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Purpose: To evaluate the benefits of applying an improved sleep detection and staging algorithm on minimally processed multi-
sensor wearable data collected from older generation hardware.
Patients and Methods: 58 healthy, East Asian adults aged 23–69 years (M = 37.10, SD = 13.03, 32 males), each underwent 3 nights
of PSG at home, wearing 2nd Generation Oura Rings equipped with additional memory to store raw data from accelerometer, infra-red
photoplethysmography and temperature sensors. 2-stage and 4-stage sleep classifications using a new machine-learning algorithm
(Gen3) trained on a diverse and independent dataset were compared to the existing consumer algorithm (Gen2) for whole-night and
epoch-by-epoch metrics.
Results: Gen 3 outperformed its predecessor with a mean (SD) accuracy of 92.6% (0.04), sensitivity of 94.9% (0.03), and specificity
of 78.5% (0.11); corresponding to a 3%, 2.8% and 6.2% improvement from Gen2 across the three nights, with Cohen’s d values >0.39,
t values >2.69, and p values <0.01. Notably, Gen 3 showed robust performance comparable to PSG in its assessment of sleep latency,
light sleep, rapid eye movement (REM), and wake after sleep onset (WASO) duration. Participants <40 years of age benefited more
from the upgrade with less measurement bias for total sleep time (TST), WASO, light sleep and sleep efficiency compared to those ≥40
years. Males showed greater improvements on TST and REM sleep measurement bias compared to females, while females benefitted
more for deep sleep measures compared to males.
Conclusion: These results affirm the benefits of applying machine learning and a diverse training dataset to improve sleep
measurement of a consumer wearable device. Importantly, collecting raw data with appropriate hardware allows for future advance-
ments in algorithm development or sleep physiology to be retrospectively applied to enhance the value of longitudinal sleep studies.
Keywords: consumer wearable, sleep tracking, validation, sleep staging, sleep detection

Plain Language Summary
Consumer grade sleep-tracking wearables have improved significantly only a few years after their introduction. Sensor technology is
relatively mature so improvements in performance will necessarily emerge from new directions. We showcase a machine-learning
improved algorithm trained on a large diverse dataset that yields superior sleep classification and staging performance when applied to
retrospectively collected wearable data. We ascertain who benefits more from these improvements. Storing multi-modal sensor data in
raw form will help future-proof investment in large-scale longitudinal population studies on sleep and could help redefine current
thinking about sleep physiology and health.

Introduction
Sleep is a modifiable health risk factor that a growing number of persons wish to measure objectively. The last few years
have seen an explosive increase in the development and adoption of affordable wearable or bedside devices to measure
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sleep.1–4 Daily reports of sleep behaviour when coupled with thoughtfully designed user interfaces, provide a valuable
means of monitoring sleep across years, yielding information about weekly, monthly, seasonal, and yearly fluctuations
that could contain useful diagnostic and predictive information.5–7

The largest contributor to sleep detection in wearables was from accelerometer data.8 This is a mature technology that
has been evaluated using wrist actigraphy in a wide range of studies covering the entire age spectrum,9–11 involving
persons with both normal,12,13 and disordered sleep.14–16 Research actigraphs are generally more expensive and until
recently, did not include wireless, cloud-based data management that is standard in consumer wearables. Additionally,
actigraphy is limited in its ability to capture motionless wake which can lead to bias in actigraphic sleep-wake
estimations. As such, additional information beyond that which is captured in traditional actigraphy is beneficial to
improve estimation accuracy.

The transition from wake to sleep is accompanied by slower, shallower and more regular respiration,17 decreased
heart rate18 together with an increase in heart rate variability,19,20 as well as a rise in distal skin temperature.21,22 Newer
generation wearables measure heart rate and heart rate variability using photoplethysmography (PPG) and some also
sense temperature. Combining these additional physiological signals with motion data has resulted in improved sleep-
wake estimation and sleep stage classification ability.3,7,23,24

Physicians are increasingly being asked about how to interpret data collected from wearables worn by their patients.25

Earlier consumer wearables had relatively poor and variable performance, but newer devices have shown greater
accuracy and consistency of sleep assessment which continue to improve.2,5,26,27 To guide their own usage of collected
data, most users, clinicians, and researchers, are interested in improvements of two major areas, the detection of sleep and
wake, from which bedtime, waketime, wake after sleep onset, total sleep time and sleep efficiency are derived, and
secondly, the accuracy and consistency of sleep staging, particularly of slow wave sleep and REM. Researchers intending
to use consumer wearables are additionally concerned about whether their collected data can benefit from continued
refinements to data collection or processing that may help “future-proof” legacy data.

In the current work, we report improvements using the third generation Oura Ring algorithm (Gen3) for sleep
detection and staging. The updated algorithm arose from combined adjustments to raw sensor data usage, improved
diversity of training data and improved machine learning.28 These refinements were retrospectively applied to data
collected from modified second generation hardware equipped with enhanced memory to collect raw sensor data. Both
the detection (2-stage classification) and staging of sleep (4-stage classification) were evaluated using data collected over
multiple nights in a home setting, from Asian adults (to establish generalizability over a different racial group) across a
wide age range who were not involved in the training data used for algorithm development.

Materials and Methods
Participants and Study Protocol
Sixty participants aged 23–69 years were recruited for the three-night protocol. Participants were screened and those who
reported pre-existing sleep, neurological or psychiatric disorders, excessive daytime sleepiness (Epworth Sleepiness
Scale29 scores > 10), on wake-promoting medications, and whose body mass index (BMI) > 35 kg/m2 were excluded,
resulting in a final sample of 58 (M = 37.10, SD = 13.03, 32 males). Informed consent was obtained before data
collection. The Institutional Review Board of the National University of Singapore approved the protocol was in
accordance with the principles in the Declaration of Helsinki.

Trained research assistants visited participants’ homes approximately 2 hours before each participant’s habitual
bedtime to set up all sleep recording equipment before leaving. Data was typically collected over consecutive nights,
but where data collection had to be repeated or rescheduled due to device issues/scheduling conflicts (~7% of records),
replacement nights were conducted within a 1-month period. In total, data from 174 nights were collected. Due to
technical issues, 17 PSG recordings and Oura Ring measurements were excluded from the final analyses. PSG recordings
were excluded either due to early termination of recordings or insufficient data quality for sleep staging due to electrodes
falling off during the night. Excluded Oura recordings were due to missing sleep stage data, likely as a result of poor ring
fit or movement during the night that impeded PPG recording.
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Polysomnography
Polysomnography was collected across all three nights. Electroencephalography was recorded from two channels (C3
and C4) according to the international 10–20 system via the SOMNOtouch devices (SOMNOmedics GmbH,
Randersacker, Germany) during overnight sleep. Channels were referenced to the contralateral mastoids. The common
ground and reference electrodes were placed at Fpz and Cz, respectively. Electro-oculography (EOG; right and left outer
canthi) and submental electromyography (EMG) were also recorded. Finger pulse oximetry and electrocardiogram
measures were also obtained. EEG signals were sampled at 256 Hz and impedance was kept at less than 5KΩ for
EEG and below 10KΩ for EOG and EMG channels. PSG signals were confined to the period between lights-off and
lights-on based on bedtime and wake time reported by participants prior to scoring. Data was autoscored with the
Z3Score algorithm (https://z3score.com)30 and visually inspected by trained technicians who did not have access to the
Oura data. Scoring of sleep was performed based on standards set by the American Academy of Sleep Medicine
(AASM). WASO, REM sleep, N1, N2 and N3 were calculated based on 30-second epochs according to the AASM
manual criteria.31

Oura Ring
The Oura Ring (Oura Health Oy, Oulu, Finland) measures heart rate, body temperature, and movement via infrared
photoplethysmography (PPG), a temperature sensor, and a 3-D accelerometer.27 Heart rate variability and respiratory rate
are inferred measures.

Two “memory” rings (2M) provided by Oura Health were worn on the right and left hands on the same finger that
provided the best fit. These had the same sensors as the commercially available 2nd Generation Oura Ring, but had additional
flash memory that enabled recording minimally processed sensor data for the retrospective application of the Gen 3 algorithm
(hereafter referred to as “Gen 3”) to the collected data. It also allowed the comparison of these results with those obtained
from Gen 2 algorithm. Gen 3 was developed using newer machine learning methods on accelerometer, temperature, heart
rate, and HRV data collected across 3 diverse samples that varied in racial composition and age.28

Thirty second epoch-by-epoch data was subsequently processed. Sleep epochs were classified into four categories:
wake, light, deep, and REM sleep. TST in both Oura and PSG records were defined as total time spent in light sleep (PSG
stages N1 and N2), deep sleep (PSG stage N3) and REM sleep. For both Oura and PSG, sleep onset latency (SOL) was
defined as the duration between lights-off and the first instance of two consecutively staged sleep epochs, regardless of
sleep stage. To ensure accurate PSG-device synchronization, all device time stamps were synchronized with an Internet
Time Server. Lights-off and on times were based on the wake and bed-time timings logged by the participants each night
and both PSG and Oura data were truncated to match this sleep period.

Discrepancy Analyses
To visualise discrepancies between Gen2, Gen3 and PSG measurements, Bland–Altman plots were generated for each
night based on a standardized framework.32 A negative bias represents underestimation by the device compared to PSG.
Furthermore, we examined whether bias changed as a function of measurement’s size and the homoscedasticity for each
sleep stage. Bland–Altman plots demonstrating device setting-PSG biases for TST, WASO, and sleep-stage analyses are
presented in Figures 1 and 2, respectively.

We also examined if improvements in sleep measurement differed by sex and age group (<40y vs ≥40y). A linear
mixed model analysis was employed for each sleep metric bias (Oura - PSG); with age (<40y vs ≥40y), sex (male/
female), BMI, hand (right, left), nights (night 1, night 2, night 3) and Oura algorithm (Gen2, Gen3) as fixed factors.
Subjects were treated as a random factor, and PSG-assessed total sleep time was included as a covariate. Interactions of
age, sex and BMI with Oura algorithm were also investigated. As we did not find a significant main effect of hand, F
(1,510) < 5.68, p > 0.18, only results for the right hand are reported.

A significant main effect of night was observed for TST, REM, WASO and sleep efficiency measurements, F(1,513) >
5.13, p < 0.004, driven by lower measurement bias in the first night, potentially due to decreased TST and increased
WASO which could be attributed to a first-night effect.33,34 Each nightly record was thus reported separately. Analyses
were performed with and without outliers (subjects with > 3 SD TST bias) to verify that significant interactions were not
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driven by outliers. Linear mixed model analyses were followed by post-hoc paired t-tests for each sleep measurement
bias on each night.

Epoch by Epoch (EBE) Analysis
As 30s epoch-by-epoch data was also available from the Oura Ring, EBE analyses – the preferred approach to assess
accuracy of binary (2-stage) and categorical (4-stage) classification32 were performed. Commonly reported agreement
metrics of sensitivity (ability of device to correctly identify “sleep”), specificity (ability of device to correctly identify
“wake”) and overall accuracy were calculated per subject/night following the equations below, and then averaged across
all subjects to obtain group values for each night.

Sensitivity: True Sleep/(False Wake + True Sleep)
Specificity: True Wake/(True Wake + False Sleep)
Accuracy: (True Sleep + True Wake)/Total Epochs
For 4-stage classification metrics, sensitivity (proportion of epochs correctly classified as a given sleep stage),

specificity (proportion of epochs correctly not classified as a given sleep stage) as well as accuracy (proportion of
correctly classified epochs for a given sleep stage over total epochs) were also computed in a similar manner.

In addition, for 4-stage classification we also inspected Cohen’s kappa coefficient which takes into account agreement
metrics occurring by chance as well as the prevalence- and bias-adjusted kappa (PABAK) that adjusts for imbalances in
the relative frequency of occurrence of the different sleep stage/wake epochs and bias between PSG and Oura metrics
using the equations below:35

Kappa=(Po-Pe)/(1-Pe)
Po: Probability of agreement
Pe: Probability of disagreement (chance)
PABAK=(2 Pe - 0.5)/(1-0.5)=2Po-1
Kappa values are usually interpreted as follows: ≤ 0 indicating no agreement, 0.01–0.20 as none to slight, 0.21–0.40

as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1.00 as almost perfect agreement.
Paired sample t-tests were performed to compare sensitivity, specificity, accuracy, kappa and PABAK scores between Gen2

and Gen3 algorithms. The Cohen’s D effect sizes, t and P values are presented as the minimal value for each of the 3 nights.
Finally, to inspect sources of misclassification, confusion matrices were constructed. These were first generated

per subject/night, by dividing values in each cell with the corresponding marginal frequency of the reference PSG
measure. Next, confusion matrices were averaged across all subjects to generate group level matrices for each night.

Statistical analyses and data processing were performed using SPSS 27.0 (IBM Corp., Armonk, New York),
MATLAB version R2017b (The Math Works, Inc., Natick, MA) and R version 4.1.1 (2021-08-10).

Results
The final sample comprised 58 participants (32 males) aged 23–69 years (M = 37.10, SD = 13.03) with BMI ranging
from 17.66–30.48 kg/m2 (M = 22.73, SD = 2.88). PSG-derived sleep architecture for young, <40y (N = 42) and mid-
aged, ≥40y (N = 16) adults for each night are presented in Table 1.

2-Stage Classification Performance
Gen3 showed significantly improved 2-stage sleep-wake classification with a mean (SD) accuracy of 92.6% (0.04)
compared with 89.6% (0.05) accuracy of Gen2 across the three nights, with d values > 0.49, t values > 3.70, and p values
< 0.001. Additionally, sensitivity and specificity improved by 2.8% to increase the mean from 92.1% (0.05), and 6.2%
from 72.3 (0.11), respectively, ds > 0.39, ts > 2.69, ps ≤ 0.01 (Table 2). TST bias also decreased significantly across the
nights by a minimum duration of 10 minutes, ds > 0.43, ts > 3.13, ps < 0.01 (Table 3, Figure 1).

4-Stage Sleep Classification Performance
Gen3 significantly outperformed Gen2 for all sleep measures, except for SOL, across all 3 nights, ds > 0.36, ts > 2.61, ps
< 0.01 (Table 3). Notably, Gen3 performed on par with PSG for light sleep and SOL across all nights, ts < 1.47, ps > 0.14
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(Table 3), and for REM sleep and WASO on 2 nights, ts < 1.70, ps > 0.09. While deep sleep was significantly
overestimated by Gen2 across all nights (40.8–49.9 minutes), ds > 0.84, ts > 6.05, ps < 0.001; it was significantly
underestimated by Gen3 – although to a lesser extent (13.8–14.6 minutes) on 2 nights, ds > 0.46, ts > 3.29, ps < 0.01.
Bland-Altman plots for sleep stages are illustrated in Figure 2A–E), and an example hypnogram from one participant is
shown in Figure 3 for sleep stages derived using the PSG, Gen2 and Gen3 algorithms.

Gen3 showed significantly improved 4-stage classification with 4-stage mean (SD) accuracy of 76.4% (0.06) over
Gen 2ʹs 62.3% (0.07) accuracy, ds > 1.48, ts > 10.95, ps < 0.001. Gen3 algorithm also significantly outperformed Gen2
for all sleep accuracy measures (ds > 0.67, ts > 5.05, ps < 0.001, Table 4), kappa (ds > 0.97, ts > 6.22, ps < 0.001, Table
5) and PABAK values (ds > 0.67, ts > 5.06, ps < 0.001, Table 5) – with moderate to ceiling levels of agreement values
(0.56–0.85) shown for Gen3. Epoch by epoch sensitivity and specificity of sleep stages are illustrated in Supplementary
Figures S1 and S2.

When inspecting confusion matrices, it is apparent that both Gen2 and Gen3 algorithms tended to misclassify deep
sleep as light sleep (Tables S1 and S2). This occurred 19–28% of the time for Gen2, compared with 34–38% of the time

Table 1 Polysomnography-Determined Sleep Architecture Across the Nights

Night 1 Night 2 Night 3

Young Adults Mid-Age Adults Young Adults Mid-Age Adults Young Adults Mid-Age Adults

TIB 445(62.68) 474.91(67.51) 464.43(79.47) 476.59(61.01) 468.43(56.2) 468.75(72.53)

TST 387.24(69.34) 398.5(52.97) 414.13(66.99) 398.88(65.55) 419.68(50.24) 389.94(53.72)

Deep sleep 75.91(32.74) 45.94(33.59) 76.25(32.91) 47.47(35.02) 76.02(32.65) 40.28(31.71)

Light sleep 227.95(46.75) 262.19(38.24) 243.94(52.25) 263.22(41.24) 244.89(44.11) 265.65(43.6)

REM sleep 83.38(29.33) 90.38(26.24) 93.94(32.67) 88.19(31.02) 98.77(27.18) 84.00(24.4)

SOL 24.07(20.54) 21.41(19.15) 21.76(28.13) 24.31(20.98) 25.40(27.56) 24.66(24.05)

WASO 34.02(30.75) 55.34(32.51) 28.82(20.20) 53.63(32.67) 23.54(18.48) 54.41(44.95)

SE 86.97(9.32) 84.28(7.58) 89.53(6.78) 83.68(8.13) 89.80 (6.58) 83.90(10.16)

Note: Data presented as mean (standard deviation) in minutes unless otherwise indicated.
Abbreviations: REM, rapid eye movement; TIB, time in bed; TST, total sleep time; WASO, wake after sleep onset; SE, sleep efficiency.

Table 2 Epoch by Epoch Agreement Metrics, for Oura Ring Gen2 and Gen3 Algorithms Referenced to PSG

Gen2 Gen3 P value

Night 1 Sleep-wake accuracy 0.89(0.07) 0.92(0.06) <0.001

Specificity 0.70(0.21) 0.77(0.18) 0.01

Sensitivity 0.92(0.06) 0.96(0.03) <0.001

Night 2 Sleep-wake accuracy 0.90(0.05) 0.92(0.05) <0.001

Specificity 0.71(0.17) 0.78(0.15) <0.01

Sensitivity 0.92(0.05) 0.94(0.05) 0.007

Night 3 Sleep-wake accuracy 0.90(0.06) 0.93(0.05) <0.001

Specificity 0.75(0.18) 0.80(0.14) 0.007

Sensitivity 0.92(0.06) 0.95(0.04) <0.001

Notes: Data presented as mean (standard deviation). Paired sample T-tests for sleep sensitivities, wake specificities and sleep-wake
accuracies.
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in Gen3. However, although Gen2 classified deep sleep more accurately than Gen3, this came at the cost of poorer
classification in wake, light, and REM sleep, resulting in poorer overall performance of the Gen2.

Age and Sex Influences on Sleep Staging Accuracy
Linear mixed model analyses on biases for TST and sleep efficiency showed a significant age group by algorithm
interaction (F(1,508) > 10.13, p < 0.002); as well as a significant sex by algorithm interaction (F(1,508) > 4.32, p < 0.04),
whereby the Gen3 algorithm outperformed Gen2 in males and in younger participants (Figure 4). For biases of WASO
and light sleep, significant interactions of age and algorithm were observed (F(1,510) > 5.68, p < 0.02) wherein younger

Table 3 Biases from PSG for Oura Ring Gen2 and Gen3 Algorithms Across 3 Nights

Gen2 Gen3 p value

Night 1 (N=44)

TST −15.5 (27.5)*** −1.3 (20.0) <0.001

Light sleep −42.7 (46.4)*** 1.6 (30.7) <0.001

Deep sleep 40.8 (44.6) *** −14.6 (29.1)** <0.001

REM sleep −13.6 (36.0) * 11.7 (22.6)** <0.001

WASO 14.0 (28.1) ** 0.9 (19.5) <0.001

Sleep efficiency −3.3 (5.7) *** −0.3 (4.2) <0.001

Sleep Onset Latency 1.6 (8.1) 0.4 (10.6) 0.51

Night 2 (N=52)

TST −18.2 (22.8) *** −6.0 (20.2)* <0.001

Light sleep −48.0 (44.9) *** 5.5 (29.3) <0.001

Deep sleep 46.0 (54.8) *** −13.8 (30.2)** <0.001

REM sleep −16.3 (39.7) ** 2.4 (31.6) <0.001

WASO 16.3 (22.0) *** 4.3 (18.2) <0.001

Sleep efficiency −4.1 (4.9) *** −1.4 (4.1)* <0.001

Sleep Onset Latency 2.1 (11.7) 1.7 (8.2) 0.77

Night 3 (N=52)

TST −18.1 (23.4) *** −7.9 (18.47)** 0.003

Light sleep −46.9 (42.2) *** −0.6 (34.62) <0.001

Deep sleep 49.9 (47.4) *** −8.1 (29.91) <0.001

REM sleep −21.1 (37.6) ** 0.8 (27.61) <0.001

WASO 16.7 (25.25) *** 7.8 (22.87)** 0.012

Sleep efficiency −3.9 (5.1) *** −1.6 (3.69)** 0.001

Sleep Onset Latency 1.6 (8.3) 0.8 (14.9) 0.47

Notes: Data presented as mean (standard deviation) in minutes. Biases were tested using one-sample t-test against zero. P <
0.01, *; P < 0.05,** P < 0.001 ***. Paired t-tests were conducted between Gen2 and Gen3 algorithms. Negative values
represent underestimations. Individual biases were determined from differences between Gen2 and Gen3 with PSG before
being collapsed into an average.
Abbreviations: REM, rapid eye movement; TIB, time in bed; TST, total sleep time; WASO, wake after sleep onset.
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subjects had higher gains in performance with the Gen3 algorithm (Figure 5). For biases of REM and deep sleep,
significant interactions of sex and algorithm (F(1,509) > 5.68, p < 0.03) were driven by better performance of the Gen3
algorithm in males for REM sleep measurement and females for deep sleep (Figure 6). LMM analyses for biases of light
and deep sleep also revealed a significant interaction of BMI and algorithm (F(1,510) > 4.08, p < 0.04). However, this
effect size was too small to be of clinical significance, and thus not further discussed.

Discussion
The present study demonstrates how methodological improvements to sleep classification inferred from movement, heart
rate and temperature data acquired through a memory-enhanced consumer sleep tracking device boosted the accuracy of
detection and staging of sleep, across a range of ages and over 3 nights of in-home recording. The retrospectively applied
algorithm significantly outperformed its predecessor in almost all sleep measurements and was comparable to PSG in its
assessment of sleep onset latency, light sleep duration, WASO and REM sleep. Young participants (<40 years) benefited
more from the update, with significantly less measurement bias for TST, WASO, light sleep and sleep efficiency
compared to those ≥40 years. Males showed greater improvements on TST and REM sleep measurement bias compared
to females, while females benefitted more for deep sleep measures compared to males.

Illustrating the rapid improvement in consumer sleep trackers, the Oura Ring has gone through 3 major hardware and
algorithm upgrades since its introduction in 2018. The performance of Gen3 reported here in field settings is superior to
the reported sensitivity, specificity, and 4-stage classification accuracy of several current generation (as of mid 2021)
consumer wearable devices that use PPG and accelerometry.36–39 Improvements from the larger manufacturers are made
possible by the application of machine learning to increasingly larger, more diverse and representative datasets.40,41

In particular, the Gen3 algorithm was developed with machine learning using features derived from accelerometry,
PPG-derived heart rate variability, temperature, combined with sensor-independent circadian features of sleep that model
endogenous circadian rhythms and homeostatic sleep drive.28 Due to large inter-individual differences in physiological
measurements, normalization of these features on a per night basis also allowed for better discrimination of sleep stages

Figure 1 Bland–Altman plots for TST in Gen 2 Gen 3 algorithms. Solid red lines indicate bias. Solid grey lines indicate the 95% level of agreements. Dotted lines indicate 95%
CIs. Black points are observations, and the density diagram to the right of each plot represents the distribution of the bias.
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Figure 2 Continue.
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within an individual. Finally, a large and diverse dataset was used to develop the Gen3 algorithm – utilizing training data
from 3400 hours of sleep across 106 persons ranging in age from adolescents to adults ranging from 15–73 years of age
from USA, Finland and Singapore.28

In general, improvements in the Gen3 algorithm were greater for younger participants under 40 years old. Younger
persons may move more while sleeping compared to mid-age persons, giving rise to an overestimation of WASO and
underestimation of total sleep time.42,43 Sex differences in sleep identification could be also related to greater motor
activity during sleep observed in males.42,44 Adjusting sensitivity to motion has been shown to improve accelerometry-
based sleep-wake classification.44 Interestingly, we did not find a difference between ring metrics worn on either hand,
suggesting that hand placement may not matter for sleep assessment - unlike activity trackers that typically show
increased step counts when worn on the dominant hand.45

Despite improvements in N2 and REM sleep staging accuracy, classification of N3 sleep remains a challenge
particularly for mid-age adults and older. This difficulty is tied to existing limitations in PSG sleep staging rules for
groups exhibiting heterogeneous age-related changes in sleep physiology. For example, approximately 50% of older
adults manifest slow waves that morphologically resemble those in younger persons but which do not meet AASM
voltage criteria of 75 µV, making scoring ambiguous and inconsistent.46 Overall, even the gold-standard PSG is subject
to classification errors and inter-scorer differences. There is an average agreement of 80% between human scorers of

Figure 2 Bland–Altman Plots for (A) Light sleep, (B) Deep sleep, (C) REM, (D) WASO, (E) SOL in Gen2 and Gen3 algorithms. Solid red lines indicate bias. Solid grey lines
indicate the 95% level of agreements. Dotted lines indicate 95% CIs. Black points are observations, and the density diagram to the right of each plot represents the
distribution of the bias.
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PSG, and the labels of N3 and N1 in particular tend to demonstrate lower agreement than N2, and REM. This is
particularly an issue for N1 for which inter-rater agreement is in the 50% range, and sleep latency is often computed to
onset of N2.47–49

To deal with fundamental issues in measurement of slow wave sleep in older persons, some groups have suggested
the use of slow-wave activity (SWA) quantification which would preserve the measurement of slow waves by eliminating
the current separation of NREM sleep into N2 and N3. Treating NREM sleep as a continuum instead of discrete stages
has been advocated46 and tested out in a recent clinical trial.50 This approach has also been used in studies involving
acoustic stimulation to boost slow oscillations.51 Recent observations concerning heart rate changes in response to slow
oscillations and sigma activity (in the frequency of sleep spindles) also motivate removal of the artificial boundary in
NREM sleep classification.52,53 Remapping sleep measurement using autonomic features to microarchitectural features
represents an opportunity to advance sleep physiology. A further consideration is the decline in autonomic function in
older adults,54 particularly vagal influences during sleep55 that could affect HRV measures used to discriminate NREM
and REM sleep.56

While sleep detection and staging improvements are progressive and desirable, they also present a concern with regard to
data harmonization in longitudinal population health studies spanning several years or even decades. The initial investment in
data collection can be protected by collecting and storing minimally processed sensor data at a temporal resolution that is a
good trade-off between data quality, power consumption and speed of wireless data transmission for storage and analysis
afforded by the technology of the day. The improved results obtained here were based on applying an updated analysis
package to previously collected data and were made possible because the hardware had significantly more on-board memory.
This approach should be carefully considered by all groups interested in long-term, population health studies.

Figure 3 Illustrative hypnogram from a single participant showing agreement of PSG, Oura Gen2 and Gen3 sleep staging.
Abbreviation: REM, rapid eye movement sleep.
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Table 4 Sleep Stages Accuracy Metrics, Referenced to PSG for Gen2 and Gen3 Algorithms

Gen2 Gen3 P value

Night1 Light sleep accuracy 67.68 (6.45) 77.99 (7.38) <0.001

Deep sleep accuracy 83.06 (6.21) 91.25 (4.64) <0.001

REM sleep accuracy 85.9 (5.60) 90.51 (3.32) <0.001

Wake accuracy 88.86 (6.89) 92.47 (6.50) <0.001

4-Stage Accuracy 62.75 (7.63) 76.11 (7.75) <0.001

Night2 Light sleep accuracy 67.69 (5.32) 78.54 (4.76) <0.001

Deep sleep accuracy 83.32 (4.99) 91.9 (3.50) <0.001

REM sleep accuracy 85.04 (4.28) 89.89 (2.84) <0.001

Wake accuracy 89.14 (4.41) 92.04 (3.57) <0.001

4-Stage Accuracy 62.50 (7.58) 76.19 (7.07) <0.001

Night3 Light sleep accuracy 67.38 (4.68) 78.86 (3.66) <0.001

Deep sleep accuracy 83.26 (4.17) 91.93 (2.61) <0.001

REM sleep accuracy 84.9 (3.71) 90.06 (2.34) <0.001

Wake accuracy 89.24 (3.81) 92.40 (3.57) <0.001

4-Stage Accuracy 62.63 (9.01) 77.59 (6.62) <0.001

Note: Data presented as mean (standard deviation). Paired sample t-tests for wake, light, deep, REM sleep and 4-stage accuracies.
Abbreviation: REM, rapid eye movement.

Table 5 Kappa and PABAK for 4-Stage Sleep Classification

Stage Kappa Gen2 Kappa Gen3 P-value PABAK Gen2 PABAK Gen3 P-value

Wake Nt1 0.55 (0.18) 0.68 (0.16) <0.001 0.78 (0.14) 0.85 (0.13) <0.001

Wake Nt2 0.53 (0.13) 0.64 (0.14) <0.001 0.78 (0.09) 0.84 (0.10) <0.001

Wake Nt3 0.55 (0.11) 0.66 (0.11) <0.001 0.79 (0.08) 0.85 (0.07) <0.001

Light Nt1 0.36 (0.12) 0.56 (0.14) <0.001 0.35 (0.13) 0.56 (0.15) <0.001

Light Nt2 0.36 (0.10) 0.57 (0.09) <0.001 0.35 (0.11) 0.57 (0.10) <0.001

Light Nt3 0.35 (0.09) 0.57 (0.07) <0.001 0.35 (0.09) 0.58 (0.07) <0.001

Deep Nt1 0.43 (0.17) 0.58 (0.20) <0.001 0.66 (0.12) 0.82 (0.09) <0.001

Deep Nt2 0.46 (0.12) 0.64 (0.13) <0.001 0.67 (0.10) 0.84 (0.07) <0.001

Deep Nt3 0.47 (0.09) 0.64 (0.09) <0.001 0.67 (0.08) 0.84 (0.05) <0.001

REM Nt1 0.49 (0.21) 0.69 (0.15) <0.001 0.72 (0.11) 0.81 (0.07) <0.001

REM Nt2 0.49 (0.14) 0.67 (0.12) <0.001 0.70 (0.09) 0.80 (0.06) <0.001

REM Nt3 0.49 (0.12) 0.69 (0.08) <0.001 0.70 (0.07) 0.80 (0.05) <0.001

Notes: Mean (standard deviation) of kappa score and Prevalence adjusted, Bias adjusted kappa score of 4-stage sleep classification. T-tests were conducted between Gen2
and Gen3 algorithms.
Abbreviations: REM, rapid eye movement; Nt, night; PABAK, Prevalence adjusted Bias adjusted kappa.
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Limitations and Future Directions
Additional refinements in sleep/wake identification and sleep staging relative to PSG may be achieved by including age
and sex in future models. Additionally, as participants involved in the training dataset28 as well as the present study were
pre-selected to be healthy, generalizability of our results to persons with medical conditions, particularly those with sleep
or cardiovascular disorders needs to be systematically evaluated. Moreover, only C3 and C4 electrodes were used in this
study, which may have limited the detection of slow waves in elderly subjects.

As of the time of writing, Oura has not finalized the “Gen 3” methodology for sleep stage classification in its
commercial product and results of the finally released version may differ from those reported here. If anything, this
underscores our points that methodology is still improving and it is valuable to collect data in a manner that allows
retrospective applications of such constant developments.

Figure 4 Estimated marginal means of (A) total sleep time and (B) sleep efficiency bias (PSG-Oura) by age group and sex. P < 0.001 ***.
Abbreviation: TST, Total sleep time.
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Conclusion
We provided a multi-night, in-field demonstration of the benefits of applying machine learning on large and diverse training
data to refine sleep/wake detection and sleep staging in previously collected, minimally processed data. These findings
provide clear evidence for the potential of consumer grade tools to collect data on sleep in population health studies that can
be upgraded over time as our understanding of sleep physiology and its correlation with health and wellbeing evolve.

Data Sharing Statement
Anonymized data are available from the authors (Dr. Ong Ju Lynn julynn.ong@nus.edu.sg, and Dr. Golkashani
E0153325@u.nus.edu) upon reasonable request, subject to review by an ethics committee.

Figure 5 Light sleep and WASO measurement bias in young and old participants. P < 0.01 *; P < 0.001 ***.
Abbreviation: WASO, Wake after sleep onset.

Figure 6 REM sleep and deep sleep measurement bias in males and females. P < 0.05 **; P < 0.001 ***.
Abbreviation: REM, rapid eye movement sleep.
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