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Objective: In this study, we aim to establish a non-invasive tool to predict epidermal growth factor receptor (EGFR) mutation status
and subtypes based on radiomic features of computed tomography (CT).
Methods: A total of 233 lung adenocarcinoma patients were investigated and randomly divided into the training and test cohorts. In
this study, 2300 radiomic features were extracted from original and filtered (Exponential, Laplacian of Gaussian, Logarithm, Gabor,
Wavelet) CT images. The radiomic features were divided into four categories, including histogram, volumetric, morphologic, and
texture features. An RF-BFE algorithm was developed to select the features for building the prediction models. Clinicopathological
features (including age, gender, smoking status, TNM staging, maximum diameter, location, and growth pattern) were combined to
establish an integrated model with radiomic features. ROC curve and AUC quantified the effectiveness of the predictor of EGFR
mutation status and subtypes.
Results: A set of 10 features were selected to predict EGFR mutation status between EGFR mutant and wild type, while 9 selected
features were used to predict mutation subtypes between exon 19 deletion and exon 21 L858R mutation. To predict the EGFR mutation
status, the AUC of the training cohort was 0.778 and the AUC of the test cohort was 0.765. To predict the EGFR mutation subtypes,
the AUC of training cohort was 0.725 and the AUC of test cohort was 0.657. The integrated model showed the most optimal predictive
performance with EGFR mutation status (AUC = 0.870 and 0.759) and subtypes (AUC = 0.797 and 0.554) in the training and test
cohorts.
Conclusion: CT-based radiomic features can extract information on tumor heterogeneity in lung adenocarcinoma. In addition, we
have established a radiomic model and an integrated model to non-invasively predict the EGFR mutation status and subtypes of lung
adenocarcinoma, which is conducive to saving clinical costs and guiding targeted therapy.
Keywords: lung adenocarcinoma, epidermal growth factor receptor, gene mutation, radiomics, computed tomography

Introduction
Lung cancer is the leading cause of cancer-related deaths worldwide.1 Lung adenocarcinoma is the most common type of
non-small-cell lung cancers (NSCLC), which accounts for about 35–45% of lung malignant tumors.2 Lung adenocarci-
noma is composed of tumors with significant molecular heterogeneity, which is caused by different internal carcinogenic
signal pathways and characterized by high rates of genetic mutation.3 The epidermal growth factor receptor (EGFR)
signaling pathway plays a vital role in a variety of lung cancers, especially lung adenocarcinoma. Multiple clinical trials
have shown that first-line administration of EGFR-tyrosine kinase inhibitors (EGFR-TKI) can prolong progression-free
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survival (PFS) compared with chemotherapy for lung adenocarcinoma patients with EGFR mutations.4–8 The most
common mutations are exon 19 deletion (exon 19) and the exon 21 L858R mutation (exon 21).9–11 It is worth mentioning
that the exon 19 mutation has a better prognosis than the exon 21 mutation with EGFR-TKI.12–14 Therefore, the detection
of EGFR mutation status and subtypes is very important for guiding the targeted therapy of lung adenocarcinoma
patients.

Gene sequencing or amplification refractory mutation systems are often used to detect EGFR mutation status in
clinical settings. These techniques rely on invasive detection methods (surgical resection or tissue biopsy) and have other
limitations (eg, sampling errors, biological heterogeneity between the primary tumor and metastatic sites, etc.). In
addition, they can cause discomfort for patients and increase medical costs.15 Unfortunately, there are no reliable clinical
characteristics that can accurately predict EGFR mutation status. It is necessary to find a potential clinical feature to
detect specific EGFR mutations and guide targeted therapy of lung adenocarcinoma.

Computed tomography (CT) imaging is often used clinically as a non-invasive tool to diagnose lung cancer.
Radiomics based on chest CT imaging can be used to quantify imaging features and characterize the molecular properties
of NSCLC.16–19 Several studies have shown that radiomic features of lung cancer patients extracted from CT images of
NSCLC can be used to predict EGFR mutation status, treatment response, survival, and distant metastasis.20–26 However,
there are currently only few studies that can distinguish between EGFR mutation status and subtypes.

In this retrospective study, we performed a CT-based radiomic analysis on patients with lung adenocarcinoma to
identify the EGFR mutation status (EGFR mutant and wild type) and subtypes (exon 19 or exon 21). This analysis can
help save clinical costs and guide therapy of EGFR-TKI.

Materials and Methods
Patient Population
Patient data and samples from July 2015 to July 2017 from a total of 369 patients with pathologically confirmed primary
lung adenocarcinoma were extracted from the Cancer Center of Union Hospital, Tongji Medical College, Huazhong
University of Science and Technology. The inclusion criteria were as follows: (I) tumor sample tissue obtained by
surgery or biopsy; (II) pathological diagnosis of lung adenocarcinoma based on hematoxylin-eosin and immunohisto-
chemical staining; (III) availability of complete thin-slice chest CT images (≤1 mm) reconstructed in Digital Imaging and
Communications in Medicine (DICOM) format before treatment. The exclusion criteria were as follows: (I) other EGFR
mutations: exon 18 or exon 20 mutation, or simultaneous multiple EGFR mutations; (II) no thin-slice chest CT images;
(III) tumor edge was indistinguishable with the naked eyes; (IV) images with severe artifact.

Clinicopathological data collected for analyses included age, gender, smoking status, TNM staging, maximum
diameter, lesion location, growth pattern, and EGFR mutation status and subtype. Smoking status was categorized into
2 groups: non-smokers and smokers (consisting of former and current smokers). Lung adenocarcinoma staging was based
on the eighth edition of the American Joint Committee on Cancer (AJCC) staging manual. The classification of lung
adenocarcinoma was based on the 2011 International Association for the Study of Lung Cancer, American Thoracic
Society, and European Respiratory Society classification system (IASLC/ATS/ERS).27,28 No patients had received
neoadjuvant chemotherapy, radiotherapy, or EGFR-TKI before tumor resection or biopsy. The workflow diagram of
the study is shown in Figure 1.

Tumor Sample Preparation and DNA Extraction and Mutation Analysis
Tumor samples were fixed in 10% neutral buffered formalin and embedded in paraffin wax. The paraffin-embedded
tumor tissues were sliced into 4 μm sections on microtomes in preparation for hematoxylin–eosin (H&E) staining,
molecular tests, and immunohistochemistry (IHC).

DNAwas extracted from the archived formalin-fixed, paraffin-embedded tissue samples using a QIAamp DNA FFPE
Tissue Kit (Qiagen NV, Venlo, the Netherlands) according to the protocol in the manufacturer’s instruction manual, and
the concentration and purity of the extracted DNA were assessed using NanoDrop 2000 (Thermo Fisher Scientific,
Waltham, MA, USA). Briefly, 10 sections of 4-μm-thick tumor tissues were cut from representative formalin-fixed,
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paraffin-embedded tissues selected for the assay, and, if necessary, macro-dissected to ensure a high percentage of tumor
cells. Tissue sections were treated once with xylene, followed by one wash in ethanol. The pellet was resuspended in
a tissue lysis buffer and treated with proteinase-K overnight at 56°C. DNA was extracted after the inactivation of
proteinase-K by heating and tested with a proprietary detection kit, according to the protocol of the EGFR Mutations
Detection Kit (Amoy Diagnostics, Xiamen, China). A polymerase chain reaction was performed using Mx3000PtM
(Stratagene, La Jolla, USA), and positive or negative results were attained by meeting the criterion defined in the
manufacturer’s instruction manual.

CT Imaging Acquisition and Tumor Segmentation
Chest CT examinations were performed with SOMATOM Definition AS (Siemens Healthcare, Florsheim, Germany).
The scanning parameters were as follows: detector collimation width, 64 × 0.6 mm and 64 × 0.6 mm; tube voltage, 120
kV. The tube current was regulated by an automatic exposure control system (CARE Dose 4D; Siemens Healthcare). The
chest CT images were reconstructed with a thickness of 1 mm and an interval of 1 mm. Two radiologists, blinded to all
clinical and histologic data, interpreted CT studies retrospectively. One radiologist (7 years of experience in pulmonary
CT) manually performed ROI semi-automatic segmentation on chest CT images using Radiomics in Rayplus.29 A senior
radiologist (10 years of experience in pulmonary CT) and a senior oncologist (10 years of experience in lung cancer)
reviewed all the lesions. Two radiologists and an oncologist negotiated to reach an agreement for controversial cases. The
semi-automatic segmentation workflow consisted of 4 steps: preprocessing, semi-automatic correction of the pulmonary
boundary, click and grow, and manual refinement.

Extraction and Selection of Radiomic Features
Radiomic feature extraction was performed after ROI segmentation. A total of 2300 features were calculated
(Supplementary Table S1), including 92 unfiltered features (19 histogram features, 3 volumetric features, 13 morphologic
features, and 57 texture features) and 2208 filtered features (92 features from Logarithm filter, 92 features from
Exponential filter, 92 features from Laplacian of Gaussian (LoG) filter, 736 features from Wavelet filter, and 1196
features from Gabor filter) (Supplementary Table S2). In this work, three types of texture features on the basis of gray-
level co-occurrence matrix (GLCM), gray-level size zone matrix (GLSZM) and gray-level run length matrix (GLRLM)
were investigated. 25, 16, and 16 features were extracted from GLCM, GLSZM and GLRLM, respectively. Wavelet filter

Figure 1 Workflow diagram of the study.
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computed eight decompositions in each of the three dimensions with six kernel functions, and Gabor filter computed
thirteen orientations on five scales. All radiomic features were extracted from Radiomics in Rayplus as well.

The radiomic features extracted were used to build radiomic models independently. The dataset was randomized into
a training set and a test set with a ratio of 3:1. The RF-BFE algorithm was applied to select the radiomic features for
building models. The binary logistics regression model of selected radiomic features was constructed and the RadScores
(radiomics score) were calculated.

The main procedure of feature selection is illustrated in Figure 2. First, the whole dataset was shuffled, and the
features were ranked by Random Forest (RF) importance measures. Then, least absolute shrinkage and selection operator
(LASSO) regression was used iteratively to perform both regularization and accuracy calculation in the Backward
Features Elimination (BFE) to gain a series of feature subsets, the process ending when further removals did not result in
any improvement. Lastly, we gathered all the feature subsets in a feature counter, and the final feature subset was
determined by hard voting with equal weight.

The RF importance measure of each feature was calculated in each iteration to provide more robust results. The
detailed feature selection scheme in an iteration is illustrated in Figure 2. The least important feature was eliminated, and
the updated features were then used to re-train the LASSO regression. The BFE process ended when there was no longer
any improvement in the accuracy. The formula for achieving accuracy is obtained as follows:

Figure 2 Procedure of the iterative RF-BFE algorithm and selection scheme.
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Sensitivity ¼
TP

TPþ FN
Specificity ¼

TN
TN þ FP

Accuracy ¼
Sensitivityþ Specificity

2

Where TP, TN, FP, and FN represent true positive, true negative, false positive, and false negative, respectively.
We implemented 100 iterations in our study. We used a hard voting strategy to determine the final features after

obtaining 100 subsets of the features. All the selected features were gathered in a feature counter. The vote with equal
weight for each feature revealed the stability of the feature (Figure 2). The final feature subset (Fs) with k features was
determined as follows:

FS¼Fsub: f 1;f 2; . . . ;f kf gjvf>v0

vf ;v0 2 0;Nð Þ

Where Fsub is the set of features addressed in all subsets; νf is the vote of the feature; ν0 is the threshold. The νf and ν0
ranged from 0 to 100As, given that we used 100 iterations. In the experiment, we set the threshold of ν0 at 70.

Study Oversight
The study was approved by the Ethics Committee of Union Hospital, Tongji Medical College, Huazhong University of
Science and Technology. It was conducted in accordance with the Declaration of Helsinki and Good Clinical Practice
guidelines. All patients provided written informed consent prior to their inclusion in the study.

Statistics
First, the chi-square test and Fisher’s exact test were used to analyze variables describing clinicopathological character-
istics. Second, the differences in the radiomic variables extracted from CT images between EGFR mutation status and
subtypes were assessed with R software version 4.0.3 (https://www.r-project.org). The “glmnet” package was used to
perform LASSO logistic regression analysis and binary logistics regression model. The “ggplot” package was used in the
creation of ROC curves and the calculation and comparisons of AUCs. The “ggpubr” package was used in the
comparisons of RadScores. A two-sided P-value <0.05 was accepted as indicative of statistical significance.

Results
Clinical Characteristics of Patients
Among the 369 cases of primary lung adenocarcinoma, a total of 233 cases of primary lung adenocarcinoma with EGFR
mutant and wild type were finally included in this study. There were 129 cases (55.4%) with EGFR mutant and 104 cases
(44.6%) with wild type (Table 1). There were 55 cases (42.6%) with exon 19 and 74 cases (57.4%) with exon 21 in
EGFR mutant group (Table 2). The patient flow diagram in the study is shown in Figure 3. The patients were randomly
divided into the training and test cohorts. In the training cohort, there were significant differences (P < 0.01) in sex,
smoking status, maximum diameter and growth pattern between the EGFR mutant and wild type. In the test cohort, there
were significant differences (P < 0.05) in sex, smoking status, TNM staging and growth pattern between the EGFR
mutation and wild type. No significant difference in EGFR mutation subtypes between exon 19 and exon 21 was found in
the training and test cohort (P > 0.05).

Radiomics Predictor
The histogram of the votes in the feature counter is shown in Figure 4. A set of 10 features were selected to predict EGFR
mutation status between EGFR mutant and wild type (Table 3), while 9 selected features were used to predict EGFR
mutation subtypes between exon 19 and exon 21 (Table 4). ROC analysis and AUC measurements were used to quantify
the predictor’s ability to differentiate EGFR mutation status in the training and test cohorts. The RadScore was generated
by using a logistic regression model based on selected features. To predict EGFR mutation status, the AUC of the
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training cohort was 0.778 and the AUC of the test cohort was 0.765 (Figure 5). To predict EGFR mutation subtypes, the
AUC of the training cohort was 0.725 and the AUC of the test cohort was 0.657 (Figure 6).

Moreover, we established an integrated model by using logistic regression that combined radiomic and clinicopatho-
logical features (including age, gender, smoking status, TNM staging, maximum diameter, location, and growth pattern)
to predict the EGFR mutation status and mutation subtypes. To predict the EGFR mutation status, the AUC of training
cohort was 0.87 and the AUC of test cohort was 0.759. To predict the EGFR mutation subtypes, the AUC of training
cohort was 0.797 and the AUC of test cohort was 0.554 (Figure 7).

Significant differences were found between the high- and low-RadScore patients with EGFR mutation status and
subtypes. The predictor of EGFR mutation status showed better performance than the predictor of EGFR mutation
subtypes.

Discussion
In our study, we have established a predictive model of radiomics. A set of 10 radiomic features were selected to predict
EGFR mutation status between EGFR mutant and wild type. The predictive model of radiomics showed good
performance in identifying EGFR mutation in the training and test cohort (AUC >0.75). Moreover, a set of 9 selected
features were used to predict EGFR mutation subtypes between exon 19 and exon 21. The radiomic model predicted the
EGFR mutation subtypes: the AUC of the training cohort was 0.725, and the AUC of the test cohort was 0.657. The AUC

Table 1 Clinicopathological Features of EGFR Mutant and EGFR Wild Type Patients Between Training Cohort and Test Cohort

Clinicopathological
Features

Training Cohort Test Cohort

Total
(n = 176)

EGFR Mutant
(n = 97)

EGFRWild Type
(n = 79)

P value Total
(n = 57)

EGFR Mutant
(n = 32)

EGFRWild Type
(n = 25)

P value

Age (Mean ± SD),
years

58.9 ±

10.3

59.6 ± 9.3 58 ± 11.4 0.2896 56.1 ± 8.9 56.1 ± 9 54.3 ± 8.7 0.6233

Gender 0.0014** 0.033*

Male 99(56.3) 44(45.4) 55(69.6) 29(50.9) 12(37.5) 17(68)

Female 77(43.7) 53(54.6) 24(30.4) 28(49.1) 20(62.5) 8(32)

Smoking status 0.0034** 0.024*

Never-smoker 129(73.3) 80(82.5) 49(62) 39(68.4) 26(81.3) 13(52)

Former or current

smoker

47(26.7) 17(17.5) 30(38) 18(31.6) 6(18.7) 12(48)

TNM Staging 0.3835 0.0287*

I 74(42) 42(26.7) 32(26.7) 33(57.9) 18(56.3) 15(60)

II 16(9.1) 9(26.7) 7(26.7) 4(7) 4(12.5) 0(0)

III 20(11.4) 14(26.7) 6(26.7) 7(12.3) 6(18.7) 1(4)

IV 66(37.5) 32(26.7) 34(26.7) 13(22.8) 4(12.5) 9(36)

Maximum
diameter

0.0099** >0.9999

≥3cm 59(33.5) 24(24.7) 35(44.3) 12(21.1) 7(21.9) 5(20)

<3cm 117(66.5) 73(75.3) 44(55.7) 45(78.9) 25(78.1) 20(80)

Location 0.0546 0.2494

Right upper lobe 57(32.4) 40(41.2) 17(21.5) 23(40.4) 17(53.1) 6(24)

Right middle lobe 8(4.5) 4(4.1) 4(5.1) 2(3.5) 1(3.1) 1(4)

Right lower lobe 32(18.2) 15(15.5) 17(21.5) 11(19.3) 5(15.6) 6(24)

Left upper lobe 57(32.4) 29(29.9) 28(35.4) 11(19.3) 4(12.5) 7(28)

Left lower lobe 22(12.5) 9(9.3) 13(16.5) 10(17.5) 5(15.6) 5(20)

Growth pattern <0.0001*** 0.0145*

Lepidic 16(9.1) 14(14.4) 2(2.5) 5(8.8) 4(12.5) 1(4)

Acinar 90(51.1) 60(61.9) 30(38) 27(47.4) 15(46.9) 12(48)

Papillary 31(17.6) 15(15.5) 16(20.3) 12(21) 10(31.2) 2(8)

Solid 39(22.2) 8(8.2) 31(39.2) 13(22.8) 3(9.4) 10(40)

Notes: The P value represents the univariate association between each of clinical features and EGFR mutation. Data are presented as n, or n (%), except where otherwise
noted. *P<0.05; **P<0.01; ***P<0.0001.
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of the test cohort is not high, which may be related to the fact that there were fewer cases with EGFR mutation subtypes.
We have also established an integrated model that combines radiomics and clinicopathological features (including age,
gender, smoking status, TNM staging, maximum diameter, location, growth pattern) to predict the EGFR mutation status
and subtypes. The integrated model showed good performance with prediction of higher AUC (the AUC of the training
and test cohorts are 0.870 and 0.759, respectively) to identify EGFR mutation status. The integrated model improved the
prediction (AUC of 0.797) to identify EGFR mutation subtypes in the training cohort. However, the AUC in the test
cohort was 0.554, which again may be related to the smaller number of cases of exon 19 and exon 21. Yip et al described
an AUC of 0.67 for predicting EGFR mutation status.30 Liu et al provide a system model (AUC of 0.709) to clarify the
EGFR mutation status.31 In addition, an integrated model was applied to the training cohort to identify EGFR mutation
status (AUC, from 0.73 to 0.78) and mutation subtypes between EGFR exon 19 and exon 21 (AUC, from 0.65 to 0.78).32

Compared with the previous studies, using an integrated model in the study can make significant improvements in
predicting EGFR mutation status and subtypes.

We used a novel algorithm to select stable sets of radiomic features for the predictive models. Compared with
previous studies, the repeatability and reproducibility of selected features make our models less volatile and improves
their generalizability. Most of the selected features from Wavelet and Gabor filtered images highlighte the regional
heterogeneity in cancer lesions, as the Wavelet and Gabor filtering decomposes images into high frequency (hetero-
geneity) and low frequency (homogeneity) for the tumoral regions. This confirms the results of previous radiomics
research.

Table 2 Clinicopathological Features of Exon 19 and Exon 21 Mutation Patients Between Training Cohort and Test Cohort

Clinicopathological
Features

Training Cohort Test Cohort

Total
(n = 97)

Exon 19
(n = 43)

Exon 21
(n = 54)

P value Total
(n = 32)

Exon 19
(n = 12)

Exon 21
(n = 20)

P value

Age (Mean ± SD), years 59.4 ± 9.5 58.3 ± 8.7 61.6 ± 8.9 0.0876 58.2 ± 8.4 54.3 ± 8.7 57.3 ± 10.4 0.409

Sex 0.8368 0.0659

Male 40(41.2) 17(39.5) 23(42.6) 16(50) 9(75) 7(35)

Female 57(58.8) 26(60.5) 31(57.4) 16(50) 3(25) 13(65)

Smoking status 0.4311 >0.9999

Never-smoker 79(81.4) 37(86) 42(77.8) 27(84.4) 10(83.3) 17(85)

Former or current smoker 18(18.6) 6(14) 12(22.2) 5(15.6) 2(16.7) 3(15)

TNM Staging 0.7203 0.9424

I 42(43.3) 18(41.8) 24(44.4) 18(56.3) 7(58.3) 11(55)

II 10(10.3) 6(14) 4(7.4) 3(9.4) 1(8.3) 2(10)

III 16(16.5) 6(14) 10(18.5) 4(12.5) 1(8.3) 3(15)

IV 29(29.9) 13(30.2) 16(29.6) 7(21.9) 3(25) 4(20)

Maximum diameter 0.3563 0.6264

≥3cm 26(26.8) 14(32.6) 12(22.2) 5(15.6) 1(8.3) 4(20)

<3cm 71(73.2) 29(67.4) 42(77.8) 27(84.4) 11(91.7) 16(80)

Location 0.4307 0.6198

Right upper lobe 41(42.3) 19(44.2) 22(40.7) 16(50) 6(50) 10(50)

Right middle lobe 5(5.1) 3(7) 2(3.7) 0(0) 0(0) 0(0)

Right lower lobe 15(15.5) 9(20.9) 6(11.1) 5(15.6) 3(25) 2(10)

Left upper lobe 27(27.8) 9(20.9) 18(33.3) 6(18.8) 2(16.7) 4(20)

Left lower lobe 9(9.3) 3(7) 6(11.1) 5(15.6) 1(8.3) 4(20)

Growth pattern 0.9012 0.1004

Lepidic 12(12.4) 5(11.6) 7(12.9) 6(18.8) 0(0) 6(30)

Acinar 56(57.7) 26(60.5) 30(55.6) 19(59.4) 10(83.3) 9(45)

Papillary 20(20.6) 9(20.9) 11(20.4) 5(15.6) 1(8.3) 4(20)

Solid 9(9.3) 3(7) 6(11.1) 2(6.2) 1(8.3) 1(5)

Notes: The P value represents the univariate association between each of clinical features and EGFR mutation. Data are presented as n, or n (%), except where otherwise
noted.
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Several studies have indicated that EGFR mutation is strongly related to the female, never-smoker, adenocarcinoma
history, and East Asian populations.33–35 Some prior studies included clinical features to establish the predictive model
with EGFR mutation. In our study, female, never-smokers, and maximum diameter <3cm with lung adenocarcinoma had
significantly higher EGFR mutation rates than male, smokers, and maximum diameter ≥3 cm, which is consistent with

Figure 3 Patient selection workflow of the study cohort.

Figure 4 Histogram of the votes in the feature counter. (A) The feature counter for EGFR mutant and EGFR wild Type. (B) The feature counter for EGFR Exon 19 and
Exon 21.
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the conclusions of most studies.33–35 Moreover, we found that most lung adenocarcinoma lesions in this study are mainly
located in the upper lobes, especially in the right lobe. Some theories had explained this phenomenon: (I) Due to less
ventilation or lower lymphatic clearance, carcinogens or toxins are more likely to be deposited in the upper lobe; (II) The
higher tissue PO2 levels in the upper lobe may contribute to tumorigenesis.35 Furthermore, compared with patients with
advanced stage NSCLC, the incidence of EGFR mutations in early-stage NSCLC patients is significantly higher.
Additionally, the growth pattern of lesions was associated with EGFR mutation status. These findings were consistent
with previous studies.32,36

The main advantage of this study is the development of non-invasive prediction models (a radiomic model and an
integrated model) for EGFR mutation status and subtypes with lung adenocarcinoma. We divided the EGFR mutation
status and subtypes into two steps: (I) we selected highly specific radiomic features to identify the EGFR mutation status
(EGFR mutant or wild type); (II) highly specific radiomic features were selected to identify the EGFR mutation subtypes
(exon 19 or exon 21). As far as we know, most studies have focused on the association between radiomics and EGFR

Table 3 Selected Features for the Predictor of EGFR Mutant and EGFR Wild Type

Feature No. Feature Name Votes

69 Exp_ZoneVariance 80

189 Gabor_Beta:0; Theta:0_Maximum 73

256 Gabor_Beta:0; Theta:0_SmallAreaLowGrayLevelEmphasis 71

709 Gabor_Beta:51; Theta:45_SizeZoneNonUniformNormalized 76

835 Gabor_Beta:51; Theta:225_Median 82

960 Gabor_Beta:51; Theta:315_Correlation 74

1325 Gabor_Beta:90; Theta:135_ClusterShade 81

1363 Gabor_Beta:90; Theta:135_LargeAreaHighGrayLevelEmphasis 72

1666 Wave_LLH_Skewness 89

1693 Wave_LLH_ClusterShade 93

Table 4 Selected Features for the Predictor of EGFR Mutation Subtypes Between
Exon 19 and Exon 21

Feature No. Feature Name Votes

4 Exp_10Percentiles 67

334 Gabor_Beta:45; Theta:0_Imc2 66

465 Gabor_Beta:45; Theta:180_Maximum 81

475 Gabor_Beta:45; Theta:180_Range 71

527 Gabor_Beta:45; Theta:180_GrayLevelVariance 65

610 Gabor_Beta:45; Theta:270_Imc2 70

896 Gabor_Beta:51; Theta:225_ZoneEntropy 60

1417 LOG_ClusterShade 67

1693 Wave_LLH_ClusterShade 72
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mutation status.11,31,36 Some studies only focus on predicting the correlation of EGFR mutation subtypes using
radiomics.36 In addition, some studies related to radiomics only extract relatively few features for analysis.31,32,36 In
this study, 2300 radiomic features were extracted to assess the ability to predict the EGFR mutation status. Most studies
use data from different CT machines from different manufacturers, which will lead to deviations in reconstruction

Figure 6 Performance of the predictor of EGFR mutation subtypes between exon 19 and exon 21. (A) ROC curve of the training cohort and validation cohort. (B)
RadScore of the training cohort. (C) RadScore of the validation cohort.

Figure 7 Performance of the predictor with combined radiomic features and clinical characteristics of EGFR mutation status and subtypes. (A) ROC curve of the training
cohort and validation cohort between EGFR mutant and wild type. (B) ROC curve of the training cohort and validation cohort between exon 19 and exon 21.

Figure 5 Performance of the predictor of EGFR mutant and EGFR wild type. (A) ROC curve of the training cohort and validation cohort. (B) RadScore of the training
cohort. (C) RadScore of the validation cohort.

https://doi.org/10.2147/OTT.S352619

DovePress

OncoTargets and Therapy 2022:15606

Chen et al Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


algorithms and spatial resolution.32 In this study, all cases used the same CT machine for chest CT imaging, which can
avoid data deviations from different manufacturers and models.

Several limitations can influence the results of this study, and improvements can be made in the following aspects. (I)
This study was a retrospective study performed in a single medical center. A prospective study with a large patient cohort
would be required to confirm our observations. (II) Only CT image features were used in this study. Multimodal imaging
(such as PET/CT) can provide more lesion features to optimize performance. (III) Radiomic features were derived from
semi-automatic segmentation by radiologists, which can be influenced by observers’ subjectivity. (IV) The number of
cases was not sufficiently large, so some multi-center studies are needed in the future.

Conclusion
In conclusion, based on radiomic features of chest CT imaging, we can extract information on tumor heterogeneity in
lung adenocarcinoma. In addition, we have established a radiomic model and an integrated model to non-invasively
predict the EGFR mutation status and subtypes of lung adenocarcinoma, which is conducive to saving clinical costs and
guiding targeted therapy.
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NSCLC, non-small-cell lung cancer; CT, computed tomography; EGFR, epidermal growth factor receptor; EGFR-TKI,
EGFR-tyrosine kinase inhibitors; exon 19, exon 19 deletion; exon 21, exon 21 L858R mutation; PFS, progression-free
survival; DICOM, Digital Imaging and Communications in Medicine; AJCC, American Joint Committee on Cancer;
IASLC/ATS/ERS, International Association for the Study of Lung Cancer, American Thoracic Society, and European
Respiratory Society classification system; H&E, hematoxylin-eosin; IHC, immunohistochemistry; AUC, areas under the
curve; LoG, Laplacian of Gaussian; GLCM, gray-level co-occurrence matrix; GLSZM, gray-level size zone matrix;
GLRLM, gray-level run length matrix; RF, Random Forest; LASSO, least absolute shrinkage and selection operator;
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FN, false negative.

Acknowledgment
Ruiguang Zhang is the corresponding author and Rong Yuan is the co-corresponding author.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 2021;71:209–249. doi:10.3322/caac.21660

2. Dong S, Men W, Yang S, Xu S. Identification of lung adenocarcinoma biomarkers based on bioinformatic analysis and human samples. Oncol Rep.
2020;43:1437–1450. doi:10.3892/or.2020.7526

3. Travis WD, Brambilla E, Nicholson AG, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and
radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10:1243–1260. doi:10.1097/JTO.0000000000000630

4. Balagurunathan Y, Gu Y, Wang H, et al. Reproducibility and prognosis of quantitative features extracted from CT images. Transl Oncol.
2014;7:72–87. doi:10.1593/tlo.13844

5. Panth KM, Leijenaar RT, Carvalho S, et al. Is there a causal relationship between genetic changes and radiomics-based image features? An in vivo
preclinical experiment with doxycycline inducible GADD34 tumor cells. Radiother Oncol. 2015;116:462–466. doi:10.1016/j.radonc.2015.06.013

6. Stewart EL, Tan SZ, Liu G, Tsao MS. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR
mutations-a review. Transl Lung Cancer Res. 2015;4:67–81. doi:10.3978/j.issn.2218-6751.2014.11.06

7. Coroller TP, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol.
2015;114:345–350. doi:10.1016/j.radonc.2015.02.015

8. Fried DV, Tucker SL, Zhou S, et al. Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer.
Int J Radiat Oncol Biol Phys. 2014;90:834–842. doi:10.1016/j.ijrobp.2014.07.020

9. Parmar C, Rios Velazquez E, Leijenaar R, et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One.
2014;9:e102107. doi:10.1371/journal.pone.0102107

10. Hendriks LE, Derks JL, Postmus PE, et al. Single organ metastatic disease and local disease status, prognostic factors for overall survival in stage
IV non-small cell lung cancer: results from a population-based study. Eur J Cancer. 2015;51:2534–2544. doi:10.1016/j.ejca.2015.08.008

OncoTargets and Therapy 2022:15 https://doi.org/10.2147/OTT.S352619

DovePress
607

Dovepress Chen et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.3322/caac.21660
https://doi.org/10.3892/or.2020.7526
https://doi.org/10.1097/JTO.0000000000000630
https://doi.org/10.1593/tlo.13844
https://doi.org/10.1016/j.radonc.2015.06.013
https://doi.org/10.3978/j.issn.2218-6751.2014.11.06
https://doi.org/10.1016/j.radonc.2015.02.015
https://doi.org/10.1016/j.ijrobp.2014.07.020
https://doi.org/10.1371/journal.pone.0102107
https://doi.org/10.1016/j.ejca.2015.08.008
https://www.dovepress.com
https://www.dovepress.com


11. Rizzo S, Petrella F, Buscarino V, et al. CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer. Eur
Radiol. 2016;26:32–42. doi:10.1007/s00330-015-3814-0

12. Yoon HY, Ryu JS, Sim YS, et al. Clinical significance of EGFR mutation types in lung adenocarcinoma: a multi-centre Korean study. PLoS One.
2020;15:e0228925. doi:10.1371/journal.pone.0228925

13. Choi YW, Jeon SY, Jeong GS, et al. EGFR Exon 19 deletion is associated with favorable overall survival after first-line gefitinib therapy in
advanced non-small cell lung cancer patients. Am J Clin Oncol. 2018;41:385–390. doi:10.1097/COC.0000000000000282

14. Rossi S, Toschi L, Finocchiaro G, et al. Impact of Exon 19 deletion subtypes in EGFR-mutant metastatic non-small-cell lung cancer treated with
first-line tyrosine kinase inhibitors. Clin Lung Cancer. 2019;20:82–87. doi:10.1016/j.cllc.2018.10.009

15. Wu W, Parmar C, Grossmann P, et al. Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol. 2016;6:71.
doi:10.3389/fonc.2016.00071

16. Mackin D, Fave X, Zhang L, et al. Harmonizing the pixel size in retrospective computed tomography radiomics studies. PLoS One. 2017;12:
e0178524. doi:10.1371/journal.pone.0178524

17. Antropova N, Huynh BQ, Giger ML. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality
datasets. Med Phys. 2017;44:5162–5171. doi:10.1002/mp.12453

18. Wong CW, Chaudhry A. Radiogenomics of lung cancer. J Thorac Dis. 2020;12:5104–5109. doi:10.21037/jtd-2019-pitd-10
19. Lee HJ, Kim YT, Kang CH, et al. Epidermal growth factor receptor mutation in lung adenocarcinomas: relationship with CT characteristics and

histologic subtypes. Radiology. 2013;268:254–264. doi:10.1148/radiol.13112553
20. Gu Y, Kumar V, Hall LO, et al. Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach.

Pattern Recognit. 2013;46:692–702. doi:10.1016/j.patcog.2012.10.005
21. Dingemans AM, Groen HJ, Herder GJ, et al. A randomized Phase II study comparing paclitaxel-carboplatin-bevacizumab with or without

nitroglycerin patches in patients with stage IV nonsquamous nonsmall-cell lung cancer: NVALT12 (NCT01171170) dagger. Ann Oncol.
2015;26:2286–2293. doi:10.1093/annonc/mdv370

22. Larue R, van Timmeren JE, de Jong EEC, et al. Influence of gray level discretization on radiomic feature stability for different CT scanners, tube
currents and slice thicknesses: a comprehensive phantom study. Acta Oncol. 2017;56:1544–1553. doi:10.1080/0284186X.2017.1351624

23. Shafiq-Ul-Hassan M, Zhang GG, Latifi K, et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys.
2017;44:1050–1062. doi:10.1002/mp.12123

24. Aerts HJ, Grossmann P, Tan Y, et al. Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC. Sci Rep.
2016;6:33860. doi:10.1038/srep33860

25. Zhang Y, Oikonomou A, Wong A, Haider MA, Khalvati F. Radiomics-based prognosis analysis for non-small cell lung cancer. Sci Rep.
2017;7:46349. doi:10.1038/srep46349

26. Zhou JY, Zheng J, Yu ZF, et al. Comparative analysis of clinicoradiologic characteristics of lung adenocarcinomas with ALK rearrangements or
EGFR mutations. Eur Radiol. 2015;25:1257–1266. doi:10.1007/s00330-014-3516-z

27. Eberhardt WE, Mitchell A, Crowley J, et al. The IASLC lung cancer staging project: proposals for the revision of the M descriptors in the
forthcoming eighth edition of the TNM classification of lung cancer. J Thorac Oncol. 2015;10:1515–1522. doi:10.1097/JTO.0000000000000673

28. Goldstraw P, Chansky K, Crowley J, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the
forthcoming (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11:39–51. doi:10.1016/j.jtho.2015.09.009

29. Yuan R, Shi S, Chen J, Cheng G. Radiomics in rayplus: a web-based tool for texture analysis in medical images. J Digit Imaging. 2019;32:269–275.
doi:10.1007/s10278-018-0128-1

30. Yip SS, Kim J, Coroller TP, et al. Associations between somatic mutations and metabolic imaging phenotypes in non-small cell lung cancer. J Nucl
Med. 2017;58:569–576. doi:10.2967/jnumed.116.181826

31. Liu Y, Kim J, Balagurunathan Y, et al. Radiomic features are associated with EGFR mutation status in lung adenocarcinomas. Clin Lung Cancer.
2016;17:441–448 e446. doi:10.1016/j.cllc.2016.02.001

32. Liu G, Xu Z, Ge Y, et al. 3D radiomics predicts EGFR mutation, exon-19 deletion and exon-21 L858R mutation in lung adenocarcinoma. Transl
Lung Cancer Res. 2020;9:1212–1224. doi:10.21037/tlcr-20-122

33. Fukuoka M, Wu YL, Thongprasert S, et al. Biomarker analyses and final overall survival results from a Phase III, randomized, open-label, first-line
study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin
Oncol. 2011;29:2866–2874. doi:10.1200/JCO.2010.33.4235

34. Zhou C, Wu YL, Chen G, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-
cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, Phase 3 study. Lancet Oncol. 2011;12:735–742. doi:10.1016/
S1470-2045(11)70184-X

35. Tseng CH, Chen KC, Hsu KH, et al. EGFR mutation and lobar location of lung adenocarcinoma. Carcinogenesis. 2016;37:157–162. doi:10.1093/
carcin/bgv168

36. Tu W, Sun G, Fan L, et al. Radiomics signature: a potential and incremental predictor for EGFR mutation status in NSCLC patients, comparison
with CT morphology. Lung Cancer. 2019;132:28–35. doi:10.1016/j.lungcan.2019.03.025

OncoTargets and Therapy Dovepress

Publish your work in this journal
OncoTargets and Therapy is an international, peer-reviewed, open access journal focusing on the pathological basis of all cancers, potential
targets for therapy and treatment protocols employed to improve the management of cancer patients. The journal also focuses on the impact of
management programs and new therapeutic agents and protocols on patient perspectives such as quality of life, adherence and satisfaction. The
manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit
http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/oncotargets-and-therapy-journal

DovePress OncoTargets and Therapy 2022:15608

Chen et al Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1007/s00330-015-3814-0
https://doi.org/10.1371/journal.pone.0228925
https://doi.org/10.1097/COC.0000000000000282
https://doi.org/10.1016/j.cllc.2018.10.009
https://doi.org/10.3389/fonc.2016.00071
https://doi.org/10.1371/journal.pone.0178524
https://doi.org/10.1002/mp.12453
https://doi.org/10.21037/jtd-2019-pitd-10
https://doi.org/10.1148/radiol.13112553
https://doi.org/10.1016/j.patcog.2012.10.005
https://doi.org/10.1093/annonc/mdv370
https://doi.org/10.1080/0284186X.2017.1351624
https://doi.org/10.1002/mp.12123
https://doi.org/10.1038/srep33860
https://doi.org/10.1038/srep46349
https://doi.org/10.1007/s00330-014-3516-z
https://doi.org/10.1097/JTO.0000000000000673
https://doi.org/10.1016/j.jtho.2015.09.009
https://doi.org/10.1007/s10278-018-0128-1
https://doi.org/10.2967/jnumed.116.181826
https://doi.org/10.1016/j.cllc.2016.02.001
https://doi.org/10.21037/tlcr-20-122
https://doi.org/10.1200/JCO.2010.33.4235
https://doi.org/10.1016/S1470-2045(11)70184-X
https://doi.org/10.1016/S1470-2045(11)70184-X
https://doi.org/10.1093/carcin/bgv168
https://doi.org/10.1093/carcin/bgv168
https://doi.org/10.1016/j.lungcan.2019.03.025
https://www.dovepress.com
http://www.dovepress.com/testimonials.php
https://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
https://www.dovepress.com

	Introduction
	Materials and Methods
	Patient Population
	Tumor Sample Preparation and DNA Extraction and Mutation Analysis
	CT Imaging Acquisition and Tumor Segmentation
	Extraction and Selection of Radiomic Features
	Study Oversight
	Statistics

	Results
	Clinical Characteristics of Patients
	Radiomics Predictor

	Discussion
	Conclusion
	Abbreviations
	Acknowledgment
	Disclosure
	References

