeric stability and 

telomere integrity, in turn, can exacerbate chromosomal 

instability throughout the genome. These 1p deletion-

associated pathways that may lead to colon carcinogenesis 

will be reviewed at the molecular and cellular levels, and 

dietary factors that affect these pathways (eg, excess hydro-

phobic bile acids, and low levels of folic acid, niacin, plant-

derived antioxidants, and other modulatory compounds) 

will be explored. It is likely that certain dietary factors 

prevent, initiate, or exacerbate genomic instability in 

colon epithelial cells and thus have importance for colon 

carcinogenesis.

Mechanisms of carcinogenesis 
associated with the loss  
of key genes on chromosome 1p
Chromosome 1, the longest human chromosome, is gene-

dense with 3141 genes.80 The genes located on chromosome 1 

were identified with the assistance of the Weizmann Institute 

of Science websites:

GeneLoc (www.genecards.weizmann.ac.il/geneloc/index.

shtml) and GeneCards – The Human Gene  Compendium 

(www.genecards.org). Genes located on the p arm of 

 chromosome 1 that are associated with protection against 

 oxidative stress, DNA damage, mitotic perturbations, 

 excessive cellular proliferation, development of apoptosis 

resistance, aberrant colonic cell differentiation, and 

 environmental toxicity have been tabulated and the function 

of the gene products described (Tables 1–8). Since many of 

these genes have tumor suppressive capabilities, the simulta-

neous loss caused by a 1p deletion could initiate the forma-

tion of neoplastic clones and enhance tumorigenesis through 

 Darwinian selection.8

Mechanisms protective against genomic 
instability
Cells with DNA damage, spindle damage, and dysfunctional 

telomeres signal DNA damage responses.81–84 These DNA 

damage responses include the activation of numerous 

checkpoints that arrest the damaged cells in the G1, S, G2, or 

M-phase of the cell cycle, depending upon the nature of the 

damage or dysfunction and the stage of the cell cycle of the 

target cell. DNA-damage checkpoints are activated following 

direct damage to DNA.85–91 Spindle assembly checkpoints are 

activated following damage to the mitotic machinery,85,92–98 

or as a result of DNA damage during mitosis.99 Telomere 

checkpoints are activated by defective telomeres.100–106 These 

checkpoints prevent the damaged cell from completing 

DNA replication and mitosis until all damage is repaired 

(Figure 1), and thus prevent 1) mutations that could be formed 

by replicating a damaged DNA template, 2) aneuploidy 

that could result from chromosome mis-segregation, and 

3) telomere fusions that result in anaphase bridges, broken 

chromosomes, and translocations as a consequence of the 

well-known breakage–fusion–bridge cycles.107–114

However, cells with excessive direct DNA damage,115–122 

massive chromosome loss or chromosomal imbalances,123 

prolonged activation or inhibition of the spindle checkpoint 

pathways,122–127 or excessively shortened or dysfunctional 

telomeres,128–140 initiate a cascade of molecular events that 

ultimately leads to either caspase-dependent cell death,141–143 

caspase-independent cell death,144 or a special form of 

apoptosis referred to as mitotic catastrophe145–148 (Figure 2). 

(Brightfield micrographs are shown in Figure 3 illustrating 

the cellular alterations that accompany apoptosis [Figure 3A], 

mitotic perturbation [Figure 3B], mitotic catastrophe 

[Figure 3C], and micronuclei formation [associated with 

aneuploidy] [Figure 3D]). The cell-destructive and cell-

protective pathways are downstream of a common signal 

transduction network that responds to DNA damage.149 

The repair/survival and non-repair/cell death pathways are 

probably activated simultaneously.149 The repair, checkpoint, 

and cell death response to DNA damage are, however, 

well co-ordinated,150 the interplay of positive and negative 

regulatory loops resulting in a delayed death response to 

DNA damage.149

DNA repair and the DNA damage 
response (DDR) (Table 1)
The genes on chromosome 1p associated with DNA repair 

or the DNA damage response (DDR) include CLSN, DCL-

RE1B (APOLLO), DDI2, GADD45α, MSH4, MUTYH, 
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Table 1 DNA repair and DNA damage response genes

Gene Function

CLSN Claspin homolog (Xenopus laevis); upstream regulator of checkpoint kinase 1 (Chk1) and triggers checkpoint arrest of 
the cell in response to inhibition of DNA replication or to DNA damage induced by ionizing and Uv radiation; binds 
specifically to BRCA1 and Chk1 and facilitates the ATR-dependent phosphorylation of both proteins; Chk1 is required to 
maintain Claspin stability; ring-shaped DNA-binding protein with high affinity for branched DNA structures and associates 
with S-phase chromatin following formation of the pre-replication complex; acts as a sensor which monitors the integrity 
of DNA replication forks.

DCLRE1B DNA cross-link repair 1B (PSO2 homolog, S. cerevisiae); aliases: APOLLO, SNM1B; one of several evolutionarily conserved 
genes involved in the repair of interstrand cross-links which prevent strand separation, thereby blocking transcription, 
replication, and segregation of DNA; functions in the HSP70-mediated DNA damage response; APOLLO is stabilized 
when bound to the telomere-binding protein TRF2, and protects human telomeres in S phase; reduced levels result in 
an increased number of telomere-induced DNA damage foci and telomeric fusions in S-phase, suggesting that APOLLO 
contributes to a processing step associated with the replication of chromosome ends; interacts with astrin (microtubule 
binding protein) and is required for the prophase cell cycle checkpoint in response to spindle stress.

DDi2 DNA-damage inducible 1 homolog 2 (S. cerevisiae); protein has aspartic-type endopeptidase activity; very little is known as 
to the function of this gene product in the DNA damage response.

GADD45α Growth arrest and DNA-damage-inducible 45 alpha; multifunctional protein; responds to environmental stresses by 
mediating activation of the p38/JNK pathway via MTK1/MEKK4 kinase; the DNA damage-induced transcription of this 
gene is mediated by p53-dependent and -independent mechanisms; exhibits checkpoint function in response to oxidative 
DNA damage; responsive to p53 and modifies DNA accessibility on damaged chromatin; involved in base excision repair; 
stimulates DNA excision repair and inhibits entry of cells into S phase; level of expression modulated by glutathione 
peroxidase-1 and quercetin; deficiency associated with multidrug resistance; interacts with Aurora-A and inhibits its kinase 
activity; mediator of CD437-induced apoptosis; demethylation of 5′ CpG island in GADD45α leads to apoptosis; increased 
expression arrests the cell cycle at the G2/M phase; GADD45α-mediated apoptosis is activated by DNA mismatch repair; 
induces Bim dissociation from the cytoskeleton and translocation to mitochondria; regulates beta-catenin distribution and 
maintains cell-cell adhesion.

MSH4 MutS homolog 4 (E. coli); multifunctional protein; physically interacts with MSH5, MLH1, MLH3, RAD51, DMC1, and von 
Hippel-Lindau tumor suppressor-binding protein 1 during meiosis; required for reciprocal recombination and proper 
segregation of homologous chromosomes at meiosis; ATP binding by MSH4-MSH5 results in the formation of a sliding 
clamp that dissociates from the Holliday Junction crossover region embracing 2 duplex DNA arms; evidence is lacking at 
present for functional involvement of MSH4 and MSH5 in mismatch repair; in addition to meiosis, MSH4 and MSH5 are 
thought to play roles in mitotic DNA double strand break repair and the DNA damage response in human cells.

MUTYH MutY homolog (E. coli); DNA glycosylase involved in oxidative DNA damage repair; the enzyme excises adenine bases 
from the DNA backbone where adenine is inappropriately paired with guanine, cytosine, or 8-oxo-deoxyguanosine  
(a major DNA lesion caused by oxidative stress); mutations in this gene result in heritable predisposition to colon and 
stomach cancer; the protein is localized to the nucleus and the mitochondria; excessive activity of MUTYH in response to 
oxidative DNA damage results in cell death. See text and Figure 4 for an in-depth discussion of the functions of MUTYH in 
base excision repair and cell death.

RAD54L RAD54-like (S. cerevisiae); aliases: HR54, hRAD54, RAD54A. DNA repair and recombination protein RAD54-like; protein 
product is a double-stranded DNA-dependent ATPase belonging to the DEAD-like helicase superfamily (Swi2/Snf2 protein 
family), and shares similarity with Saccharomyces cerevisiae Rad54, a protein involved in the repair of DNA double-strand 
breaks through homologous recombination; belongs to the RAD52 epistasis group that additionally includes RAD50, 
RAD51, RAD52, RAD55, RAD57, RAD59, MRE11, and Nbs1/XRS2; the binding of Rad54 to double-stranded DNA utilizes 
the energy from ATP hydrolysis to induce topological changes in DNA, believed to facilitate homologous DNA pairing and 
stimulate DNA recombination in the Rad52 DNA repair pathway; essential for strand invasion of the homologous donor 
sequence and may involve disruption or movement of nucleosomes (chromatin remodeling activity) that might block joint 
molecule formation and/or branch migration; dissociates Rad51 from nucleoprotein filaments formed on single-stranded 
DNA; Rad54 oligomers (dimer to particles .40 nm in diameter) possess a unique ability to cross-bridge or bind  
double-stranded DNA molecules positioned in close proximity. The combination of the cross-bridging and double-strand 
DNA translocation activities of Rad54 stimulates the formation of DNA networks, leading to rapid and efficient DNA 
strand exchange by Rad51; also plays an essential role in telomere length maintenance and telomere capping in mammalian 
cells through the Rad51 recombination pathway.

TP73 Tumor protein 73; member of the p53 family of transcription factors involved in cellular responses to stress; the family 
members include p53, p63, and p73 which have high sequence similarity to each other allowing p63 and p73 to 
transactivate p53-responsive genes causing cell cycle arrest and apoptosis; regulated by tyrosine kinase c-Abl in the 
apoptotic response to DNA damage; induces apoptosis via PUMA transactivation and Bax mitochondrial translocation; 
inactivated by human papillomavirus E6 proteins; has a role in mitotic exit and caspase-independent cell death; regulates 
DRAM-independent autophagy that does not contribute to programmed cell death; has a role in E2F1-induced apoptosis; 
may be a tumor suppressor protein.
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Table 2 Mitosis-related and spindle checkpoint genes

Gene Protein function

APiTD1 Apoptosis-inducing, TAF9-like domain 1; centromere protein and component of the CENPA-CAD complex found at the 
distal nucleosome; this complex is recruited to centromeres where it is involved in the assembly of kinetochore proteins, 
mitotic progression and chromosome segregation; has a role in apoptosis.

AURKAiPi Aurora kinase A interacting protein 1; functions as a negative regulator of AURKA by degrading AURKA through several 
mechanisms involving the proteasomal pathway and ubiquitin-independent pathways involving antizyme 1; the inhibition of 
Aurora A has the effect of canceling the mitotic delay that occurs as a result of perturbation of cellular microtubules.

CCDC28B Coiled-coil domain containing 28B; localizes to centrosomes and basal bodies.
CCNL2 Cyclin L2; a novel RNA polymerase ii-associated cyclin located in nuclear speckles; transcriptional regulator involved in 

regulating the pre-mRNA splicing process; contains a RS region (arginine-serine dipeptide repeat) within the C-terminal 
domain which is the hallmark of the SR family of splicing factors; co-localizes with splicing factors; pro-apoptotic protein 
which modulates the expression of a critical apoptotic factor, leading to apoptosis.

CDC2L1 Cell division cycle 2-like 1 (PiTSLRE proteins); aliases: CDK11B, p58CDC2L1, galactosyl transferase-associated protein 
kinase p58/GTA; a member of the p34Cdc2 protein kinase family known to be essential for eukaryotic cell cycle control; 
has multiple roles in cell cycle progression, cytokinesis, and apoptosis; during Fas or tumor necrosis factor-induced 
apoptosis, CDK11 p110 isoforms are cleaved by caspases.

CDC2L2 Cell division cycle 2-like 2 (PiTSLRE proteins); aliases: CDK11A, PiTSLRE protein kinase beta; this gene encodes a 
member of the p34Cdc2 protein kinase family and is in close proximity to CDC2L1, a nearly identical gene in the same 
chromosomal region; has multiple roles in cell cycle progression, cytokinesis (maintains sister chromatid cohesion) and 
apoptosis.

CDC7 Cell division cycle 7 homolog (S. cerevisiae); kinase activity of CDC7 is critical for the G1/S transition of the cell cycle; 
functions in replication stress and mediates Claspin phosphorylation in DNA replication checkpoint control.

CDC14A CDC14 cell division cycle 14 homolog A (S. cerevisiae); alias: dual specificity protein phosphatase CDC14A; required for 
centrosome separation, chromosome segregation and subsequent cytokinesis during cell division; phosphorylates the APC 
(anaphase-promoting complex) subunit FZR1/CDH1, thereby promoting APC-FZR1-dependent degradation of mitotic 
cyclins and subsequent exit from mitosis; interacts with and dephosphorylates tumor suppressor protein p53, thereby 
regulating p53 function; interacts with KiF20A to localize CDC14 to the midzone of the mitotic spindle.

CDC20 Cell division cycle 20 homolog (S. cerevisiae); acts as a regulatory protein by interacting with several proteins at multiple 
points in the cell cycle; required for 2 microtubule-dependent processes, nuclear movement prior to anaphase and 
chromosome separation; required for full ubiquitin ligase activity of the APC; regulated by MAD2L1 resulting in an inactive 
ternary complex (MAD2L1-CDC20-APC) in metaphase; in anaphase the binary complex (CDC20-APC) is active in 
degrading its targeted substrates.

CDC42 Cell division cycle 42; 25 kDa GTP binding protein; small GTPase of the Rho-subfamily which regulates multiple signaling 
pathways including cell cycle progression G1 to S; controls spindle orientation of adherent cells; antagonistic cross-talk 
between Rac and Cdc42 GTPases regulates generation of reactive oxygen species; Cdc42 is a substrate for caspases and 
influences Fas-induced apoptosis.

CDCA8 Cell division cycle associated 8; alias: BOREALIN; component of a chromosomal passenger complex (CPC) required for 
stability of the bipolar mitotic spindle; The CPC consists of survivin, CDCA8, iNCENP, and Aurora-B; the CPC functions 
at the centromere to ensure correct chromosome alignment and segregation; CDCA8 is required for chromatin-induced 
microtubule stabilization and spindle assembly; CDCA8 may be required to direct the CPC to centromeric DNA; major 
effector of the TTK kinase in the control of “attachment-error-correction” and chromosome alignment.

CDKN2C Cyclin-dependent kinase inhibitor 2C; alias: p-18-iNK4C; this protein is a member of the iNK family of cyclin-dependent 
kinase inhibitors; interacts strongly with CDK6 and weakly with CDK4 and prevents the activation of the CDK kinases; 
inhibits cell growth and proliferation in the presence of retinoblastoma protein 1 (RB1) and acts as a tumor suppressor.

CROCC Ciliary rootlet coiled-coil protein; aliases: rootletin, Tax1-binding protein 2, ROLT; major structural component of the 
ciliary rootlet; forms centriole-associated filaments and contributes to centrosome cohesion before mitosis; recombinant 
rootletin forms detergent-insoluble filaments radiating from the centrioles; the homopolymeric rootletin protofilaments 
bundle into variably shaped thick filaments; interacts with C-Nap1 and may function in centrosome cohesion by acting 
as a physical linker between the pair of centrioles/basal bodies; ciliary rootlet interacts with kinesin light chains and 
may provide a scaffold for kinesin-1 vesicular cargos; rootletin is phosphorylated by Nek2 kinase and is displaced from 
the centrosomes at the onset of mitosis, resulting in the binding of beta-catenin to rootletin-independent sites on 
centrosomes (an event that is required for centrosome separation); overexpression of rootletin in cells results in the 
formation of extensive fibers resulting in multinucleation, micronucleation and irregularity of nuclear shape and size, 
indicative of defects in chromosome separation.

E2F2 E2F transcription factor 2: member of the E2F family of transcription factors; transcription activator that binds DNA 
cooperatively with DP (differentiation regulated transcription factor proteins) through the E2 recognition site,  
5′-TTTC[CG]CGC-3′, found in the promoter region of a number of genes whose products are involved in cell cycle 
regulation

(Continued )
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Table 2 (Continued)

Gene Protein function

or in DNA replication; the E2F family plays a crucial role in the control of the cell cycle and action of tumor suppressor 
proteins (eg, p14 (ARF); binds specifically to unphosphorylated retinoblastoma protein pRB in G0/G1, leading to the 
repression of E2F target genes; subsequent phosphorylation of pRB by cyclin-dependent kinases in late G1 inactivates 
pRB, liberating free E2F, which then functions to activate the expression of target genes required for S-phase entry and 
cell cycle progression; although E2F1-3 transcription factors were classified as positive regulators of the cell cycle (E2F 
activators), they also cause transcriptional repression, indicating that their specific effects may be cell type-specific; represses 
the expression of survivin, a dual mediator of apoptosis resistance and cell cycle progression; can function as a tumor 
suppressor in epithelial tissues, perhaps by limiting proliferation in response to Myc; hemizygosity of the E2F2 locus is 
sufficient to increase tumor incidence in the Myc-transgenic mouse model of tumorigenesis in the skin and oral cavity.

HDAC1 Histone deacetylase 1: in addition to effects on gene expression, histone deacetylase activity plays an important role in 
regulating the assembly of kinetochores, the activation of the mitotic checkpoint and the process of cytokinesis; decreased 
activity or aberrant control of HDAC activity can result in altered kinetochore assembly by disrupting pericentromeric 
heterochromatin, failure of appropriate chromosome segregation, and defects in the mitotic spindle checkpoint, resulting 
in mitotic slippage and chromosome instability; HDACs 1, 2, and 4 are closely related Zn++-dependent enzymes; HDAC1 
is part of a complex that binds to the promoter of TBP-2 (thioredoxin binding protein-2), resulting in repression of TBP-2 
transcription, increasing the activity of thioredoxin and protecting cells against oxidative stress.

KiF1B Kinesin family member 1B; motor protein that transports mitochondria and synaptic vesicle precursors; involved in the 
movement of chromosomes during mitosis; functions as a haploinsufficient tumor suppressor by inducing apoptotic cell 
death; acts downstream of EglN3 to induce apoptosis.

KiF2C Kinesin family member 2C; aliases: MCAK (mitotic centromere-associated kinesin); Aurora B regulates MCAK at the 
mitotic centromere; phosphorylated by STK12 and regulates the association of centromeres and kinetochores; promotes 
the ATP-dependent removal of tubulin dimers from microtubules in association with the process of microtubule 
depolymerization and turnover; functions in chromosome segregation during mitosis; contains the microtubule tip 
localization signal (MtLS) motif; phosphorylated after DNA damage, probably by ATM or ATR.

KiF17 Kinesin family member 17; proteins of the kinesin family are microtubule-dependent molecular motors that transport 
organelles within cells and move chromosomes during cell division.

MAD2L2 Mitotic arrest deficient-like 2 (yeast)-Like 2; component of the mitotic spindle assembly checkpoint that, like MAD2, may 
prevent the onset of anaphase until all chromosomes are properly aligned at the metaphase plate; suppression of MAD2L2 
confers sensitivity to a range of DNA-damaging agents, especially a DNA cross-linker, such as cisplatin; in  
MAD2L2-depleted cells there is a significant decrease in the cisplatin-induced sister chromatid exchange rate, a marker 
for homologous recombination-mediated post-replication repair; Unlike MAD2, MAD2L2 has not been shown to have a 
dual-role mitotic/pro-apoptotic function; interacts with the small GTPase RAN, which may play a role in the control of the 
spindle checkpoint during mitosis and the regulation of nucleocytoplasmic trafficking during interphase.

PLK3 Polo-like kinase 3; aliases: FNK, PRK; multifunctional serine/threonine protein kinase involved in stress response pathways; 
required for entry into S phase; regulates the M phase of the cell cycle; activated by genotoxic stress, through a Chk3-
mediated priming phosphorylation followed by an ATM-mediated full activation; functions as a centrosome localization 
signal, overexpression of which causes mitotic arrest, cytokinesis defects, and apoptosis; involved in checkpoint-mediated 
cell cycle arrest to ensure genetic stability; links DNA damage to cell cycle arrest and apoptosis, in part through the 
p53 pathway; may also be part of the signaling network that controls cellular adhesion.

PSRC1 Proline/serine-rich coiled-coil 1; alias: DDA3; functions as a microtubule destabilizing protein that controls spindle dynamics 
and mitotic progression by recruiting and regulating microtubule depolymerases; the N-terminal domain of PSRC1 regulates 
the spindle association of the microtubule depolymerase Kif2a and controls the mitotic function of PSRC1; regulated by p53 
and may participate in p53-mediated growth suppression; direct transcriptional target of p53 and p73.

RCC1 Regulator of chromosome condensation 1; a protein with a 7-bladed propeller structure that is involved in the regulation 
of onset of chromosome condensation in S phase; binds to chromatin and promotes the exchange of Ran-bound GDP 
by GTP; phosphorylation of RCC1 by cdc2 kinase in mitosis is essential for producing a high RanGTP concentration on 
chromosomes and for chromatin-induced mitotic spindle formation; perturbation of the chromosomal binding of RCC1, 
Mad2 and survivin causes spindle assembly defects and mitotic catastrophe; the RCC1/Ran complex, in conjunction with 
other proteins, acts as a component of a signal transmission pathway that detects unreplicated DNA.

RCC2 Regulator of chromosome condensation 2; alias: telophase disk protein of 60 kDa (TD-60); has an essential role in the 
prometaphase to metaphase progression and required for the completion of mitosis and signaling cytokinesis; may function  
as a guanine nucleotide exchange factor for the small GTPase RAC1; interacts with microtubules; appears in the nucleus 
at G2, then concentrates at the inner centromere region of chromosomes during prophase, then redistributes to the 
midzone of the mitotic spindle during anaphase where it covers the entire equatorial diameter from cortex to cortex; 
phosphorylated upon DNA damage, probably by ATM and ATR.

SASS6 Spindle assembly 6 Homolog (C. elegans); necessary for centrosome duplication and functions during procentriole 
formation to ensure that each centriole seeds the formation of a single procentriole per cell cycle; part of a ternary 
complex of SASS6, CENPJ, and CEP350.
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RAD54L, and TP73. The functions of these gene products 

are described in Table 1. The pathways that lead to the 

 prevention of genomic instability are diagrammatically 

shown in Figure 4. DNA damage elicits a well orchestrated 

and highly interactive series of events called the DDR, 

which causes cells to undergo growth arrest so that DNA 

damage can be adequately repaired. Although p53 mutation 

or loss of heterozygosity (LOH) is a late event in colon 

carcinogenesis,151 the loss of p73 (found on chromosome 1p) 

through chromosomal deletion events may act early in colon 

carcinogenesis. P73 is an important isoform of the p53 family, 

since it performs many of the transcriptional functions of p53, 

and may even target the same genes as p53 during the DDR. 

In addition, TP73 has distinct transcriptional targets and har-

monizes with p53 and p63 to maintain genomic stability.152–158 

In addition to its role in growth arrest after DNA damage to 

allow DNA repair to take place, p73 plays an active role in 

spindle dynamics, mitotic exit and chromosomal stability. 

The PSRC1 (proline/serine-rich coiled-coil 1) gene found 

on chromosome 1p (see Table 2) encodes a protein which is 

a direct transcriptional target of both p53 and p73.159 PSRC1 

functions as a microtubule destabilizing protein that controls 

spindle dynamics and mitotic progression by recruiting 

and regulating microtubule depolymerases.160 Through its 

transcriptional activity, p73 is important for the M-to-G1 

transition during mitosis.161 Functional knock-out of p73 gene 

expression by small interfering RNAs alters mitotic progres-

sion, resulting in an increase of ana-telophase cells, the accu-

mulation of aberrant late mitotic figures, and the appearance 

of abnormalities in the subsequent interphase.161 This novel 

pathway involves the p73-mediated transcription of Kip2/

p57, a cyclin-dependent kinase inhibitor, and the coordination 

of mitotic exit and transition to G1.161,162 Like p53, p73 has 

been confirmed to be a tumor suppressor.163–167 Therefore, a 

loss of p73 should have a major impact in the development 

of genomic instability during carcinogenesis.

Table 3 Apoptosis-related genes

Gene Protein function

BCL2L15 Bcl-2-like protein 15 has a pro-apoptotic function; alias Bfk; human bfk mRNA is found in cerebellum, colon, small intestine, 
testis, and uterus, but the protein is predominantly expressed in tissues of the gastrointestinal tract; in the transition from normal 
human colonic mucosal tissue to tumors, 80% of colon tumors show a substantially reduced expression of Bfk; gene expression 
appears to be regulated by female sex hormones.

BCL10 B-cell lymphoma 10; wild-type bcl10 is a pro-apoptotic protein that suppresses cellular transformation, whereas mutant forms 
lose this activity and display gain-of-function transforming activity; the bcl10 protein contains an amino-terminal CARD (caspase 
recruitment domain) found in many apoptotic-related molecules; the BCL10 gene often exhibits a frameshift mutation resulting 
in truncation distal to the CARD; has a high mutation frequency in hepatocellular carcinoma (57% of cases); the frequency 
of mutation in other cancers is as follows: lymphoma (45%), colon cancers with the microsatellite mutator phenotype (13%), 
mesothelioma, male germ cell tumors, adenocarcinoma cell lines (12%), gastric cancers with the microsatellite mutator phenotype 
(10%); the presence of the bcl10 protein highly correlates with the expression of phosphorylated p65 NF-kappaB in peripheral 
T-cell lymphomas and is associated with a better clinical outcome than bcl10-negative tumors.

CASP9 Caspase-9 (cysteine-aspartic acid protease, family member 9) precursor; aliases: APAF-3 (apoptotic protease-activating factor 3), 
apoptosis-related cysteine peptidase, MCH6, iCE-LAP6, iCE-like apoptotic protease 6; caspase-9 and APAF1 bind to each 
other via their respective NH2-terminal CED-3 homologous domains in the presence of cytochrome C and ATP to form the 
apoptosome, a high-molecular-weight complex; the caspase-9 precursor then becomes activated, which in turn activates the 
downstream caspases, caspase-3, and caspase-2, in response to genotoxic stress.

DFFA DNA fragmentation factor, 45 kD, alpha polypeptide; alias iCAD (inhibitor of caspase-activated DNase, DFFB); DFF is a 
heterodimeric protein consisting of 45 kD (DFFA) and 40 kD (DFFB) subunits; DFF becomes activated when DFFA is cleaved by 
caspase 3 and dissociates from DFFB (DFFB is the active component of DFF involved in both DNA fragmentation and chromatin 
condensation during the process of apoptosis [see below]).

DFFB DNA fragmentation factor, 40 kD, beta polypeptide (caspase-activated DNase; alias CPAN; enzyme activity is inhibited by 
DFFA; its Mg++-dependent endnuclease activity degrades DNA and induces DNA fragmentation; the fragmented DNA results 
in chromatin condensation during apoptosis, and is responsible for the typical crescents and margination of chromatin that are 
characteristic morphological features of the nucleus during apoptosis.

THAP3 THAP domain containing, apoptosis-associated protein 3; the THAP-family C(2)CH zinc-coordinating DNA-binding proteins 
function in diverse eukaryotic cellular processes, including transposition, transcriptional repression, stem-cell pluripotency, 
angiogenesis, neurological function, and apoptosis; the specific mechanism by which THAP3 contributes to apoptosis is unknown.

TNFRSF25 Tumor necrosis factor receptor superfamily, member 25; aliases: death receptor 3; DR3; translocating chain-association 
membrane protein; apoptosis inducing receptor; APO3; lymphocyte-associated receptor of death; LARD; apoptosis-mediating 
receptor TRAMP; a death domain-containing receptor related to TNFR-1 and CD95 (Apo-1/Fas); receptor for TNFSF12/
APO3L/TwEAK; interacts with the adaptor TRADD; DR3 signal transduction is mediated by a complex of intracellular signaling 
molecules including TRADD, TRAF2, FADD, and FLiCE.
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Table 4 MicroRNAs (miRNAs) and components of the miRNA processing complex

MicroRNA Function

30c-1 A genetic variant of 30c-1 is associated with familial breast cancer in noncarriers of BRCA1/2 mutations.
30e A functional variant of pre-miRNA-30e is strongly associated with schizophrenia.
34a Major pro-apoptotic miRNA that is regulated by p53; induced by treatment of pancreatic β cells with iL-1β and  

TNF-α, and responsible, in part, for cytokine-triggered cell death; expression frequently lost in pancreatic ductal 
adenocarcinoma cells.

101-1 MiR-101 is downregulated in stage ii MSS and MSi colon cancers compared to normal mucosa, hepatocellular 
carcinoma, prostate cancer and transitional cell carcinoma of the bladder; miR-101 inhibits cell proliferation, represses 
the expression of the Polycomb group protein EZH2, and induces apoptosis.

137 MiR-137 exhibits decreased levels of expression in colon tumors compared to normal mucosa; frequently upregulated  
in rectal cancer in response to capecitabine chemoradiotherapy; changes level in reaction to xenobiotic challenge; 
targets MiTF (micropthalmia-associated transcription factor) in melanoma cell lines.

186 Expression of miR-186 significantly reduces the abundance of FOXO1, a tumor suppressor, in endometrial cancer, 
resulting in deregulated cell cycle control and impaired apoptotic responses; downregulates expression of the  
pro-apoptotic purinergic P2X7 receptor; dysregulated in human myocardial infarction.

197 Target miRNAs not experimentally verified.
200a involved in the regulation of the wnt/β-catenin signaling pathway; miRNAs-200a, -200b, and -429 are all encoded  

on a 7.5 kb polycistronic primary miRNA transcript.
200b involved in the regulation of the wnt/β-catenin signaling pathway; miRNAs-200a, -200b, and -429 are all encoded  

on a 7.5 kb polycistronic primary miRNA transcript.
320b-1 MiR-320 shows highest expression in the proliferative compartment of the crypts; the decrease in miR-320 in stage 

ii colon cancers is predictive of a metastatic recurrence independent of age, differentiation grade, and histologic 
subtype; targets the transferrin receptor 1 and inhibits proliferation; expression of miRNA-320 in myocardial 
microvascular endothelial cells (MMEC) impairs angiogenesis by decreasing proliferation and migration of MMEC; 
overexpression of miR-320 in mouse hearts increases apoptosis and infarction; targets heat-shock 20 mRNA; 
potentially targets the mRNA of the p85 subunit of phosphatidylinositol 3-kinase; exhibits a 50-fold increase in 
insulin-resistant 3T3-L1 adipocytes; affects cell cycle progression of bronchial epithelial cells exposed to benzo[a]
pyrene.

429 involved in the regulation of the wnt/β-catenin signaling pathway; miRNAs-200a, -200b, and -429 are all encoded on a 
7.5 kb polycistronic primary miRNA transcript; regulates the differential expression of miR200.

551a Target mRNAs not experimentally verified.
552 MiR-552 exhibits decreased levels of expression in proficient mismatch-repair colon tumors relative to deficient 

mismatch-repair tumors; target mRNAs not identified.
553 Target mRNAs not identified.
760 Regulated by 17β-estradiol and may affect a number of transcripts belonging to estrogen-responsive gene clusters.
942 Target mRNAs not experimentally verified.
1256 Target mRNAs not experimentally verified.
1262 Targets the HLA-G mRNA.
1290 Target mRNAs not experimentally verified.
1302-2 Controlled by the multifunctional Y-Box protein 1 (YB-1); upregulated more than 1.5-fold in drug-sensitive gastric 

carcinoma cells.
MiRNA processing
Ago1 Argonaute 1; aliases: protein argonaute 1, EiF2C1 (eukaryotic translation initiation factor 2C1), putative RNA-binding 

protein Q99, GERP95 (Golgi endoplasmic reticulum protein 95); encodes a member of the Argonaute family of 
proteins which binds to miRNAs and plays a role in gene silencing through RNA interference; may interact with dicer1; 
highly basic protein which contains a PAZ domain and a Piwi domain; found in a tandem cluster of closely related 
argonaute proteins, Ago3 and Ago4 on chromosome 1p; lacks endonuclease activity and does not appear to cleave 
target mRNAs.

Ago3 Argonaute 3; aliases: protein argonaute 3, EiF2C3 (eukaryotic translation initiation factor 2C3); encodes a member  
of the Argonaute family of proteins which binds to miRNAs and plays a role in gene silencing through RNA 
interference; highly basic protein which contains a PAZ domain and a Piwi domain; found in a tandem cluster of closely 
related argonaute proteins, Ago1 and Ago4 on chromosome 1p; lacks endonuclease activity and does not appear 
to cleave target mRNAs.

Ago4 Argonaute 4; aliases: protein argonaute 4, EiF2C4 (eukaryotic translation initiation factor 2C4); encodes a member  
of the Argonaute family of proteins which binds to miRNAs and plays a role in gene silencing through RNA 
interference; may interact with dicer1; highly basic protein which contains a PAZ domain and a Piwi domain; found in 
a tandem cluster of closely related argonaute proteins, Ago1 and Ago3 on chromosome 1p; lacks endonuclease activity 
and does not appear to cleave target mRNAs.
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Since base excision repair (BER) removes damage that 

would otherwise be mutagenic in mammalian cells,168–170 

BER is one of the most important DNA repair pathways in 

the gastrointestinal tract. BER ameliorates environmentally 

induced DNA damage in addition to the alkylation, oxidation, 

and deamination events that occur during normal metabolic 

processes.171,172 A critical enzyme in the base excision 

repair pathway is MUTYH (MutY homolog or A/G-specific 

adenine DNA glycosylase), whose germline mutation is 

a known cause of MAP (MutYH-associated polyposis), a 

recently described autosomal recessive colorectal adenoma 

predisposition syndrome with a very high risk of colorectal 

cancer.173 Myh deficiency enhances intestinal tumorigenesis in 

multiple intestinal neoplasia (ApcMin/+) mice.174 Interestingly, 

Myh deficiency in mice has a larger effect on tumor initiation 

than on progression in the small bowel.174 Since 1p deletions 

are observed in the human non-neoplastic mucosa of patients 

with colon cancer,44 it is possible that Myh-deficient field 

defects may initiate the process of colon carcinogenesis in 

humans as it does in the mouse model. Since MUTYH-null 

mouse embryonic stem cells exhibit a mutator phenotype,175 

the loss of MUTYH can affect multiple pathways associated 

with colon carcinogenesis. The role of MUTYH in the repair 

of oxidative DNA damage begins with the formation of 

8-oxo-guanine (8-oxoG) (see Figure 4), which then causes 

a mispairing of the oxidized guanine base with adenine upon 

DNA replication. Mismatch repair processes are activated 

and MUTYH excises adenine leaving an apurinic (AP) site 

resulting, after AP endonuclease action, in a DNA single 

strand (ss) break.176–180 The activity of MUTYH, in conjunc-

tion with other glycosylases and the spontaneous generation 

of AP sites, may be quite extensive, since about 9000 AP 

sites/cell occur daily.168 The AP site is then correctly repaired 

by the sequential action of several enzymes which catalyze 

template-directed insertion of one or a few nucleotides at the 

previously damaged site.172

In addition to their role in DNA repair or the DDR, 

MUTYH and p73 play important roles in the death of cells 

that experience either excessive oxidative DNA damage or 

chromosomal instability. The MUTYH-mediated cell death 

pathway is described in the next section followed by a sec-

tion on the p73-mediated cell death pathway, which utilizes 

part of the MUTYH pathway in its mediation of cell death 

in response to excessive mitotic perturbation.

MUTYH/PARP/AiF pathway of cell death
MUTYH-mediated cell death has, as a central player, the activa-

tion of PARP-1 [poly(ADP-ribose) polymerase-1] (Figure 5). 

Table 5 Genes associated with the wnt signaling pathway

Gene Protein function

CTNNBiP1 Catenin, beta interacting protein 1: aliases: iCAT (inhibitor of beta-catenin-interacting protein iCAT), inhibitor of beta-catenin and 
Tcf-4; 9-kDa negative protein regulator of the wnt signaling pathway; prevents interaction between beta-catenin and Tcf-4 family 
members, thereby repressing beta-catenin-Tcf-4-mediated transactivation; in intestinal tissue, iCAT is upregulated in the mature, 
non-dividing enterocyte lining the villi, and is absent in the beta-catenin/TCF signaling region of the crypts; does not protect the 
soluble pool of beta-catenin from degradation by the APC (adenomatous popyposis coli); has a pro-apoptotic function in certain 
situations (see text).

DvL1 Dishevelled-1; aliases: DvL, segment polarity protein dishevelled DvL-1; the human homolog of the Drosophila dishevelled gene 
(dsh) encodes a cytoplasmic phosphoprotein that regulates cell proliferation, acting as a transducer molecule for developmental 
processes; dishevelled family proteins are cytoplasmic mediators of the wnt/beta-catenin signaling pathway linked to cancer with Dvl 
considered to be a middle molecule in the pathway; Dvl, Axin and GSK form a ternary complex bridged by Axin, and Frat1 can be 
recruited into this complex by Dvl; the Dvl-binding domain of either Frat1 or Axin is able to inhibit wnt-1-induced LEF-1 activation, 
suggesting that the interactions between Dvl and Axin and between Dvl and Frat may be important for the wnt/beta-catenin signaling 
pathway; Wnt-1 appears to promote the disintegration of the quaternary Frat1-Dvl-GSK-Axin complex, resulting in the dissociation 
of GSK from Axin and the formation of the Dvl/Frat-1 complex that leads to the activation of the wnt signaling pathway.

wNT2B wingless-type MMTv integration site family, 2B; aliases: wNT13, XwNT2, protein wnt-2b; member of the wNT family of highly 
conserved, secreted signaling factors that regulate cell growth and differentiation; ligand for members of the frizzled family of 
seven transmembrane receptors with an extracellular wNT-binding domain and a cytoplasmic dishevelled-binding domain; may be 
a signaling molecule that affects the development of discrete regions of tissues; is likely to signal over only a few cell diameters; 
wNT2B is one of the canonical wNTs transducing signals through Frizzled and LRP5/LRP6 receptors to beta-catenin-TCF/LEF 
signaling pathway; functions as a stem cell factor during embryogenesis and during carcinogenesis.

wNT4 wingless-type MMTv integration site family, 4; aliases: wNT-4, SERKAL; member of the wNT family of highly conserved, secreted 
signaling factors that regulate cell growth and differentiation; ligand for members of the frizzled family of seven transmembrane 
receptors; is likely to signal over only a few cell diameters; activates the canonical beta-catenin-mediated wnt pathway and binds 
Frizzled-6 receptor; wNT4 promoter harbors 2 p63/p73 response elements which contributes to an increase in wNT gene 
expression; wNT4 gene expression can be negatively regulated by Notch1 activation through p21wAF1/Cip1.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical and Experimental Gastroenterology 2011:4 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

83

Chromosome 1p deletions during colon carcinogenesis

Table 6 Tumor suppressor genes

Gene and genomic locus  
(ensembl cytogenetic band)

Functions

CHD5 (1p36.31) Chromodomain helicase DNA binding protein 5; aliases: ATP-dependent helicase CHD5; belongs to a group  
of Swi/SNF proteins called CHD proteins, which contain a Swi/SNF-like helicase/ATPase domain, as well as a 
DNA-binding domain and a chromodomain that directly modifies chromatin structure; chromatin is maintained 
in a transcriptionally active state by CHD5 which can affect the expression levels of many genes at once and 
can affect the quick progression of a tumor; appears to be involved in early tumorigenic processes and controls 
proliferation, apoptosis, and senescence via the p16ink4a and p19Arf pathway; overexpression of CHD5 increases 
apoptosis through a p19Arf/p53 pathway; mice heterozygous for CHD5 are prone to spontaneous tumor formation; 
expression is downregulated through methylation, which may explain the higher level of colon cancer incidence in 
African Americans (78% with methylated CHD5) compared with iranians (47% with methylated CHD5).

DEAR1 (1p35.1) Ductal epithelium-associated RiNG chromosome 1; alias: TRiM62 (tripartite motif-containing 62); member 
of the RING-B-box-coiled-coil (RBCC)/TRIM subfamily of RING finger proteins which regulate tissue 
architecture; first member of the TRIM family that localizes to the cell–cell junction; down regulation in normal 
mammary epithelial cells results in formation of aberrant acinar structures with a loss of normal cell polarity 
and decreased rates of apoptosis.

APiTD1 (1p36.22) Apoptosis-inducing, TAF9-like domain 1; see Table 2 for general description; contains a predicted domain with 
similarity to the human TATA box-binding protein-associated factor, TAFII31, which is required for p53-
mediated transcriptional activation; since loss of function for APiTD1 is a mechanism by which tumor cells can 
overcome the cell growth-regulating and apoptosis-inducing properties of p53, it is considered to have tumor-
suppressive properties.

PRDM2 (1p36.21) PR domain containing 2, with ZNF domain; aliases: RIZ1, Zinc finger protein RIZ, HUMHOXY1, MTB-ZF, 
KMT8, retinoblastoma protein-interacting zinc finger protein, Lysine N-methyltransferase, MTE-binding 
protein, GATA-3-binding protein G3B, PR domain zinc finger protein 2; this tumor suppressor is a 
member of the nuclear histone/protein methyltransferase superfamily involved in chromatin-mediated gene 
expression; encodes a zinc finger protein that can bind to the retinoblastoma protein, estrogen receptor, 
and the macrophage-specific TPA-responsive element (MTE) of the heme oxygenase 1 (HO-1) gene; the PR 
domain is responsible for its tumor suppressing activity; the S-adenosyl-L-methionine-dependent histone 
methyltransferase activity of PRDM2 specifically methylates “Lys-9” of histone H3; regulates normal cell division 
and function using a “Yin-Yang” fashion; overexpression induces a G2-M cell cycle arrest and/or apoptosis (cell 
death independent of Rb and p53); expression and activity are reduced in many cancers; loss of activity results 
in decreased apoptosis and differentiation and enhanced proliferation; common target of frameshift mutation 
in microsatellite-unstable cancers; gene expression epigenetically silenced through promoter hypermethylation; 
upregulated by a methyl-balanced diet accompanied by the repression of the oncogene, c-jun.

SDHB (1p36.13) Succinate dehydrogenase complex, subunit B, iron sulfur (1p); SDH1, ip (iron-sulfur protein), GL4, succinic 
dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial; one of 4 nuclear-encoded subunits of 
complex II of the mitochondrial respiratory chain, specifically involved in the oxidation of succinate and 
the transfer of electrons from FADH to CoQ (ubiquinone); this iron-sulfur subunit is highly conserved and 
contains three cysteine-rich clusters which comprise the iron-sulfur centers of the enzyme; responsible for 
specifically transferring electrons from succinate to CoQ; decreased activity results in altered mitochondrial 
metabolism, the activation of pseudohypoxia and a shift to glycolytic respiration; SDHB-silenced cells can result 
in .400 genes either 6-fold or more upregulated or downregulated (dysregulated genes involve those involved 
in proliferation, adhesion, and the hypoxia pathway); DDHB-silenced cells display characteristic features of the 
tumor phenotype (eg, greater capacity to adhere to extracellular matrix components, including fibronectin and 
laminin) suggesting a possible mechanism of tumor initiation and enhanced tumorigenesis.

PRDX1 (1p34.1) Peroxiredoxin 1; see Table 7 for description; Prdx1 knockout mice generate malignancies in intestines, 
lymphomas, and sarcomas; prdx1−/− mouse cells show a shift in intracellular ROS from the cytoplasm to the 
nucleus with increased oxidative DNA damage; prdx1-deficient mouse cells show increased sensitivity to 
oxidative DNA damage; lower expression of PRDX1 found in tumors of the oral cavity and correlates with 
larger tumor size, lymph node metastasis, and clinically advanced stages. PRDX1 acts as a tumor suppressor in 
esophageal cells and induces apoptosis after activation by histone deacetylase inhibitors; interacts with a region of 
the c-Myc transcriptional regulatory (Myc box ii) domain that is essential for transformation, and selectively alters 
its biological function and target gene expression; inhibits c-Abl kinase activity by interacting with its SH3 domain.

PTCH2 (1p34.1) Patched homolog 2 (Drosophila); aliases: patched (Drosophila) homolog 2, PTC2, protein patched homolog 2; 
gene encodes a transmembrane receptor of the patched gene family; functions as a tumor suppressor by 
inhibiting another transmembrane protein SMO (smoothened), which functions in the hedgehog signaling 
pathway; receptor for Sonic Hedgehog, a secreted molecule implicated in the formation of embryonic 
structures and in tunorigenesis.

(Continued)
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Table 6 (Continued)

Gene and genomic locus  
(ensembl cytogenetic band)

Functions

CAMTA1 (1p36.31) Calmodulin binding transcription activator 1; cell cycle regulatory gene; in cases with 1p LOH, its expression is 
reduced by half, suggesting a functional effect caused by haploinsufficiency.

AJAP1 (1p36.32) Adherens junctions associated protein 1; aliases: SHREw1, Mot8, transmembrane protein SHREw1; membrane 
protein that targets to the basolateral membrane of polarized epithelial cells through cytoplasmic sorting motifs 
that include three tyrosines and a dileucine; interacts with E-cadherin-catenin complexes of adherens junctions; 
functions to inhibit cell adhesion and migration.

UBE4B (1p36.22) Ubiquitination factor E4B (UFD2 homolog, yeast); UBOX3, ubiquitin-fusion degradation protein 2, 
homozygously deleted in neuroblastoma-1; binds to the ubiquitin moieties of preformed conjugates and 
catalyzes ubiquitin chain assembly in conjunction with the E1, E2, and E3 classes of ubiquitin-activating enzymes; 
activity linked to cell survival under stress conditions; involved in protecting the cell from environmental stress; 
cleaved by caspase 6 and granzyme B during apoptosis.

NBL1 (1p36.13) Neuroblastoma, suppression of tumorigenicity 1; aliases: zinc finger protein DAN, DAND1, Dan domain family 
member, NO3; founding member of the evolutionarily conserved CAN (cerberus and DAN) family of proteins 
which contain a domain resembling the CTCK (C-terminal cystine knot-like) motif found in a number of signaling 
molecules; secreted protein which acts as BMP (bone morphogenetic protein) antagonist by binding BMPs and 
preventing them from interacting with their receptors; plays an important role in growth and development; 
contains a putative p53/p73-binding site in the 5′-upstream region of the gene; acts as an inhibitor of cell 
cycle progression; may play an important role in preventing cells from entering the final stage (G1/S) of the 
transformation process; functional association exists between NBL1 and p73 during cisplatin-induced cell death.

PLA2S-ii (1p36.13) The secretory type II phospholipase A2; aliases: MOM1 (modifier of MIN-1), group IIA phospholipase A2, non-
pancreatic secretory phospholipase A2, phosphatidylcholine 2-acylhydrolase 2A; catalyzes the hydrolysis of the 
sn-2 fatty acid acyl ester bond of phosphoglycerides, releasing free fatty acids and lysophospholipids, liberating 
arachidonic acid (AA) and prostaglandin D2, a metabolite of AA; participates in the regulation of phospholipid 
metabolism in biomembranes and the maintenance of membrane asymmetry; other known functions are 
related to microbial defense mechanisms (bactericidal activity) and the inflammatory response; human homolog 
of the MOM (modifier of min [APC]) gene, which suppresses polyp number during intestinal tumorigenesis in 
the min mouse model, possibly by altering the cellular microenvironment within the intestinal crypt or inducing 
AA metabolite-mediated apoptosis in pre-neoplastic or neoplastic cells.

ST7L (1p13.2) Suppression of tumorigenesis 7 like; aliases: related to the tumor suppressor gene, ST7, found at the 
chromosome 7q31 genomic locus; ST7L gene is clustered in a tail-to-tail manner with the WNT2B gene on 
chromosome 1p (analogous to the clustering of ST7 with the WNT2 gene on chromosome 7q; the related 
gene, ST7, induces changes in genes involving the re-modeling of the extracellular matrix, such as SPARC, 
IGFBP5 and several matrix metalloproteinases; may act as a tumor suppressor by modification of the tumor 
microenvironment.

RAD54L (1p34.1) RAD54-like (S. cerevisiae); see Table 1 and text for description.
E2F2 (1p36.12) E2F transcription factor 2; see Table 2 for description.
TNFRSF25 (1p36.31) Tumor necrosis factor receptor superfamily, member 25; see Table 3 for description.
PLK3 (1p34.1) Polo-like kinase 3; see Table 2 for description.
GADD45α (1p31.3) Growth arrest and DNA-damage-inducible 45 alpha; see Table 1 for description.
CTNNBiP1 (1p36.22) Alias iCAT; see Table 5 for description.
MUTYH (1p34.1) MutY homolog (E. coli); see Table 1 and text for description.
CDKN2C (1p32.3) Cyclin-dependent kinase inhibitor 2C; see Table 2 for description.
DFFA (1p36.22) DFFB (1p36.32) DNA fragmentation factor; see Table 3 and text for description.
KiF1B (1p36.22) Kinesin family member 1B; see Table 2 and text for description.
TP73 (1p36.32) Tumor protein 73; DNA damage response protein and pro-apoptotic tumor suppressor; see Table 1 and text 

for description.
MiR-34a (1p36.22) miRNA-34a; see Table 4 and text for description.
MiR-101-1 (1p31.3) miRNA-101-1; see Table 4 and text for description.

Excessive DNA ss breaks caused by the action of MUTYH 

and AP endonuclease in the nucleus results in the activation of 

PARP-1, which attaches polymers of ADP-ribose to proteins, 

thereby opening up the chromatin to allow access of DNA 

repair proteins.181,182 PARP initially serves as a survival protein 

facilitating the rapid repair of DNA strand breaks, and also 

prevents DNA degradation, in part, by inhibiting the  activity 

of deoxyribonucleases through the process of poly(ADP)

ribosylation.183 Since the synthesis of ADP-ribose polymers 

consumes nicotinamide adenine dinucleotide (NAD+),184 and 

NAD+ is largely found in mitochondria where it participates in 

the production of ATP (bottom right side of Figure 5), sustained 
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PARP activation will consume energy reserves, resulting in cell 

death, usually through the process of necrosis.185–188 A marked 

deficiency in energy reserves may cause the ATP-dependent 

Na+/K+ transport proteins, which maintain ionic balance, to 

fail, resulting in cell swelling and lysis of the cell,189 one of the 

hallmarks of necrosis.190

In addition to the above energy catastrophe caused by 

excessive PARP activity in the nucleus, persistent single-

stranded gaps in newly replicated DNA initiated by the action 

of MUTYH in mitochondria can result in the fragmentation and 

depletion of mitochondrial DNA (mtDNA)191,192 accompanied 

by the loss of mitochondrial function culminating in cell 

death191,193 (bottom right side of Figure 5). Dysfunctional 

mitochondria can release Ca++ into the cytosol which can 

activate calpains, causing Bax activation, lysosomal rupture, 

and the release of cathepsins into the cytosol191,194 resulting 

in a caspase-independent mode of cell death. Calpain 

activation can also result in Bax activation, followed by Bax 

oligomerization and mitochondrial damage, resulting in the 

loss of the mitochondrial membrane potential.

There is another unique mechanism that can lead 

to PARP-mediated cell death after excessive MUTYH 

activity, in addition to the fragmentation of mtDNA, 

energy catastrophe and calpain/lysosomal rupture/cathepsin 

pathways of mitochondrial failure described above. The main 

product of PARP-1 activity is the generation of polymers of 

ADP-ribose (PAR). Although these polymers are usually 

covalently bound to proteins, free PAR polymers are 

themselves toxic195–197 and function as a death signal.197–199 

The PAR polymers bind to mitochondria and induce the 

release of tAIF (truncated apoptosis-inducing factor) from the 

mitochondria into the cytosol199 (lower left side of Figure 5). 

tAIF is then translocated to the nucleus where it binds to 

DNA,200–202 causes DNA condensation203 and recruits DNA 

degrading factors (eg, endogenous endo- and exo-nucleases) 

resulting in DNA degradation198,204 (upper left side of 

Figure 5). This series of events is part of an intricate program 

of caspase-independent cell death,203–213 and is currently an 

active area of research.

Several mechanisms have been proposed to explain 

how tAIF is released from the mitochondria into the 

cytosol.210,214 Prior to truncation, AIF is embedded in the inner 

mitochondrial membrane,215 and the release of AIF requires 

its cleavage215,216 from a 62 kDa AIF mitochondrial form to 

a truncated 57 kDa soluble AIF form (tAIF).217,218 Calpain-I, 

which is activated by Ca++,219 and Ca++-independent cathepsins 

B, L, and S218,220 can cleave intramitochondrial AIF.221–223 

The calpains and cathepsins can truncate AIF in the same 

position at Gly102/Leu103.218 Calpain-I, however, appears 

to be the critical enzyme regulating AIF processing in which 

the AIF pathway is important for cell death.219 Oxidative 

modifcation of AIF markedly increases the susceptibility 

of AIF to calpain-I-mediated processing, most probably 

through the exposure of a normally hidden calpain cleavage 

site.219 Since the PAR polymer is a highly negatively charged 

molecule, it could depolarize mitochondria leading to opening 

of the mitochondrial membrane permeability transition pore 

(MPTP) followed by the release of tAIF.197,199 PAR polymers 

Table 7 Genes associated with antioxidant function

Gene Protein function

GCLM Glutamate-cysteine ligase, modifier subunit; aliases: gamma-glutamylcysteine synthetase, GSC light chain; the first rate limiting 
enzyme of glutathione synthesis; the enzyme consists of a heavy catalytic subunit and a light (30.8 kDa) regulatory subunit.

GPX7 Glutathione peroxidase 7; non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase; alleviates oxidative 
stress generated from polyunsaturated fatty acids.

PRDX1 Peroxiredoxin 1; aliases: thioredoxin peroxidase 2, thioredoxin-dependent peroxide reductase 2, TDPX2, natural killer cell-
enhancing factor A, PAG, PAGB; member of the peroxiredoxin family of antioxidant enzymes which reduce hydrogen peroxide 
and alkyl hydroperoxides; the enzyme reduces peroxides using reducing equivalents provided through the thioredoxin system, not 
through glutaredoxin; plays an important role in eliminating peroxides generated during metabolism; participates in the signaling 
pathways of growth factors and tumor necrosis factor-alpha by regulating the intracellular concentrations of hydrogen peroxide; 
overoxidized peroxiredoxins (eg, cysteines oxidized to cysteine sulfinic or sulfonic acids) are regenerated by p53-regulated 
sestrins (homologs of a bacterial AhpC which reduces bacterial peroxiredoxins), thus re-establishing the antioxidant firewall.

TXNDC12 Thioredoxin domain containing 12; aliases: endoplasmic reticulum protein ERP19, ERP19, hTLP19, protein disulfide isomerase 
family A (member 16), endoplasmic reticulum thioredoxin superfamily member, 18 kDa; members of this superfamily possess 
a thioredoxin fold with a consensus active-site sequence (CxxC) and have roles in redox regulation, defense against oxidative 
stress, refolding of disulfide-containing proteins, and regulation of transcription factors; induced at the transcriptional level by 
the unfolded protein response (UPR), a signaling pathway that responds to the accumulation of misfolded proteins; possesses 
significant protein thiol-disulfide oxidase activity; inhibits the induction of apoptosis by agents that cause ER stress, including 
brefeldin A, tunicamycin, and dithiothreitol; smallest member of the protein disulfide isomerase (PDI) family of proteins to contain 
a Cys-Xxx-Xxx-Cys active site motif; like the catalytic domains of PDis; TXNDC12 adopts a thioredoxin fold with a thioredoxin-
like active site located at the N-terminus of a long kinked helix that spans the length of the protein.
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Table 8 Genes associated with protection against environmental and metabolic toxicity

Gene Protein function

AADACL3 Arylacetamide deacetylase-like 3; the enzymatic activity of the family of arylacetamide deacetylases carry out 
the deacetylation of carcinogenic arylacetamides such as 4-acetylaminobiphenyl, 2-acetylaminofluorene, and 
2-acetylaminaphthalene.

AADACL4 Arylacetamide deacetylase-like 4; the enzymatic activity of the family of arylacetamide deacetylases carry out 
the deacetylation of carcinogenic arylacetamides such as 4-acetylaminobiphenyl, 2-acetylaminofluorene, and 
2-acetylaminaphthalene.

AKR1A1 Aldo-keto reductase family 1, member A1; aliases ALDR1, ARM, dihydrodiol dehydrogenase 3; member of the aldo/
keto reductase superfamily; catalyzes the NADPH-dependent reduction of a variety of biogenic/xenobiotic aromatic and 
aliphatic aldehydes to their corresponding alcohols; oxidizes proximate carcinogen trans-dihydrodiols to o-quinones.

AKR7A2 Aldo-keto reductase family 7, member A2; aliases: succinic semialdehyde reductase, SSA reductase, AFAR1; catalyzes 
the NADPH-dependent reduction of succinic semialdehyde to gamma-hydroxybutyrate; can reduce the dialdehyde 
protein-binding form of aflatoxin B1 (AFB1) to the non-binding AFB1 dialcohol.

AKR7A3 Aldo-keto reductase family 7, member A3; aliases: AFAR2, AFB1 aldehyde reductase 2; involved in the detoxification  
of aldehydes and ketones; can reduce the dialdehyde protein-binding form of aflatoxin B1 (AFB1) to the non-binding 
AFB1 dialcohol.

AKR7L Aldo-keto reductase family 7-like; aliases: AFAR3, AFB1 aldehyde reductase 3; involved in the detoxification of 
aldehydes and ketones; can reduce the dialdehyde protein-binding form of aflatoxin B1 (AFB1) to the non-binding  
AFB1 dialcohol; this family member encodes a selenoprotein, which contains a selenocysteine residue; the 
selenocysteine is encoded by the UGA codon that normally signals translational termination.

CYP2J2 Cytochrome P450, family 2, subfamily J, polypeptide 2; aliases: microsomal monooxygenase, flavoprotein-linked 
monooxygenase, arachidonic acid epoxygenase; the cytochrome P450 superfamily of enzymes catalyze many reactions 
involved in drug metabolism and synthesis of cholesterol, steroids and other lipids; this protein localizes to the 
endoplasmic reticulum and is the predominant enzyme responsible for epoxidation of endogenous arachidonic 
acid pools in cardiac tissue; also functions in the gastrointestinal tract; epoxygenase-derived eicosanoids have anti-
inflammatory properties.

CYP4Z1 Cytochrome P450, family 4, subfamily Z, polypeptide 1; catalyzes the in-chain hydroxylation of lauric acid and myristic 
acid; single-pass type ii membrane protein found in the endoplasmic reticulum.

CYP4A11 Cytochrome P450, family 4, subfamily A, polypeptide 11; aliases: fatty acid omega-hydrolase, lauric acid omega-
hydrolase, alkane-1 monooxygenase, 20-hydroxyeicosatetraenoic acid synthase; this CYP450 member localizes  
to the endoplasmic reticulum and catalyzes the omega- and omega-1-hydroxylation of medium-chain fatty acids  
such as laurate, myristate and palmitate; oxidizes arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE).

CYP4A22 Cytochrome P450, family 4, subfamily A, polypeptide 22; aliases: fatty acid omega-hydroxylase, lauric acid omega-
hydrolase; this CYP450 member localizes to the endoplasmic reticulum and catalyzes the omega- and (omega-1)-
hydroxylation of medium-chain fatty acids such as laurate and palmitate; shows no activity toward arachidonic acid  
and prostaglandin A1.

CYP4B1 Cytochrome P450, family 4, subfamily B, polypeptide 1; aliases: microsomal monooxygenase, P-450HP; this enzyme  
is located in the endoplasmic reticulum and oxidizes a variety of structurally unrelated compounds, including steroids, 
fatty acids and xenobiotics; involved in an NADPH-dependent electron transport pathway; can be induced to high levels 
in the liver and other tissues by various foreign compounds, including drugs, pesticides, and carcinogens.

CYP4X1 Cytochrome P450, family 4, subfamily X, polypeptide 1; aliases: CYPivX1, MGC40051; located in the endoplasmic 
reticulum and may be involved in neurovascular function in the brain.

GSTM1 Glutathione S-transferase Mu 1; aliases: glutathione S-alkyltransferase M1, S-(hydroxyalkyl)glutathione lyase M1,  
HB subunit 4; glutathione transferases may serve as an antioxidant system preventing degenerative cellular processes; 
the genes encoding the mu class of enzymes are organized in a gene cluster on chromosome 1p13.3 and are known 
to be highly polymorphic; this enzyme conjugates glutathione to a wide number of endogenous and exogenous toxins 
and carcinogens; null mutations of class mu genes have been linked with an increase in a number of cancers, most likely 
caused by an increased susceptibility to environmental toxins and carcinogens; specific genetic polymorphisms are 
associated with susceptibility to colorectal cancer.

GSTM2 Glutathione S-transferase Mu 2; aliases: glutathione S-alkyltransferase M2, S-(hydroxyalkyl)glutathione lyase M2; this 
enzyme conjugates glutathione to a wide number of endogenous and exogenous toxins and carcinogens; alleviates 
benzo[a]pyrene-diolepoxide-DNA damage.

GSTM3 Glutathione S-transferase Mu 3; aliases: glutathione S-alkyltransferase M3, S-(hydroxyalkyl)glutathione lyase M3; this 
enzyme conjugates glutathione to a wide number of endogenous and exogenous toxins and carcinogens; GSTM1 and 
GSTM3 allele variants are a risk-modulating factor in colorectal cancer patients.

GSTM4 Glutathione S-transferase Mu 4; aliases: glutathione S-alkyltransferase M4, S-(hydroxyalkyl)glutathione lyase M4; this 
enzyme conjugates glutathione to a wide number of endogenous and exogenous toxins and carcinogens; active on 
1-chloro-2,4-dinitrobenzene.

(Continued)
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of increasing complexity and molecular weight are more 

toxic than simple PAR polymers of low molecular weight.197 

The PAR polymer could also bind to PAR polymer binding 

proteins associated with mitochondria, which then release 

AIF.199,224–226 This results in AIF cleavage producing a tAIF, 

which is soluble and enters the cytosol. The release of 

tAIF may also be caused by a significant but not excessive 

decrease in NAD+ (as a result of PARP activity), ATP, and 

the mitochondrial membrane potential, resulting in the 

opening of the MPTP (mitochondrial permeability transition 

pore).186,196,211 The release of tAIF may also be caused by other 

caspase-independent pathways involving molecules that are 

often found in the downstream execution phase of apoptosis, 

such as tBid (truncated Bid),227–229 Bax oligomers (formed after 

Table 8 (Continued)

Gene Protein function

GSTM5 Glutathione S-transferase Mu 5; aliases: glutathione S-alkyltransferase M5, S-(hydroxyalkyl)glutathione lyase M5; this 
enzyme conjugates glutathione to a wide number of endogenous and exogenous toxins and carcinogens.

MTF1 Metal response element binding transcription factor 1; transcription factor that induces the expression of 
metallothioneins and other genes involved in metal homeostasis in response to heavy metals such as cadmium, zinc, 
copper and silver; is a nucleocytoplasmic shuttling protein that accumulates in the nucleus upon heavy metal exposure 
and binds to promoters containing a metal-responsive element; nucleocytoplasmic shuttling of MTF1 is regulated by 
diverse signals.

MTF2 Metal response element binding transcription factor 2; alias: polycomb-like protein 2; binds to the metal-regulating 
element of the metallothionein-1A gene promoter, which is zinc-dependent.

Inflammation, Dietary factors

Spindle damage

Repair of DNA damage and
mitotic disturbances

Mitotic progression of cells with
undamaged DNA and proper

segregation of daughter chromosomes

Normal cell

Dysfunctional
telomeres

Spindle assembly
checkpoints

DNA damage
checkpoints

Cell cycle arrest

DNA damage

ROS/RNS

Figure 1 The damaging effects of dietary factors and inflammatory conditions on 
the colonic epithelium. Damage to DNA, the mitotic spindle, and to telomeres is 
mediated through the generation of ROS (reactive oxygen species) and/or RNS 
(reactive nitrogen species). This damage results in the activation of spindle and DNA 
damage checkpoints, which delay mitosis until repairs are made.

Inflammation, Dietary factors

Prolonged cell cycle arrest

Cancer

Cell death

Excessive
spindle damage

Marked dysfunctional
telomeres

Genomic instability
(proliferating cells)

Excessive
DNA damage

ROS/RNS

Figure 2 Excessive spindle damage, dysfunctional telomeres, or DNA damage can 
result in a prolonged cell cycle arrest which activates pro-cell death pathways. This 
activation of pro-cell death pathways leads to removal of cells with unrepaired 
damage to the mitotic spindle, the chromosome ends, and DNA and prevents the 
potential propagation of cells with many types of genomic instability. 
Abbreviations: ROS, reactive oxygen species; RNS, reactive nitrogen species.
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activation of Bax by Ca++-dependent calpains),211,217 Bak,230 

and Bim-EL.231,232 The activation of PARP also activates 

other stress-response pathways such as the RIP/TRAF2/

JNK pathway,233–235 which may be responsible, in part, for 

generation of tBid228 and the phosphorylation of Bim-EL. 

The phosphorylation of Bim-EL releases Bim-EL from 

sequestration by the microtubular dynein motor complex,236 

allowing it to bind to bcl-2,231 thereby enhancing the cell 

death process.

Mechanisms that interfere with tAIF release include 

the 1) degradation of the PAR polymer by PARG (PAR 

glycohydrolase),237 2) inhibition of tAIF translocation to the 

nucleus by Bcl-2, Bcl-xl, HSP70, or Iduna, and 3) interfer-

ence of transcription of the AIF gene by BNIP3.238 PARG, 

Bcl-2, Bcl-xl, HSP70, Iduna, and BNIP3 have been shown 

to be upregulated during carcinogenesis, consistent with the 

development of tumor cell resistance to cell death. In addition, 

pro-cell death molecules involved in this MUTYH/PARP/

AIF pathway, such as AIF, Bid, Bax, Bak, and Bim-EL, have 

been reported to be downregulated during carcinogenesis. 

Thus, overall, MUTYH likely has an important role in the 

death of cells exposed to excessive reactive oxygen species/

reactive nitrogen species (ROS/RNS)-induced DNA  damage, 

and interference with the MUTYH cell death pathway is 

associated with carcinogenesis.

P73 and caspase-dependent cell death
Like p53, p73 is responsible for the induction of apop-

tosis in response to excessive DNA damage that  cannot 

be repaired.239 P73 has the ability to upregulate the tran-

scription of numerous classic apoptosis-related genes 

such as caspases 3, 6, and 8, Bcl-2 family members, and 

death receptors (Figure 6). In order for p73 to function 

as a transcription factor, it must be  phosphorylated. The 

c-Abl kinase, activated by DNA damage, phosphorylates 

and activates p73 on tyrosine 99.240 The stress-induced 

 mitogen-activated protein kinase, p38 MAPK, phospho-

rylates and activates p73 on threonine residues.239 The 

degradation of p73 by the E3 ubiquitin-like protein, Itch, is 

prevented by the  Yes-associated  protein, YAP. E2F1, p53, 

and c-jun (located on chromosome 1p;  Figures 4 and 6) may 

also have a role in p73 activation in  different cell types.241,242 

One mechanism by which p73 induces apoptosis includes 

the transcription of PUMA (p53 upregulated  modulator 

of apoptosis), which in turn causes Bax translocation to 

the mitochondria with the release of  cytochrome c.243 

A  second mechanism involves the transcription of scotin, 

which causes endoplasmic reticulum (ER) stress and sub-

sequent apoptosis.244,245 Unlike p53, a direct role of p73 in 

the apoptotic process (eg, mitochondrial translocation and 

 perturbation) has not been verified. The role of p73 in the 

regulation of the miRNA processing complex will be dis-

cussed in the  section “MiRNAs and miRNA  processing”. 

As noted above, loss of p73 through chromosome 1p dele-

tion occurs early in colon carcinogenesis, contrary to the 

loss of p53 which is a late event.

Mitosis-related and spindle checkpoint 
function (Table 2)
There are 24 genes on chromosome 1p whose gene products 

affect many different aspects of the mitotic process, and 

include kinases, phosphatases, centromere proteins, cen-

trosome proteins, cyclins, regulatory mitotic proteins, motor 

spindle proteins, regulators of chromosomal condensation, 

a mitosis-related transcription factor, a deacetylase, and 

a major spindle checkpoint protein (Table 2). The large 

number of mitosis-related genes that are lost if there is a 

chromosome 1p deletion could potentially be responsible 

for colon cancer initiation and progression, since cancer 

epidemiology studies show that abnormal expression 

of mitosis-related genes is frequent in different tumor 

types.246,247 Mitotic checkpoints, and specifically the spindle 

assembly checkpoint, are major targets for tumor-associated 

alterations.247 The mitotic spindle assembly checkpoint is 

essential for ensuring that all  chromosomes are properly 

aligned on the metaphase plate, with every chromosome 

A B

C D

Figure 3 Examples of cellular alterations that accompany apoptosis (A), mitotic 
perturbation during anaphase (B), mitotic catastrophe with complete chromosome/
spindle disruption (C), and abundant micronuclei formation associated with 
aneuploidy (D). Panels A, B, and D are examples of HCT-116 cells treated with 
10 µM camptothecin. Panel C represents cells treated with 5 µM phenstatin (drug 
obtained through courtesy of Dr GR. Pettit, Arizona State University) (cytospin 
preparations of Giemsa-stained cells; ×100 oil objective lens)
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attached to a spindle microtubule by its kinetochore to 

prevent aneuploidy.97 If these processes fail to occur and 

the cell undergoes a prolonged mitotic arrest (Figure 2), 

the cell may be eliminated through caspase-dependent or 

caspase-independent cell death mechanisms147 to ensure 

genomic stability (Figure 7).

Oxidative stress is a major factor that can induce 

 disturbances in spindle organization,248,249 induce centrosome 

amplification, cause proteolysis of the anaphase inhibitor 

securin and mitotic cyclins,250 affect components of the 

anaphase-promoting complex,251 and override the spindle 

checkpoint,250 thereby affecting chromosomal stability. 
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Figure 4 DNA damage causes several downstream molecular and cellular events. The DNA damage response involves several DNA repair proteins and transcription factors 
that allow the cell cycle to be arrested at several points to enhance genomic stability. All of the genes associated with these damage response pathways that are also found 
on chromosome 1p are highlighted in red, and reference to the appropriate tables (contain functions of gene products) in the text is provided below. The large number of 
molecular and cellular events affected by the loss of chromosome 1p is apparent. 
Notes: Genes: CLSN, DCLRE (APOLLO), GADD45α, MSH4, MUTYH, TP73, RAD54L (Table 1); CDC7 (phosphorylates claspin in response to DNA damage), PSRC1 
(DDA3) (Table 2); NBL1 (Table 6). Additional protein functions in diagram not discussed in text: astrin (microtubule binding protein involved in the functional and dynamic 
regulation of mitotic spindles); CHK1 (checkpoint homolog of S. pombe; serine/threonine-protein kinase required for cell cycle arrest in response to DNA damage or 
presence of unreplicated DNA); cyclin B1 [regulatory protein involved in mitosis; complexes with p34 (cdc2) to form the maturation-promoting factor, MPF; expressed 
predominantly during G2/M]; TP53iNP1 (tumor protein p53-inducible nuclear protein 1; in response to DNA damage, it promotes p53 phosphorylation on “Ser-46” and 
promotes cell cycle arrest; promotes apoptosis if DNA damage is excessive); TRF2 (telomeric repeat binding factor 2; component of the shelterin complex that binds the 
telomere double-stranded – TTAGGG – repeat and protects telomere ends). 
Abbreviations: DDR, DNA damage response; ROS, reactive oxygen species; RNS, reactive nitrogen species.
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During the process of mitosis, direct oxidative damage to 

chromosomes resulting in double-strand breaks, or oxidative 

damage to telomeres can activate p53 (Figure 7) or p73 

(Figure 6), major DNA damage response proteins that elicit 

apoptosis through multiple caspase-dependent mechanisms. 

In addition, caspase-independent mitotic cell death can also 

occur during a mitotic catastrophe (Figure 3C, Figure 7), 

which is a prestage to distinct modes of cell death that may 

be caspase-dependent or caspase-independent.148

The length of time that a spindle is destabilized may 

determine the mode and timing of cell death after mitotic 

exit.123,124,126 It has been suggested that prolonged mitotic 
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Figure 5 The mechanisms by which excessive activity of MUTYH and AP endonucleases can lead to cell death through the activation of PARP and the generation of toxic 
poly(ADP)ribose (PAR) polymers and mitochondrial DNA (mtDNA) damage (see text for detailed description). 
Abbreviations: ROS, reactive oxygen species; RNS, reactive nitrogen species.
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delay can lead to the decay of anti-apoptotic messenger 

RNAs (mRNAs)252,253 and/or the gradual accumulation of 

pro-apoptotic signals.252,254 Of the 24 mitosis-related genes 

(Table 2), the products of 7 genes have dual-role mitosis/

pro-apoptotic functions. These dual-role mitosis/pro-apoptotic 

genes include APITD1, CCNL2, CDC2L2, CDC42, E2F2, 

KIF1B, and PLK3 (Table 2). Cells may become genomically 

unstable if they evade mitotic checkpoints through a process 

referred to as mitotic slippage, mitotic arrest slippage, or 

mitotic checkpoint slippage255–263 (Figure 7). With mitotic 

slippage, the cell exits mitosis prematurely, carrying broken 

chromosomes, abnormal numbers of chromosomes, and 

unrepaired DNA damage into the daughter cells. In addition 

to loss of pro-apoptotic proteins, it has been reported 

that the gradual loss of the checkpoint effector, cyclin B, 

releases the mitotic arrest induced by spindle disruptive 

agents, despite the continued presence of spindle damage 

and upstream checkpoint proteins.14,258,260 In order for a 

DNA-damaged cell to survive after mitotic slippage, it must 

evade both apoptosis in the subsequent G1 phase of the cell 
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Figure 6 The possible mechanisms by which p73 transcription and activation can lead to cell death through classic apoptotic mechanisms. Definitions of proteins not included 
in the main text: PERP (p53 apoptosis effector related to PMP22; tetraspan membrane protein and component of intercellular desmosome junctions); p53AiPi (p53 apoptosis-
inducing protein 1; promoter activated by acetylated p73); FAS (CD95) (member 6 of the TNF receptor superfamily which contains a death domain); TNFR1 (member 1A 
of the TNF receptor superfamily); TRAiL-R1 (member 10A of the TNF receptor superfamily); TRAiL-R2 (member 10B of the TNF receptor superfamily; death receptor 5); 
PIG3 (p53-induced gene 3 protein; quinone oxidoreductase involved in the generation of ROS and cell death). 
Abbreviation: ER endoplasmic reticulum.
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cycle124 (Figure 7) and reproductive cell death that can follow 

centrosome amplification and the generation of tetraploid 

cells264 (Figure 7).

Thus, a decrease in pro-apoptotic mitotic/cell cycle-

related genes located on chromosome 1p (APITD1, CCNL2, 

CDC2L2, CDC42, E2F2, KIF1B, PLK3) (Table 2) may 

result in resistance to cell death, a critical event that drives 

tumorigenesis.52,54,265–267

Apoptosis-related genes (Table 3)
Seven genes associated with apoptosis are located on 

 chromosome 1p. Bcl-10 and Bcl2L15 are Bcl-2 family 

members, THAP3 is a zinc-coordinating DNA-binding 

protein, DNA fragmentation factor A (DFFA) and B (DFFB) 

are the two subunits of DFF, caspase-9 is a major initiator 

caspase in the apoptotic proteolytic cascade, and TNFRSF25 

is a death domain-containing receptor related to TNFR-1 and 

CD95 (Apo-1/Fas). The deletion of 3 of these genes would 

have important implications for carcinogenesis through the 

increase in apoptosis resistance, and will be discussed in 

some detail.

DFF is a heterodimeric protein composed of a catalyti-

cally active 40 kD subunit, DFFB (CAD [caspase-activated 

DNase]), and an inhibitory 45 kD subunit, DFFA (ICAD 
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Figure 7 The different cellular fate following spindle, telomere and DNA damage during mitosis. Cells with excessive genomic damage can undergo caspase-dependent cell 
death (CDMCD) or caspase-independent mitotic cell death (CiMCD). DNA-damaged cells may, however, exit from mitosis by defying cell death pathways through a process 
referred to as mitotic slippage. These preneoplastic cells with DNA damage and chromosomal abnormalities can then be clonally expanded to produce a tumor and eventually 
develop into a malignancy through continued cycles of damage to the genome. 
Abbreviation: ROS, reactive oxygen species.
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[inhibitor of CAD]).268,269 When bound to DFFB, DFFA 

inhibits the nuclease activity of DFFB.268,269 During apop-

tosis, caspase-3 cleaves DFFA at amino acids 117 and 

224 and dissociates it from DFFB, thereby releasing the 

inhibition of DFFB.270 DFFB activity results in chromatin 

condensation271 and the formation of the typical crescents 

and margination of chromatin that are characteristic of 

classic apoptotic cells at the ultrastructural level.190,266,272–276 

Characteristic ultrastructural features of apoptotic cells 

treated with a ROS-generating and DNA-damaging agent 

are shown in Figure 8. At the molecular level, the action 

of DFF on DNA results in the initial cleavage of DNA 

into 50- to 300-kb long fragments,277,278 representing the 

dismemberment of the higher order organization of chroma-

tin into chromosomal loop domains, and the fragmentation 

of DNA into oligonucleosomal sized fragments that form a 

“ladder” on agarose gel electrophoresis.279 The importance 

of DFF in suppressing tumorigenesis280 was demonstrated 

by Yan et al281 using DFF40-null mice. DFF-deficient cells 

exhibit significant increases in mutation, chromosomal 

instability, and survival compared with wild-type control 

cells.281 This is probably a result of the inhibition of cell 

death of DNA-damaged cells resulting from the failure to 

undergo DNA fragmentation.282,283 DFF is reported to avoid 

chromosome instability in a p53-independent manner.284 

Irradiation of cells with a caspase-resistant form of DFFA 

led to increased clonogenic survival of cells with increased 

chromosomal aberrations and aneuploidy.284 The ability of 

DFF to maintain chromsosomal stability appears to be the 

result of the DNA fragmentation-induced death of cells with 

excessive DNA damage.284 Although DFFB has intrinsic 

DNAse activity, both DFFA and DFFB are required to gener-

ate DNase activity,140,269 and must be co-expressed.280 DFFA 

has been postulated to stabilize the synthesis of DFFB,270,271 

or mediate the correct folding and chromatin localization 

of DFFB.271 The absence of DFF results in an increased 

frequency of cell transformation and enhanced susceptibil-

ity to radiation-induced carcinogenesis, indicating that DFF 

is a tumor suppressor.280 Recently, it has been reported that 

the expression of DFFA protein, but not DFFA mRNA, 

is regulated by a specific miRNA, miR-145, suggesting a 

mechanism of translational regulation.285 The regulation of 

DFFB by miRNA has not been investigated, and, so far, none 

of the miRNAs found on chromosome 1p (Table 4) have 

been determined to have DFFA or DFFB as target mRNAs 

for translational regulation.

Caspase-9 is a member of the family of cysteine-aspartic 

acid-specific proteases (caspases), and is also referred to as 

Apaf-3 (apoptotic protease-activating factor 3). In the presence 

of cytochrome c and dATP, Apaf-1 binds to procaspase-9286 

via a CARD (caspase activation recruitment domain),287 

forming a complex referred to as the apoptosome.286,288,289 

The cellular oxidative state can affect apoptosome formation 

by promoting an interaction between caspase-9 and Apaf-1 

via disulfide formation.290 In the apoptosome, caspase-9 is 

activated to process other downstream caspases, including 

caspase-3 and caspase-2.291 Caspase-9 plays an important role 

in apoptosis induced by genotoxic stress.292,293 The caspase-

9-induced apoptotic pathway can result from mitochondrial 

membrane depolarization, formation of the apoptosome, 

A

B

Figure 8 Transmission electron micrographs of HCT-116 cells reacted with 
0.5 mM sodium deoxycholate for 2 hours. A) Normal cell (arrow 1) with prominent 
nucleolus and dispersed chromatin; arrow 2 points to a cell in early apoptosis, 
showing margination of chromatin, a nucleolus showing nucleolar segregation, and 
an increase in electron density compared with the normal cell; arrow 3 points to a 
cell in a late stage of apoptosis showing condensed chromatin, a marked increase 
in electron density compared with the cell above, and apoptotic body formation.  
B) Apoptotic cell in a late stage of apoptosis showing condensed chromatin (including 
crescent formation), an increase in electron density, and cytoplasmic vacuole (v) 
formation. (Uranyl acetate, lead citrate stains.)

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical and Experimental Gastroenterology 2011:4submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

94

Payne et al

and the activation of multiple caspases, including caspase-3 

and caspase-2.294 Loss of caspase-9 is therefore important 

to carcinogenesis, since it can result in apoptosis resistance 

and the propagation of DNA-damaged cells.295 If caspase-9 

is lost, caspase-3 cannot be activated, and thus cannot cleave 

many substrates including DFFA, an essential endonuclease 

in apoptosis (see previous page). Similarly, if caspase-9 

is lost, caspase-2 may not be activated. Caspase-2 plays a 

specific role in genotoxic stress-induced apoptosis in some 

cell types.296,297 (However, there is another pathway for 

activation of caspase-2. Activation of p53 by DNA damage 

can result in the p53-mediated transcription of the death 

domain protein PIDD [p53-induced protein with a death 

domain], which, together with RAIDD or RIP1, can form 

a multiprotein complex called the PIDDosome298–300 which 

then activates caspase-2298). DNA damage can also activate 

caspase-2 through the activation of c-Abl.301 C-Abl binds 

directly to caspase-9, phosphorylates it on Tyr-153, which 

then results in the autocleavage and activation of caspase-9 

resulting in the apoptosis of excessively DNA-damaged 

cells.301 Caspase-9 also mediates apoptosis caused by ER 

stress.302 ER stress first activates caspase-12,302 which is 

located on the outer membrane of the ER;303 caspase 12 then 

activates caspase-9 through a cytochrome c-independent 

mechanism.302 In some cells, ER stress can result in caspase-8 

activation, formation of tBid, mitochondrial damage, release 

of cytochrome c and the activation of caspase-9 through the 

formation of the apoptosome.304 Therefore, ER stress can 

activate caspase-9 through both mitochondrial-independent 

and -dependent mechanisms.

MiRNAs and miRNA processing (Table 4)
miRNAs are evolutionarily conserved, endogenous, small 

(21 to 24 nucleotides) non-coding RNAs cleaved from 70 

to 100 nucleotide hairpin-shaped precursors that reduce 

translation and stability of target mRNAs through RISC 

(RNA interference effector complex)-mediated mRNA 

degradation and translational suppression via sequence-

recognition interactions with the 3′ untranslated region of 

their targeted mRNAs.305–315 The diverse cellular functions 

affected by miRNAs306,316,317 is underscored by the prediction 

that thousands of genes are potential miRNA targets.318–320 

At least 800 different miRNAs predicted by computational 

scanning in the human genome have been documented 

(http://microrna.sanger.ac.uk). Individual miRNAs have the 

potential to downregulate large numbers of target mRNAs 

with seed region complementary sites in their 3′ untrans-

lated regions.321–323 It has been speculated that miRNAs 

could regulate ∼30% of the human genome.306 MiRNAs 

function in proliferation, cell cycle control, the prevention of 

replicative stress, differentiation, and apoptosis.324–333 More 

than half of the known human miRNAs are located at fragile 

sites, as well as at sites of LOH, amplification, and common 

breakpoint regions, which are particular genomic regions that 

are prone to alteration in cancer cells.327 The overexpression 

or underexpression of miRNAs as a result of chromosomal 

additions or deletions, respectively, in individual cells can 

have dramatic effect on hundreds to thousands of target 

genes. It is, therefore, not surprising that aberrant expression 

of miRNAs is associated with cancerous tissues,334–340 and 

that characteristic miRNA expression profiles are features 

of certain human cancers.341–350 Impaired miRNA processing 

enhances cellular transformation and tumorigenesis,351,352 and 

certain miRNAs are even classified as tumor suppressors and 

oncogenes.353–355 Alterations in a series of specific miRNAs 

have been associated with the age of onset of colon cancer, 

the growth of colon cancer cells, and certain stages of colon 

carcinogenesis.344,356–369 Human colon cancer profiles from 

80 colon tumors and 28 samples of normal mucosa show 

differential miRNA expression depending on mismatch 

repair status and are characteristic of undifferentiated 

proliferative states.367 Examination of the genomic regions 

containing differentially expressed miRNAs revealed that 

they were also differentially methylated in colon cancer at a 

far greater rate than would be expected by chance.367 MiRNA 

profiles could accurately predict microsatellite status in a set 

of 39 colon cancer studied by Lanza and colleagues.370 This 

is probably a reflection of the presence or near absence of 

chromosomal instabilty in the respective microsatellite stable 

vs unstable cancers.371

There are 20 miRNAs and 3 components of the miRNA 

processing complex (Argonaute proteins 1,3,4) encoded on 

chromosome 1p (Table 4). One of the 20 miRNAs,  miR-34a, 

is known to be regulated by p53.309,330,372–376 Tarasov et al375 

evaluated the differential regulation of 74 miRNAs by p53; 

50 miRNAs were either positively or negatively regulated by 

p53, miR-34a showing the highest fold increase (33.4 fold). 

Although the 20 miRNAs found on chromosome 1p can have 

pleiotropic effects on cells, miR-34a is the most well studied 

for its role in cell cycle arrest and apoptosis in response to 

DNA damage.309,330,374,377,378 The miR-34 family of miRNAs 

is one of only 18 mammalian miRNA families379 that are 

present in flies and worms.309 It is probable that links between 

p53 and the miRNA-34 family may have arisen early in the 

evolution of the stress-related p53 network.309 Because of its 

central role in preventing carcinogenesis, miR-34a has been 
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classified as a tumor suppressor.372,377 MiR-34a has numerous 

 downstream targets, including bcl-2 (major anti-apoptotic 

protein), NOTCH1, Delta1 (ligand for NOTCH1), NOTCH2 

(found on chromosome 1p), CDK4, CDK6, Cyclin D1, Cyclin 

E2, c-Met, MYCN, SIRT1 and E2F3.319,362,374,375,377,380–384 The 

inhibition of NOTCH1 by miR-34a would enhance apoptosis 

since NOTCH1 is known to inhibit p53 activity385,386 and 

to have an anti-apoptotic role387,388 in tumorigenesis. The 

inhibition of SIRT1 by miR-34a contributes to p53-dependent 

apoptosis389 through deacetylating and stabilizing p53 leading 

to an increase in p21 and PUMA.384 The E2F3 transcription 

factor is not known to have a role in apoptosis; however, 

it is a novel repressor of the ARF/p53 pathway390 and a 

potent transcriptional inducer of cell-cycle progression.377 

Therefore, the downregulation of E2F3 by miRNA-34a 

would have a growth inhibitory effect.362,374 MYCN has 

important roles in both cell proliferation and apoptosis, and 

MYCN amplification is almost always associated with the 

loss of chromosome 1p36.382 It is probable that the effects of 

miR-34a on cellular molecular pathways is widespread, since 

enforced expression of 34A shows a  dramatically altered 

gene expression profile with upregulation of 532 mRNA 

transcripts and downregulation of 681 mRNA transcripts 

highly enriched for those genes that regulate cell-cycle pro-

gression, apoptosis (BCL2, BIRC3 [baculoviral IAP repeat-

containing 3], DcR3 [decoy receptor 3]), DNA repair, and 

 angiogenesis.330 In  conclusion, although p53 is a late event 

in colon  carcinogenesis, the deletion of a major downstream 

target of p53, miR-34a, as a result of chromosomal 1p dele-

tion, could have dramatic effects on colon tumorigenesis.

MiR-101 is a miRNA that, like 34a, is pro-apoptotic391 and 

considered to be a tumor suppressor.391,392 The nomenclature 

of miR-101-1 (Table 4) and miR-101-2 is based on the 

fact that miR-101-1 is produced from a genomic locus on 

chromosome 1p31 and miR-101-2 from a genomic locus on 

chromosome 9p24.392 Loss of heterozygosity at both 1p and 

9p are known to be associated with cancer.392 The mechanism 

by which miR-101 induces apoptosis is by targeting and 

decreasing the expression of the multifaceted anti-apoptotic 

protein Mcl-1 (myeloid cell leukemia sequence 1).391 Mcl-1 

undergoes rapid turnover which may serve as a convergence 

point for signals that affect global translation, thereby 

coupling translation to cell survival and the apoptotic 

machinery.393 (The DNA damage response can also result 

in Mcl-1 destruction and the initiation of apoptosis.394,395) 

Mcl-1 specifically inhibits apoptosis, in part, by sequestering 

the pro-apoptotic Bim, Bak, tBid, and Noxa, in an inactive 

state. Since Mcl-1 can interact with tBid and inhibit its 

induction of cytochrome c release, it plays an important role 

in resistance to TRAIL and TNFα-induced apoptosis.396,397 

Therefore, Mcl-1 can inhibit apoptosis induced by both 

the death receptor (extrinsic) and mitochondrial (intrinsic) 

pathways. Mcl-1 is targeted for proteasome-mediated 

degradation by the E3 ubiquitin ligase MULE398 and is rapidly 

degraded with a half-life of 30 minutes to 3 hours.393 Its short 

half-life relates to the presence of a long proline-, glutamic 

acid-, serine-, and threonine-rich (PEST) region upstream of 

the Bcl-2 homology domains.398 The inhibition of translation 

with cycloheximide can cause the rapid degradation of 

Mcl-1 within 30 minutes, thereby triggering the apoptotic 

machinery through the release of Bim and the activation 

of Bak and Bax.393 Although full-length Mcl-1 does not 

interact with Bax, the caspase-mediated cleavage of Mcl-1 at 

Asp127 generates a fragment that induces apoptosis through 

direct interaction with Bax.399 Phosphorylation of Mcl-1 can 

affect its function and degradation.400 The phosphorylation of 

Mcl-1 is prominent in cells that accumulate in the G2/M phase 

of the cell cycle as a result of exposure to microtubule 

disrupting agents, and in synchronized cells passing through 

this phase.401 This phosphorylation, especially at serine 64, 

enhances the anti-apoptotic function of Mcl-1,400 thereby 

allowing cells to properly align their chromosomes prior to 

anaphase. In colorectal mucosa, the Mcl-1 protein is found 

in the apical cells of the crypt,402,403 whereas the distribution 

is more diffuse in the malignant cells.403

In addition to the development of apoptosis resistance, 

the loss of miR-101 also leads to cancer progression 

through the overexpression of histone methytransferase 

EZH2 (enhancer of zeste homolog 2), a polycomb group 

member, with concomitant dysregulation of epigenetic 

pathways.392,404 MiR-101 also represses the expression 

of FOS (v-fos FBJ murine osteosarcoma viral oncogene 

homolog) oncogene, a key component of the AP-1  (activator 

protein-1) transcription factor, MYCN (a gene amplified 

in many tumors), and COX-2, an enzyme involved in 

the production of prostaglandins from the metabolism of 

arachidonic acid.405 Enhanced expression of miRNA-101 

also has an effect on the late stages of cancer, since it inhibits 

invasion and migration.

The p53/p63/p73 family of tumor suppressors are known 

to regulate the major components of the miRNA processing 

complex,164,406 which include Drosha-DGCR8, Dicer-TRBP2, 

and Argonaute proteins. Drosha (RNASEN) is an RNAse III 

endonuclease; DGCR8 is a double stranded RNA binding 

protein; DICER contains an RNA helicase motif required for 

the formation of RISC (RNA induced silencing complex); 
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TRBP2 (trans-activation-responsive RNA binding protein 2) 

is a component of the miRNA  loading complex (composed 

of DICER1, AGO2, and TRBP2) required for the formation 

of RISC. Argonaute proteins are endonucleases that aid in 

the maturation of pre-miRNAs of 60 to 70 nucleotides to 

mature miRNAs of 21 to 24 nucleotides; the tethering to 

mRNA mimics the miRNA-mediated repression of protein 

synthesis.164,407,408 There are 8 members of the Argonaute 

family in the human genome;409 4 belong to the PIWI 

subfamily and are expressed mainly in the testis, whereas 

the other 4 belong to the elF2C/AGO subfamily and are 

expressed in a variety of adult tissues. Ago1 and Ago2 

(catalytic engine of RISC) reside in 3 complexes with dis-

tinct DICER and RNA-induced proteins involved in RNA 

metabolism.410 Three of the 4 members of the elF2C/AGO 

subfamily are found in a tandem cluster of closely related 

Argonaute non-nucleolytic proteins,411 Ago1, Ag3, and Ago4 

on chromosome 1p (Table 4). Therefore, loss of chromosome 

1p should have a major impact on the process of miRNA 

processing in the affected cells.

A family of miRNAs on chromosome 1p of particular 

interest to colon carcinogenesis is the miR-200 family, 

which includes miR-200a, -200b, and -429 (Table 4). These 

3 family members are all encoded on a 7.5-kb polycistronic 

primary miRNA transcript and help determine the epithelial 

phenotype of cancer cells through the regulation of the 

Wnt/β-catenin signaling pathway.412,413 Wnt growth factors 

activate a cascade of intracellular events, known as the 

canonical Wnt pathway, which ultimately leads to a co-

ordinated proliferation, differentiation, and sorting of the 

epithelial cell population that forms the colonic crypts.414 

In colorectal cancer, epithelial cells that acquire mutations 

in the Wnt/β-catenin signaling pathway gain inappropriate 

proliferative capabilities mimicking the effect of a permanent 

Wnt stimulation.414 Beta-catenin is a transcription factor that 

translocates to the nucleus and activates target genes involved 

in stimulation of the cell cycle and inhibition of apoptosis. 

E-cadherin binds directly to β-catenin in the cytoplasm, 

which restricts the movement of β-catenin to the nucleus. 

ZEB1 and ZEB2 are proteins that repress the transcription 

of E-cadherin. Members of the miR-200 family were found 

to directly target the mRNA of ZEB1 and ZEB2,412,415–418 

upregulate E-cadherin expression in cancer cell lines, and 

reduce cellular motility.412 Conversely, downregulation of 

one miR-200 family member that was tested, miR-200a, 

was shown to promote tumor growth by reducing E-cadherin 

and activating the Wnt/β-catenin signaling pathway.413 

Cancer progression has some similarities with embryonic 

development and wound healing, in which a process of 

epithelial-to-mesenchymal transition (EMT) occurs.419 

Although the EMT normally occurs as a process of stem cell 

differentiation, the EMT that occurs during carcinogenesis 

involves a change from a differentiated tumor to a more 

invasive dedifferentiated tumor.412,419,420

The loss of the miR-200 family of miRNAs, coupled 

with the loss of 4 proteins associated with the Wnt/β-catenin 

signaling pathway (Table 5 below), and the loss of the pro-

apoptotic miR-34a and the miRNA transcriptional protein, 

p73, should have a significant impact on the initiation and 

progression of colon cancer.

wnt/β-catenin signaling pathway (Table 5)
The Wnt signaling pathway is critical for the differentiation 

and sorting of the epithelial cell population necessary for 

the organization of the colonic crypts and for the regulation 

of crypt cell renewal and homeostasis.414,421 Wnt signaling 

is  initiated by the binding of extracellular Wnt factors to 

 receptors on the cell surface, which triggers a signaling 

 cascade that leads to the accumulation of β-catenin.414,422 

In the absence of Wnt signals, β-catenin is degraded 

by a  multicomplex complex composed, in part, of APC 

(adenomatous polyposis coli), GSK3β (glycogen synthase 

kinase-3-beta), and the scaffold proteins Axin1 and Axin2/

conductin,423–425 forming the β-catenin destruction box. This 

destruction box is responsible for the GSK3β-mediated 

phosphorylation of β-catenin and its subsequent degradation 

by the ubiquitin-proteasome pathway. The Wnt signals 

block this phosphorylation and degradation, resulting in the 

accumulation of β-catenin. Cytoplasmic β-catenin accumu-

lation and translocation to the nucleus allows β-catenin to 

associate with TCF/LEF (T cell factor/lymphocyte enhancer 

factor) transcription factors which target genes that enhance 

cell survival and proliferation (ie, c-myc, cyclin D1).426–428 

Mutations in APC, β-catenin, Axin1, or ICAT (inhibitor 

of beta-catenin and Tcf-interacting protein) result in the 

deregulated accumulation of β-catenin and the constitutive 

activation of Wnt signaling,429–431 a major cause of cancer, 

including colorectal cancer.418,424,425,432

There are 4 genes located on chromosome 1p that are 

directly involved in the Wnt signaling pathway (CTNNBIP1, 

DVL1, WNT2B, and WNT4) (Table 5). WNT2B and WNT4 

are secreted signaling factors and Dvl1 is a cytoplasmic 

molecule that associates with Frat-1 to activate the Wnt 

signaling pathway. The loss of these positive regulators of 

the Wnt signaling pathway as a result of a chromosomal 

1p deletion may contribute to the dysregulation of crypt 
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organization that could initiate the carcinogenic process.433 

CTNNBIP1/ICAT (Table 5), on the other hand, is a 

negative protein regulator of the Wnt signaling pathway. 

ICAT disrupts β-catenin–TCF interactions,434–436 thereby 

downregulating gene expression associated with proliferation 

and cell survival. The crystallographic structure of ICAT 

indicates the mechanism by which ICAT interferes with 

β-catenin function. The NH
2
-terminal domain of ICAT 

binds to armadillo repeats 10–12 of β-catenin, whereas the 

COOH-terminal domain of ICAT binds to the groove formed 

by armadillo repeats 5–9.435,437 The armadillo repeats 5–9 

are crucial for the binding of β-catenin to both TCF and 

E-cadherin.438 The importance of ICAT in the prevention 

of carcinogenesis is underscored by the fact that ICAT is 

a multipotent inhibitor of β-catenin438 by interfering with 

the binding of β-catenin to TCF, cadherins, and APC, 

with consequences for transcription, cell adhesion, and 

cytoskeletal function.438–440 The cytoplasmic and nuclear 

location of ICAT, using an immunohistochemical approach, 

is consistent with a broader role for ICAT than previously 

reported.440

In addition to the effects on transcription and cell adhesion, 

ICAT can function as a pro-cell death molecule in certain 

situations. Overexpression of ICAT in colorectal tumor cells 

results in growth arrest and cell death, and serves to eliminate 

cells with a constitutively activated Wnt signaling pathway.441 

Using flow cytometry, the cell death was evidenced by a 

sub-G1 peak of the cell cycle, and the forced entry of cells 

into an illegitimate DNA synthetic phase without having 

undergone a prior mitosis (enhanced trypan exclusion 

of .4N cells).441 Transgenic mice expressing ICAT also make 

activated T cells (dependent on β-catenin–TCF signaling for 

survival442,443) highly susceptible to apoptosis (using annexin V 

staining), by reducing the expression of Bcl
xL

 below a critical 

threshold.436 The mechanism by which ICAT reduces Bcl
xL

 

expression is not known at the present time.

Since chromosomal instability is a major feature of 

colon carcinogenesis, it is appropriate to consider the 

role of the Wnt signaling pathway in mitotic control and 

 aberrant Wnt signaling in the generation of chromosomal 

 aberrations. A precedent for exploring the role of aberrant 

Wnt  signaling in chromosomal instability are the findings 

that 1) multiple signaling pathways converge to orient 

the mitotic spindle in Caenorhabditis elegans embryos;444 

2) APC and EB1 (a microtubule-associated protein) have 

the ability to maintain proper spindle positioning in the 

developing nervous system of Drosophila;445,446 3)  binding of 

APC protein to microtubules increases microtubule stability 

and is regulated by GSK3β;447 4) APC has a role in chro-

mosome segregation;448 5) β-catenin is a component of the 

mammalian mitotic spindle and functions to ensure proper 

centrosome separation and subsequent establishment of a 

bipolar spindle;449 6) GSK3β has a role in mitotic spindle 

dynamics and chromosome alignment,450 and localizes to 

the centrosome and specialized cytoskeletal structures;451 

7) dishevelled genes are involved in mitotic progression in 

cooperation with polo-like kinase 1;452 and 8) conductin/axin2 

and Wnt signaling regulates centrosome cohesion.453 It is now 

well established that aberrant Wnt/β-catenin signaling can 

induce chromosomal instability in cancer, including colon 

cancer.454–458 An understanding of the mechanisms by which 

specific components of the Wnt signaling pathway affect 

mitosis, mitotic slippage and other aspects of the cell cycle, 

including interaction with spindle checkpoint proteins, needs 

to be experimentally determined.

Tumor suppressors (Table 6)
Experiments involving somatic cell fusion and chromo-

some segregation established the concept that certain genes 

are capable of suppressing tumorigenesis.459,460 Tumor 

suppressors are genes whose miRNA or protein products 

reduce the formation of tumors and prevent malignant 

progression by decreasing proliferation, regulating the cell 

cycle, maintaining chromosome integrity, enhancing DNA 

repair, inducing apoptosis, and, by reducing angiogenesis, 

invasion, migration, and cell adhesion. Classic tumor 

suppressor genes that, when deleted or mutated, contribute 

to tumorigenesis in many types of tumors include p53, RB, 

INK4a (p16), and ARF.461 In colorectal cancer, mutations 

and LOH of the tumor suppressor, APC, can affect both the 

initiation and progression of cancer, whereas the loss of p53 

is a late event. Therefore, when the loss of chromosome 1p 

became associated with many types of cancer, including 

colon cancer, several groups began the quest to identify the 

specific tumor suppressor gene or genes located on 1p.462–467 

Several genomic loci were identified as “hot spots” for tumor 

suppressor genes, which included 1p36 and 1p34. It became 

evident that many genes, both inside and outside of these “hot 

spots”, could be classified as tumor suppressors; 26 tumor 

suppressor genes, their genomic loci, and the function of 

their gene products are listed in Table 6. (Note: 11 genes 

classified as tumor suppressors in Table 6 are not listed in 

other tables [Tables 1–5 and 7]).

Several tumor suppressors are haploinsufficient,468 and 

cell cycle regulatory tumor suppressor genes seem  especially 

dosage-sensitive.469 These findings indicate that the loss of 
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only one copy of a gene in a diploid cell could have a biologic 

effect.469 Such a loss could contribute to cellular transforma-

tion, with the process of selection driving clonal expansion 

of pre-neoplastic cells.8

Certain tumor suppressors play a more prominent role in 

tumorigenesis than others in particular tissue types. However, 

it is probable that the loss of numerous tumor suppressor 

genes as a result of a chromosomal deletion probably plays 

a prominent role in the initiation and progression of cancer 

through a “combination” of different and/or complementary 

adverse cellular and molecular events.461,467

Antioxidants (Table 7)
Four genes on chromosome 1p are associated with 

defense against oxidative stress (Table 7). Two of these 

(peroxiredoxin 1 [PRDX1] and endoplasmic reticulum protein 

ERP19 [TXNDC12]) utilize reducing equivalents provided 

through the thioredoxin system, and 2 (glutamate-cysteine 

ligase [modifier subunit] or GCLM and glutathione peroxidase 

7 [GPX7]) utilize glutathione. One of the most important genes 

associated with oxidative stress is glutamate-cysteine ligase 

(GCL) (also called gamma-glutamylcysteine synthetase), the 

first rate limiting enzyme of glutathione synthesis.470,471 This 

enzyme requires coupled ATP hydrolysis to form an amide 

bond between the γ-carboxyl group of glutamate and the amino 

group of cysteine to form γ-glutamylcysteine. The enzyme 

consists of a heavy catalytic subunit (73 kDa) and a light 

(31 kDa) regulatory subunit (GCLM); the light chain or modi-

fier subunit is found on chromosome 1p. It has been known for 

the past 2 decades that the ultimate formation of glutathione 

is required for intestinal function.472 The  long-term ingestion 

of reduced glutathione has recently been shown to suppress 

the accelerating effect of a beef tallow diet on colon carcino-

genesis in rats.473 The specific importance of GCLM to protec-

tion against  oxidative stress is  underscored in GCLM (−/−) 

 knock-out mice, which are severely compromised in the 

oxidative stress response.474

GCL can be increased by oxidative stress or glutathione 

depletion475,476 through the inhibition of SHP-1477 and 

the activation of jun N-terminal kinase (JNK).477,478 The 

increase in GCL can protect against mitochondrial injury 

and numerous cellular processes that are depend on the 

generation of glutathione, such as cell cycle progression, 

inhibition of caspases (protection against apoptosis), activity 

of detoxification enzymes (see GSTM genes in Table 8; 

discussed below), and DNA repair.479–482 Recent studies 

indicate that a reduced state of proteins in the nucleus is 

an important environment that induces heterochromatin 

formation482 and the regulation of histones and PARP 

activities.483

Defense against environmental 
 and metabolic toxicity (Table 8)
Chromosome 1p contains 19 genes associated with 

protection against toxins/carcinogens derived from the 

environment, dietary/cooking-derived components, and 

metabolism (Table 8). These genes consist of 2 arylacetamide 

deacetylase-like enzymes, 4 members of the aldo-keto 

reductase family, 6 members of the cytochrome P450 

family of polypeptides, all 5 members of the mu class of 

glutathione-S-transferases (GSTs), and 2 metal response 

element binding transcription factors. A compilation of 

the 10 most significant transcripton factors capable of 

targeting the 5′-upstream promoter regions of these 19 genes 

(GeneCards [SABiosciences’ database; UCSC Genome 

Browser]) indicates the possible involvement of 95 distinct 

transcription factors that control their expression. In addition, 

the Wnt/beta-catenin signaling pathway has been shown to 

activate various P450 family and GST mu class enzymes 

in mouse models.484 Since transcription factors respond 

to different cellular demands and stresses, the presence of 

these genes on chromosome 1p indicates that the loss of this 

chromosome arm could compromise the cell’s ability to 

respond to a variety of environmental toxins/carcinogens 

that could damage DNA.

It is of interest that all 5 genes of the mu class of GSTs 

are located on chromosome 1p. The 5 genes are arranged in 

tandem in the physical order 5′-M4-M2-M1-M5-M3-3′.485,486 

The M4-M2-M1-M5 sequence in the gene cluster is oriented 

in a head-to-tail orientation, whereas the M3 gene is oriented 

tail-to-tail with respect to the adjacent M5 gene, and is 

therefore transcribed in the reverse orientation relevant to 

the other 4 GST mu genes.485 This GST mu gene cluster 

functions in the detoxification of electrophilic compounds by 

conjugating glutathione to a wide number of endogenous and 

exogenous toxins/carcinogens.487 Genetic polymorphisms 

in GSTM1 increase susceptibility to gastric and colorectal 

adenocarcinomas.488 In addition, about 70% of human loci 

is deleted for GSTM1 and 50% of the human population is 

homozygous deleted for GSTM1.485 This deletion is a result 

of unequal crossing-over between the two 2.3 kb repeated 

regions in the intergenic regions that flank the GSTM1 gene. 

Homozygous deletion of GSTM1 results in increased 

baseline chromosomal aberrations in lymphocytes among 

smokers, indicating the role of epoxides and other reactive 

metabolites of polycyclic aromatic hydrocarbons in inducing 
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genomic instability in these compromised cells.489 All 

5 GSTM genes have distinct promoter regions that respond to 

a different array of transcription factors. Therefore, the loss of 

 chromosome 1p would compromise cellular defenses against 

toxins/carcinogens, especially in individuals harboring the 

GSTM1 deletion or other specific polymorphisms.

Development of resistance to cell death 
and the propagation of cells with DNA 
damage and chromosomal defects 
(summary)
We have described in this review how the combination of the 

persistent damage to a cell’s genome with the inability of that 

cell to adequately repair the damage or die in response to the 

excessive damage, is a dangerous situation which can result in 

clonal selection and the development of colon carcinogenesis. 

The molecular and cellular mechanisms that are associated 

with the death of cells are most complex, and include both 

caspase-dependent and caspase-independent processes. 

Listed in Tables 1–7 are 27 pro-apoptotic/pro-cell death genes 

found on chromosome 1p, whose simultaneous loss caused 

by a chromosome 1p deletion could have a major impact on 

the development of resistance to cell death. In Table 9, we 

extract from those tables the specific genes whose products 

contribute to cell death. Caspase-9 and both subunits of DNA 

fragmentation factor are on the downstream execution phase 

of apoptosis, and the consequences of their loss are obvious. 

However, the loss of other gene products (eg, TP73, miR-34a) 

can have pleiotropic effects on cell death pathways because of 

multiple transcriptional or translational targets. In addition, 

TP73, KIF1B, and E2F2 are classified as haploinsufficient 

genes, with loss of function implied with the presence of only 

1 allele.490 Some gene products have dual DNA repair/pro-cell 

death functions (eg, MUTYH) and dual mitosis/pro-cell death 

functions (KIF1B). One can see (Table 9) that, in addition to 

classic pro-apoptotic genes, there are dual role cell survival/

pro-cell death genes, DNA damage-response genes, various 

tumor suppressor genes, genes associated with mitosis, miR-

NAs, Wnt signaling, and protection against the generation 

of peroxides. The mechanism of action of these 27 genes 

in the control of cell fate is an active area of investigation 

and beyond the scope of this review. This detailed study of 

the implications of the loss of chromosome 1p serve as an 

example of how specific chromosomal  deletions can have a 

major impact on carcinogenesis.

Role of dietary factors in colon 
carcinogenesis (Table 10491–538)
In this section we first address what alteration in specific 

dietary factors can lead to the loss of chromosome seg-

ments or entire chromosome arms in general to produce 

loss of heterozygosity. Second, we will consider how the 

 consequences of the loss of genes located on chromosome 1p 

might be affected by pro-carcinogenic and anti-carcinogenic 

dietary factors. Our approach is to show how specific dietary 

factors may influence the molecular and cellular processes 

affected by chromosome 1p loss that were described in previ-

ous sections. Links of diet to any of the specific genes lost by 

the 1p deletion (see Tables 1–8) are listed in Table 10.

Diets high in fat,473,539–547 but low in fiber,540,548–551 low 

in vegetable intake,552–555 and micronutrient deficient556–560 

induce oxidative stress and DNA damage and adversely 

affect many molecular pathways that prevent genomic 

instability and apoptosis resistance, 2 major processes 

that, together, enhance the development of sporadic colon 

cancer.

Table 9 Summary of pro-cell death genes on chromosome 1p

Pro-cell death genes Reference tables

GADD54α, MUTYH, TP73 Table 1 DNA repair and DNA damage response genes
APiTD1, CCNL2, CDC2L2, CDC42, E2F2, KiF1B, PLK3 Table 2 Mitosis-related and spindle checkpoint genes
BCL2L15, BCL10, CASP9, DFFA, DFFB, THAP3, TNFRSF25 Table 3 Apoptosis-related genes
miR-34a, miR-101-1, miR-320b-1 Table 4 MicroRNAs (miRNAs) and components of the miRNA processing complex
CTNNBiP1 (iCAT) Table 5 Genes associated with the wnt signaling pathway
CHD5, DEAR1, PRDM2, NBL1, PLA2S-ii Table 6 Tumor suppressor genes
PRDX1 Table 7 Genes associated with antioxidant function

Abbreviations: APiTD1, Apoptosis-inducing, TAF9-like domain 1; CL2L15, B-Cell Lymphoma-2-like protein 15; BCL10, B-Cell Lymphoma 10; CASP9, cysteine-aspartic 
acid protease, family member 9; CCNL2, Cyclin L2; CDC2L2, Cell Division Cycle 2-like 2; CDC42, Cell Division Cycle 42; CHD5, Chromodomain Helicase DNA Binding 
Protein 5; CTNNBiP1 (iCAT), Catenin, beta interacting protein 1 (inhibitor of beta-catenin-interacting protein 1); DEAR1, Ductal Epithelium-Associated RiNG Chromosome 
1; DFFA, DNA Fragmentation Factor A; DFFB, DNA Fragmentation Factor B; E2F2, E2F transcription factor 2; GADD45α, Growth Arrest and DNA-Damage-inducible 45 
alpha; KiF1B, Kinesin family member 1B; miR-34α, microRNA-34α; miR-101-1, microRNA-101-1; miR-320b-1, microRNA-320b-1; MUTYH, MutY Homolog (E. coli); NBL1, 
Neuroblastoma, suppression of tumorigenicity 1; PLA2S-ii, The Secretory Type ii Phospholipase A2; PLK3, Polo-like Kinase 3; PRDM2, PR Domain Containing 2; PRDX1, 
Peroxiredoxin 1; THAP3, THAP domain containing; TNFRSF25, Tumor Necrosis Factor Receptor Superfamily, Member 25; TP73, Tumor Protein 73.
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Table 10 Preventive effects of dietary factors on processes and signaling pathways associated with genes located on chromosome 1p

Process Dietary factor(s) and food sources Effect(s) of dietary factors and references

DNA repair and  
DNA repair proteins

1)  Polyphenols occur in fruits and vegetables,  
wine, tea, coffee, herbs, extra virgin olive oil, 
chocolate, and other cocoa products

 
2) vitamins

1)  Stimulates DNA repair491,492 and increases levels of DNA 
repair proteins (eg, PARP-1 and PMS2) by chlorogenic acid and 
metabolites493 and GADD45 by dihydroxyphenylethanol494 and 
quercetin.495

2) Ascorbate upregulates MLH1 and p73.496

MicroRNA expression 1) Folate
 
 
 
2) Retinoids
 
3)  Curcumin (component of the indian spice, 

turmeric)
4) Polyphenols
 
5) Fish oil
 
6) vitamins

1)  Exerts cancer-protective effects through modulation of miRNA 
expression;497 rats fed a methyl-deficient diet exhibited decreased 
expression of miRNA-34a with the concomitant increase 
in E2F3.498

2)  Exert cancer-protective effects through modulation of miRNA 
expression.497,499

3)  Exerts cancer-protective effects through modulation of miRNA 
expression.497,500

4)  Quercetin and metabolites modulate inflammatory miRNA gene 
expression.501

5)  n-3 polyunstaurated fatty acids modulate carcinogen-directed  
non-coding miRNA signatures in rat colon.502

6)  Differences in dietary vitamin E affect hepatic miRNA 
concentrations in vivo.503

wnt signaling pathway 1)  Stilbenes (polyphenols) present in grapes, 
berries, peanuts, and red wine

2) Curcumin
 
 
 
 
 
3)  Triterpene lupeol found in a variety  

of fruits, vegetables, and some  
medicinal herbs

1)  Reduced nuclear and cytoplasmic immunostaining of β-catenin in 
the AOM rat model of colon carcinogenesis.504

2)  Curcumin has an inhibitory effect on wnt signaling505,506 through 
a) suppression of β-catenin response transcription activated by 
wnt3a,507 b) induction of caspase-3-mediated degradation of 
β-catenin,508 c) downregulation of p300, a positive regulator of 
the wnt/β-catenin pathway,507 d) reduction of expression of the 
Frizzled-1 wnt receptor.509

3)  Lupeol treatment resulted in a) an increase of apoptosis,  
b) a decrease in β-catenin transcriptional activity, c) a restriction  
of the translocation of β-catenin from the cytoplasm to the nucleus, 
d) a decrease in expression of the wnt target genes, c-myc, cyclin 
D1, e) a decrease in expression of the proliferation markers, 
PCNA, Ki-67, and f) a decrease in expression of the invasion 
marker, osteopontin.510

Antioxidant
gene
expression

1) Polyphenols (eg, red wine, black tea)
 
 
2) Curcumin
 
3) Diterpenes (eg, kahweol, cafestol)

1)  Activate endogenous antioxidant defense systems, which include 
the glutathione peroxidases;511,512 enhancement of glutathione and 
γ-glutamylcysteine synthetase.513–517

2)  Curcumin alters EpRE and AP-1 binding complexes and elevates 
glutamate-cysteine ligase expression.518

3)  The coffee-derived diterpenes (eg, kahweol, cafestol) can induce 
γ-glutamylcysteine synthetase and glutathione levels in the liver, 
kidney, lung, and colon of the rat.519

Environmental/
metabolic
toxicity genes

1) Polyphenols and orto-phenols
 
 
2) Diallyl disulfide (DADS)
 
3) Butyrate
4) Diterpenes (eg, kahweol, cafestol)

1)  Activate endogenous detoxification defense systems,511,520 including 
GSTM2;513 p-coumaric acid, a coffee compound.521 can increase the 
mRNA levels of GSTM2.522

2)  DADS increases tissue activities of quinone reductase and 
glutathione transferase in the gastrointestinal tract of the rat.523

3)  Butyrate can induce GSTM2 expression in human colon cells.524

4)  The coffee-derived diterpenes (eg, kahweol, cafestol)521  
can enhance glutathione S-transferase activities.519,525

Oxidative DNA
damage

1)  Polyphenols include flavonoids (quercetin, 
luteolin, kaempferol, naringenin; myricetin), 
oleuropein, protocatechuic acid, hydroxybenzoic 
acids, flavones, hydroxycinnamic acids, lignans,  
anthocyanins, isoflavones, stilbenes,  
propanoid glycosides, chlorogenic acid,  
and metabolites

1)  Polyphenols have the capacity to act as antioxidants (chain breakers 
or free radical scavengers,526 thereby preventing the induction of 
oxidative DNA lesions,527–530 and stimulating DNA repair;492 black 
tea complex polyphenols inhibit 1,2-dimethylhydrazine-induced 
oxidative DNA damage in rat colonic mucosa;531 4-coumaric acid, 
a coffee component, can reduce oxidative DNA damage in rat 
colonic mucosa.522

(Continued)
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The effects of diet likely occur early in the carcinogenesis 

process, since an altered vegetable intake is known to affect 

pivotal carcinogenesis pathways in the colonic mucosa 

from adenoma patients and controls.561 Although 2 alleles 

are associated with each gene, and the loss of 1 allele may 

be compensated for by the other, many genes are reported 

to be haploinsufficient, including those associated with the 

mitotic checkpoint.562 It is relevant that TP73, KIF1B, and 

E2F2, found on chromosome 1p, have also been reported 

to be haploinsufficient,490,563,564 and could have dramatic 

 consequences for colon tumorigenesis if only 1 allele is 

expressed in colonic epithelial cells. It is possible that many 

other genes may be found to be haploinsufficient in the 

future, since a map of 1079 probable haploinsufficient genes 

has been compiled by systematic identification of genes 

unambiguously and repeatedly compromised by copy number 

variation among 8458 apparently healthy individuals.565 Those 

genes with a high probability of exhibiting haploinsufficiency 

were enriched among genes implicated in human dominant 

diseases and among genes causing abnormal phenotypes 

in heterozygous knockout mice.565 In addition, the loss of 

several genes on the same chromosome arm that affect a 

particular molecular pathway (see Tables 1–8) may together 

have a significant effect on that pathway, although the loss of 

a single gene may have little effect. Specific dietary factors 

may decrease the protein levels of certain genes through 

post-translational mechanisms (eg, proteasomal degradation), 

thereby inducing a functional pseudo-biallelic loss of a gene, 

one through a physical loss of the chromosomal segment 

harboring that gene, and the other an actual degradation of 

the gene product.

Although dietary factors may affect many processes 

associated with carcinogenesis, we will evaluate specific 

factors associated with oxidative stress/inflammation, 

since these genotoxic processes are known to have major 

effects on the initiation and progression of cancer, including 

colon cancer.566–578 Direct damage to DNA, assessed by 

immunohistochemical staining of 8-oxoG, correlates 

with poor survival in colorectal cancer.579 ROS can cause 

excessive DNA double strand breaks, resulting in the loss 

of chromosome segments or entire arms, depending on 

the location of the break. In addition, several DNA repair 

 proteins are degraded through an oxidative mechanism,580,581 

thereby affecting DNA repair and increasing susceptibility 

to  cancer.582 Oxidative stress can affect spindle organization, 

induce centrosome amplification, cause proteolysis of 

 components of the  anaphase-promoting complex, and 

 override the spindle checkpoint, thereby  affecting chro-

Table 10 (Continued)

Process Dietary factor(s) and food sources Effect(s) of dietary factors and references

2)  Fish oils, such as docosahexaenoic acid  
(DHA), eicosapentaenoic acid (EPA)

3)  Monounsaturated fatty acid (eg, oleic acid) 
obtained from olive oil.

 
 
 
 
 
 
 
4) Short-chain fatty acids (eg, butyrate)
 
 
 
 
5)  Garlic organosulfur compounds (OSC),  

such as allicin, diallyl sulfide, diallyl disulfide, 
S-allyl cysteine, allyl mercaptan, are derived 
from garlic

6) vitamins

2) Fish oils reduce oxidative DNA damage in rat colonocytes.532 
 
3)  in a study of the effect of olive oils on biomarkers of oxidative DNA 

stress in Northern and Southern Europeans, 25 mL of 3 olive oils 
with low, medium, and high phenolic content were administered to 
182 males daily for 3 weeks, resulting in a significant reduction of 
DNA oxidation by 13%.533 The olive oil intake led to marked increase 
in monounsaturated fatty acid intake independent of the phenolic 
compounds; lifelong feeding of monounsaturated fatty acid-rich olive oil 
led to a lower level of oxidative DNA damage and DNA double strand 
breaks compared with polyunsaturated fatty acid-sunflower oil.534

4)  Pre-incubation of normal human colonocytes ex vivo and HT-29 
colon cancer cells in vitro with physiological concentrations of 
butyrate reduced H2O2-induced DNA damage using the comet 
assay;535 butyrate protects human colon cells from genetic damage 
by 4-hydroxynonenal.536

5)  OSC decreased the genotoxicity of hydrogen peroxide and 
methanesulfonate, assessed using the comet assay.537

 
 
6)  Ascorbic acid (vitamin C) protects against endogenous oxidative 

DNA damage.538

Abbreviations: AOM, azoxymethane; AP-1, activator protein 1; c-myc, avian myelocytomatosis viral oncogene homolog; DADS, diallyl disulfide; DHA, docosahexaenoic 
acid; E2F3, E2F transcription factor 3; EPA, eicosapentaenoic acid; EpRE, electrophile response element; GADD45, Growth Arrest and DNA-Damage-inducible 45; GSTM2, 
Glutathione S-Transferase Mu 2; Ki-67, antigen identified by monoclonal antibody Ki-67; miRNA-34a, microRNA-34a; MLH1, mutL homolog 1; mRNA, messenger ribonucleic 
acid; OSC, organosulfur compounds; P73, Tumor Protein 73; PARP-1, poly(ADP-ribose) polymerase-1; PCNA, proliferating cell nuclear antigen; PMS2, postmeiotic segregation 
increased 2; wnt, wingless-type.
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mosomal stability. Therefore, oxidative stress can induce 

a mutator phenotype in affected cells.583 The big question 

is what dietary factors contribute directly to  oxidative 

DNA damage and aneuploidy (alteration in the number of 

whole chromosomes or chromosomal segments). We now 

address several dietary factors that may be  associated with 

these forms of genomic instability. Although the literature 

on dietary factors associated with genomic instability is 

substantial, we have chosen to discuss the effects of a high-

fat diet, folate deficiency, and niacin deficiency, since the 

molecular and cellular mechanisms associated with the 

overabundance or deficiency of these factors have been 

especially well studied.

A high-fat diet derived from beef tallow or corn oil 

(eg, linoleic acid, palmitic acid) is one of the major causes of 

sporadic colon cancer. Long-chain nonesterified (“free”) fatty 

acids (FFA) and some of their derivatives and metabolites 

can modify the intracellular production of ROS, in particular 

superoxide anions and hydrogen peroxide, in part, through 

their interference with the mitochondrial electron transport 

chain.584 FFA can also interfere with the glutathione system 

and stimulate the generation of superoxide anions from 

phagocytic NADPH oxidases.584 Chronic exposure of cells 

to FFA (eg, palmitic acid) can also alter miRNA expression 

(eg, miR-34a, miR-146).585

The genotoxicity associated with a high-fat diet is also 

caused, in part, by high concentrations of hydrophobic bile 

acids released into the gastrointestinal tract in response to 

high-fat meals where they act as detergents to aid in the 

digestion of fats. Our research group showed that deoxycholic 

acid (a major hydrophobic bile acid in the human colon) 

induces ROS586–589 in vitro, and oxidative DNA damage,590 

sessile adenomas,591 and colon cancer592 in dietary-related 

mouse models. In addition to the bile  acid-induced formation 

of 8-oxoG in guanine bases of DNA and the induction of 

DNA strand breaks (activation of γ-H2AX593 and PARP594), 

we have shown that deoxycholic acid affects genomic 

instability at the chromosomal level.595 Evidence indicating 

the induction of chromosomal damage by deoxycholic acid 

include the formation of micronuclei and aberrant mitoses, 

attenuation of activation of the nocodazole-induced spindle 

checkpoint, and decrease in protein expression of major 

spindle checkpoint proteins (eg, Mad2, BubR1, securin). The 

dramatic effect of deoxycholic acid on the process of mitosis 

is underscored by the finding that deoxycholic acid modulates 

71 mitosis-related genes at the mRNA and/or protein levels 

in vitro and in vivo using mouse models.8 The induction 

by hydrophobic bile acids of both DNA and chromosomal 

damage indicates that hydrophobic bile acids are endogenous 

carcinogens that, at high pathophysiologic concentrations, 

are capable of contributing to the initiation and progression 

of colon cancer.8,189,595–597 In addition to causing genomic 

instability, deoxycholic acid can activate survival pathways 

(eg, NF-κB594 and autophagy598), which allow for the survival 

and selection of cells with genomic instability.8,599

Coffee drinkers have a lower incidence of cancer, 

including that of the colon and rectum.600–603 One coffee 

compound that we found to prevent the formation of bile 

acid-induced proximal colon cancer in a mouse model is 

chlorogenic acid (CGA), the ester of caffeic acid with quinic 

acid.592 CGA is one of the most abundant polyphenols in the 

human diet, with coffee, fruits (eg, blueberry, strawberry, 

raspberry, apple), and vegetables (eg, eggplants, potato, 

carrot, tomato) as its major sources.493,604 CGA and its 

metabolites are likely responsible, in part, for the lower 

risk of rectal cancer associated with the consumption of 

decaffeinated coffee in 2 large prospective cohort studies.603 

One possible mechanism by which polyphenols can reduce 

colon cancer in this model is through the reduction in 

deoxycholic acid levels.605 In this study, Han et al605 report 

that when rats on a high-fat diet (30% beef tallow) received 

dietary curcumin (component of the Indian spice turmeric) 

or caffeic acid (metabolite of CGA), the fecal concentration 

of deoxycholic acid was substantially reduced. In addition, 

dietary supplementation of this high-fat diet with caffeic 

acid, catechin (plant polyphenol), rutin (citrus flavonoid 

glycoside), and ellagic acid (plant polyphenol) significantly 

reduced the levels of fecal lithocholic acid, a second major 

hydrophobic bile acid and risk factor for colon cancer.605

The induction of double-strand breaks is a major cause of 

the production of chromosomal fragments and the deletion 

of hundreds to thousands of genes. An important DNA repair 

protein in preventing large chromosomal deletions is Parp-1606 

(Figure 5). DNA strand breakage is directly caused by ROS 

(which would be enhanced due to the loss of genes encoding 

antioxidant proteins in the chromosome 1p deletion [Table 7]) 

or as a result of the activity of base excision repair enzymes 

(see Figure 5). Strand breakage activates Parp-1, which is 

involved with opening up chromatin and allowing DNA repair 

processes to occur, including base excision repair, single-

strand and double-strand repair (Figure 5). Shibata et al606 

carried out mutation analysis using Parp-1 knockout (Parp−/−) 

mice, and found that PARP deficiency enhanced deletion 

mutations, especially .1 kbp. A dietary micronutrient whose 

deficiency has a major effect on PARP activity is niacin 

(vitamin B
3
) obtained from meat and corn. The term niacin 
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refers to nicotinic acid and nicotinamide, which are both 

used by humans to form NAD+. PARP-1 utilizes NAD+ to 

make poly(ADP-ribose) needed for poly(ADP-ribosyl)ation 

of proteins. In keeping with the protective effect of PARP, we 

determined that pre-treatment of cells in vitro with nicotinic 

acid and nicotinamide protected against bile acid-induced 

apoptosis,607 presumably by enhancing PARP-mediated DNA 

repair of bile acid-induced DNA damage and replenishing 

the NAD+ levels in mitochondria. In addition, we showed that 

pre-treatment of cells with nicotinic acid and nicotinamide 

upregulated the mRNA levels of the glycolytic enzymes, 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 

glucose-6-phosphate dehydrogenase (G6PD).608 GAPDH 

and G6PD may protect against oxidative stress, in part 

through the generation of the reduced pyridine nucleotides, 

NADH and NADPH, respectively, from NAD+.608 Niacin 

supplementation was even reported to improve pellagra 

(severe niacin deficiency) in a patient with Crohn’s disease,609 

a pre-cancerous inflammatory condition610 associated with 

oxidative DNA damage.611 Pellagra most probably developed 

in these Crohn’s disease patients through a combination of 

intestinal malabsorption of niacin/nicotinic acid612,613 and 

the high demand for NAD+ that accompanies DNA damage-

induced PARP-1 activity (see Figure 5). Work from our 

laboratory indicated that CGA and its metabolites, caffeic 

acid, m-coumaric acid, and 3-(m-hydroxyphenyl) propionic 

acid, increased PARP-1 protein expression.493 The modulation 

of PARP-1 protein levels by CGA may explain, in part, the 

colon cancer preventive properties of CGA when added as 

a supplement to the bile acid-induced colon cancer mouse 

model.592

The mechanisms by which chromosome segments are 

deleted and translocated can be most complex. Deletions 

and translocations can arise from centromeric instability and 

telomeric instability.7,614 and have been proposed as possible 

mechanisms for chromosomal aberrations associated with 

chromosome 1.615–617 Centromeric instability can result 

from hypomethylation or acetylation of pericentromeric 

heterochromatin, resulting in decondensation/uncoiling/

disruption of the centromere618–620 and loss of the affected 

chromosome arms. Telomeric instability is characterized 

by telomeric fusions, formation of anaphase bridges during 

mitosis, broken chromosomes upon the stress of cell division, 

and fusion of chromosomal fragments to chromosome 

ends. This cycle of chromosomal abberations is referred 

to as breakage–fusion–bridge cycles.107–114,621 Six genes 

found on chromosome 1p (APITD1, CCDC28B, CDCA8, 

HDAC1, KIF2C, RCC2) are associated with centomeres (see 

Table 2), and whose loss would affect centromeric instability. 

A deficiency of HDAC1, for example, has been reported to 

disrupt pericentromeric heterochromatin.622 In addition to its 

role in the repair of interstrand cross-links,623 APOLLO (aka 

DCLRE1B [DNA cross-link repair 1 B]) is also involved 

in the protection of telomeres (see Table 1). APOLLO is 

stabilized when bound to the telomere-binding protein 

TRF2, and protects human telomeres in S phase624 (Figure 4). 

A reduced level of APOLLO results in an increased number 

of telomere-induced DNA damage foci and telomeric fusions 

in S-phase,624 suggesting that APOLLO contributes to a 

processing step associated with the replication of chromosome 

ends. Hydrophobic bile acids, probably through the generation 

of oxidative stress, can modulate 71 genes associated with 

mitosis8 and decrease the protein expression of 3 major 

spindle checkpoint proteins (eg, Mad2, BubR1, securin).8 

These alterations in gene expression, coupled with direct 

oxidative damage to components of the mitotic apparatus, 

may be responsible, in part, for the observed bile acid-induced 

mitotic aberrations.595 It is, therefore, possible that bile acids 

may contribute to the loss of chromosome 1p through its 

effects on centromere instability and telomeric fusions.

Another mechanism by which large chromosomal 

deletions can occur is through folic acid deficiency.625,626 

Folic acid can attenuate the loss of heterozygosity of the 

DCC tumor suppressor gene in the colonic mucosa of 

patients with colorectal adenomas,625 indicating that folic 

acid deficiency can affect allelic deletion and associated 

micronuclei formation.627,628 Folates are a group of water-

soluble B vitamins (obtained from leafy, green vegetables, 

the whole grain quinoa, and lentils) whose deficiency 

contributes to colon cancer.629–633 Folates maintain DNA 

stability through their ability to donate one-carbon units for 

cellular metabolism and particularly for DNA biosynthesis, 

repair, and methylation.629,633 Methylenetetrahydrofolate 

reductase (MTHFR) is a key enzyme in one-carbon 

metabolism. MTHFR catalyzes a unidirectional reaction 

that determines the balance between cellular availability 

of 5,10-methylenetetrahydrofolate, used for thymidylate 

and purine synthesis, and methyltetrahydrofolate used 

for biological methylation.629 Folate deficiency, therefore, 

enhances carcinogenesis by impairing normal methylation 

and nucleotide synthesis, and creates an imbalance between 

the partitioning of cellular folates into these two pathways. 

Inhibition of folate metabolism results in excessive uracil 

misincorporation into DNA633,634 with approximately 4 million 

uracil bases/cell.559 The repair of 2 adjacent uracil residues on 

opposite strands of DNA can result in a double-strand break, 
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leading to chromosomal breakage and aneuploidy.558,629,634 

Folate deficiency also induces hypomethylation and inhibits 

DNA excision repair in immortalized normal human colon 

epithelial cells633 and in the rat colon.635

Recent studies have implicated folate deficiency in the 

modulation of miRNA expression.497,636 Using microarrays 

of 385 known human miRNAs, it was determined that folate 

deficiency in vitro in cultured cells induced a statistically 

significant fold-change in 24 miRNAs.636 One of these 

miRNAs was miR-34a, which is found on chromosome 1p 

and involved in p53-mediated signaling (see Table 4 and the 

section on MiRNA and MiRNA Processing). MiRNAs were 

also determined to be altered in patients on a folate-deficient 

diet.636 In addition to folate deficiency, polymorphisms 

of MTHFR and altered folate levels are associated with 

colon cancer risk.637–640 The fact that MTHFR is located on 

chromosome 1p at 1p36.22 indicates that the loss of this 

chromosome arm, coupled with folate deficiency, can have 

major effects on genomic instability.

In this section we have considered how dietary factors such 

as niacin, folic acid, and a low-fat diet associated with low 

bile acid levels, together with antioxidants that protect against 

oxidative DNA damage (Table 10), might affect the processes 

relevant to carcinogenesis that are altered by chromosome 1p 

loss. In addition to a deficiency in dietary factors that prevent 

oxidative DNA damage, a deficiency of certain dietary fac-

tors that modulate DNA repair proteins, miRNA expression, 

antioxidant enzymes, defenses against environmental toxicity, 

and the Wnt signaling pathway (Table 10) can exacerbate the 

effects of the loss of chromosome 1p. An understanding of the 

complex molecular and cellular pathways that are affected by 

dietary factors is an enormous undertaking, but one that has 

become a focus of colon cancer prevention.
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