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Abstract: Cell adhesion receptors (CARs) play important roles in signaling, regulation, 

 membrane trafficking, immune response, and transport. For a long time, based on their functional 

and sequence diversity, CARs have been classified into four classes: cadherin-mediated cell 

adhesion receptors (CMCARs); immunoglobulin superfamily-mediated cell adhesion receptors 

(ISMCARs); selectin-mediated cell adhesion receptors (SMCARs); and integrin-mediated cell 

adhesion receptors (IMCARs). Experimental methods suitable to identify and to determine the 

kind of CARs are time-consuming. It is, therefore, desirable to explore new methods for predict-

ing CARs directly from protein sequence information. This report shows the application of 

Protein Sequence Index (PSI) as such a method. Two fuzzy k-nearest neighbor (NN) prediction 

systems were developed to identify adhesion proteins (APs) and classify APs into different 

CARs with PSI. In the first fuzzy k-NN predicting system, 619 APs and 1211 nonadhesion 

proteins (NAPs) were used as a training dataset to identify the APs, and they were evaluated 

by an independent dataset of 477 APs and 576 NAPs. The computed prediction accuracy was 

94.5% and 94.4% for the APs and NAPs respectively, using the independent dataset. In the 

second fuzzy k-NN predicting system, 1211 noncell adhesion receptors (NCARs), 286 CMCARs, 

59 ISMCARs, 38 SMCARs, and 236 IMCARs was used as a training dataset to classify CARs 

into different types, and they were evaluated by an independent testing dataset of 576 NCARs, 

228 CMCARs, 47 ISMCARs, 20 SMCARs, and 182 IMCARs. The predicting accuracy was 

94.4%, 92.1%, 95.7%, 95.0%, and 98.9%, for NCARs, CMCARs, ISMCARs, SMCARs, and 

IMCARs, respectively. These findings suggest the usefulness of PSI for facilitating the identi-

fication and classification of CARs. A program, ADHEN, was constructed, which can be used 

to predict the CARs.

Keywords: cell adhesion receptor, protein sequence index, prediction

Introduction
With the rapid increase in protein sequence and functional annotation data from many 

organisms,1,2 it is essential to analyze various correlations based on large datasets, and 

to design more reliable analytical and predictive tools.3–9 These tools are crucial for 

the analysis of biological data and are increasingly used to accelerate progress in 

biological research.10–13

Cell adhesion receptors (CARs) play important roles in cell signaling,14 protein 

trafficking,15 virus killing16 and innate immune responses.17 CARs have been 

found in a variety of pathogenic microbes.18 Prediction of CARs is important for facili-

tating the study of various biological processes and searching for new vaccine 

candidates.17 Finding CARs can help scientists to find potential methods to deal with 
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infection: for example, abrogation of CARs by either immuniz-

ing the host with adhesions or inhibiting the interaction using 

structural analogs of host cell receptors holds the potential to 

develop novel preventive strategies. Experimental methods 

used for characterizing CARs are time-consuming and demand 

large resources.14,19,20 Typically, CARs are often assayed in 

vitro either by cell or cell-substrate binding experiments, using 

transfected cells expressing the molecule of interest, or using 

monoclonal antibodies or peptides to interfere with the expres-

sion of adhesion proteins (APs).21 In vivo, the function of 

adhesion is very difficult to determine, and in fact, many func-

tions of CARs are being determined using gene knockout 

mice.22 In general, the gene knockout mice offer novel 

resources for elucidating the molecular basis of CARs,23 but, 

these kinds of methods are time-consuming and expensive. It 

is desirable to develop a computational method for predicting 

CARs from the protein sequence information.24

CARs are primarily characterized by their specific 

sequence features.14,25 Given a protein sequence, the question 

arises of how to identify this protein as an AP or nonadhesion 

protein (NAP), and if the protein is an AP, how to classify this 

AP into one of the different classes of CAR. One might assume 

that if an accurate, robust, and rapid method for predicting 

CARs was developed, it could significantly help biologists to 

reduce the experimental time involved in finding CARs.

A statistical learning method, fuzzy k-nearest neighbor 

(fuzzy k-NN), has been widely applied in many areas of 

bioinformatics.26 These applications include protein subcel-

lular location prediction,27,28 and diagnosis.29 Because fuzzy 

k-NNs are designed to maximize the margins to separate two 

classes so that the trained model generalizes well on the 

datasets, it is thus of interest to explore the use of a fuzzy 

k-NN as a classifier to predict CARs.

In this report, we explore the application of fuzzy k-NN 

to develop a prediction system to identify and classify CARs. 

For a long time, CARs have been divided into four classes 

(Figure 1):30

1. Cadherin-mediated cell adhesion receptor (CMCAR).31 

Cadherins are primarily involved in cell adhesion.32 Their 

extracellular domains contain five characteristic repeats, each 

comprising a sandwich of β sheets, and they mediate adhesion 

between cells through the most distal cadherin repeats.31

2. Immunoglobulin superfamily-mediated cell adhesion 

receptors (ISMCAR).33 ISMCARs are characterized by 

the presence of varying numbers of Ig-related domains34 

and they have adhesion sandwiches of two β sheets held 

together by hydrophobic interactions.

A B C D

Cell
membrane

Cell
membrane

α β

Figure 1 Different types of cArs (cell adhesion receptors): (A), cadherin-mediated 
cell adhesion receptor (cMcAr); (B), immunoglobulin superfamily-mediated 
cell adhesion receptor (isMcAr); (C), selectin-mediated cell adhesion receptor 
(sMcAr); (D), integrin-mediated cell adhesion receptor (iMcAr) (for more 
information, see reference 30).

3. Selectin-mediated cell adhesion receptors (SMCAR).35 

Selectins show a heterophilic interaction with their 

counter-receptors. They recognize specific carbohydrate 

groupings in the counter-receptor or ligand.36,37

4. The final major family of CARs is the integrin-mediated 

cell adhesion receptors (IMCAR).38–40 Most integrins are 

predominantly receptors for fibronectins, laminins, and 

collagens, but a few also play important roles in hetero-

typic cell adhesion.30

A novel protein sequence index (PSI) algorithm was 

designed and applied for training the fuzzy k-NN to identify 

the CARs. The prediction accuracies of fuzzy k-NN were 

analyzed. Our results show that the prediction model reveals 

a high accuracy rate using leave-one-out cross-validation test-

ing and independent dataset testing. It is expected that our 

method can provide a useful additional technique for finding 

CARs.

Methods
Datasets
Protein sequence data of APs were retrieved from http://

www.ncbi.nih.gov. Any putative or unverified APs were 

removed from the datasets. NAPs that function within the 

cell were also retrieved from http://www.ncbi.nih.gov. 

Four datasets were built as shown in Tables 1 and 2. Dataset 
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A contained 619 APs and 1211 NAPs as a training dataset 

for identification of APs. Dataset B contained 477 APs and 

576 NAPs as a testing dataset for identification of APs 

(Table 1). Dataset C contained 1211 noncell adhesion 

receptors (NCARs), 286 CMCARs, 59 ISMCARs, 38 

SMCARs, and 236 IMCARs as a training dataset for clas-

sification of CARs. Dataset D contains 576 NCARs, 228 

CMCARs, 47 ISMCARs, 20 SMCARs, and 182 IMCARs 

as a testing dataset for classification of CARs (Table 2). 

These datasets can be downloaded from: http://code.google.

com/p/adhen.

Protein sequence index
The protein sequence index (PSI) was determined according 

to the following method.

1. Given a particular protein (protein length = n), the number 

of amino acid residues in this protein is expressed as 

Equation 1:

 A p a p a p a p ai1 1 2 20= [ ( ), ( ), , ( ), , ( )] , 

 (1)

where A
1
 means the amino acids composition of the protein, 

and p(a
i
) means the total number of 20 different amino 

acid residues (i = 1–20) in the protein, respectively.

2. Construct a {20 × (n + 1)} matrix A
2
. The first element 

α
i,m

 of each row represents the total number of amino acid 

residues i in the protein. Read the amino acid residues of 

the protein from begin (j = 1) to end (j = n). If an amino 

acid residue i is found in the specif ic sequence 

 position j, the number of amino acid residues α
i,m

 is 

reduced by 1; otherwise, the number of amino acid resi-

dues α
i,m

 remains unchanged.

Matrix A
2
 contains the survival values of 20 different 

amino acids along the protein sequence for a specific 

protein. Each row represents the properties of different 

amino acid residues i (i = 1:20), and each column indi-

cates the amino acid survival value in the protein. A
2
 is 

expressed as:

Table 3 shows a calculation example of matrix A
2
 for a spe-

cific peptide.

3. Fit different amino acid decay information in each row 

of A
2
 using the following Equation 3:

 p x p x p x p x pi i i i i( ) = + + + +1
6

2
5

6 7

 (3)

A program was designed to find the coefficients of a 

polynomial function pi(x) of degree 6 that fits different 

amino acid survival values. For a different amino acid i 

in the  protein, a coefficient array,

 
γ =  p p pi i i

1 2 7, , , , (i = 1:20) (4)

was calculated, then arrays of 20 different amino acids 

were assembled into array A
3
, and it was expressed as 

Equation 5:

 

A p p p p p p

p p p
3 1

1
2
2

7
1

1
2

2
2

7
2

1
20

2
20

7
20

= [ , , , ] || [ , , , ]

|| || [ , , , ]

 

 

 (5)

where || denotes vector horizontal concatenation, A
3
 is a 

(1 × 140) vector for each protein. We included the amino 

acid component array A
1
 of the protein into A

3
 and formed 

an A
4
 vector, which is expressed as Equation 6:

 A A A4 1 3= ||  (6)

A
4
 is a (1 × 160) vector, which was used as PSI in the 

predicting of CAR.

Table 1 Datasets for the identification of APs (protein sequence 
distance P-value cutoff = 0.05)

Dataset Number of sequences

Dataset A  
(Training dataset)

Dataset B  
(Testing dataset)

AP 619 477
nAP 1211 576
Total 1830 1053

Abbreviations: AP, adhesion protein; nAP, nonadhesion protein.
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Fuzzy k-nn
The fuzzy k-NN algorithm can predict the data point by 

finding its closest neighbors.26 The proposed fuzzy k-NN 

classifier assigns the membership values r
c
(Tr) of sample Tr 

to different classes as follows in Equation 7:

 

r Tr
r Tr Tr Tr

Tr Tr
c

c
s

s

k
s w

s w

s

k( ) ,

/( )

/( )
=

( ) −( )
−

=

− −

− −

=

∑

∑
1

2 1

2 1

1

 (7)

where c means different classes, and ||Tr − Trs|| is the Euclid-

ean distance between Tr and one of its nearest neighbors Trs, 

w is the fuzzy strength parameter to determine the weighting 

of the distance, and Tr was categorized into the class having 

the highest membership value. Here, we set k = 1, and w = 2 

as default values for our fuzzy k-NN classifier.

Predictive accuracy
Various quantitative variables were obtained to measure 

the effectiveness of the support vector machine (SVM) 

method: 1) TP, true positives, the number correctly clas-

sified; 2) FP, false positives, the number incorrectly clas-

sif ied; 3) TN, true negatives, the number correctly 

classified; 4) FN, false negatives, the number incorrectly 

classified. Using the variables above, a series of statistical 

metrics were computed to measure the effectiveness of the 

SVM method. To provide an indication of the overall 

performance of the system, we computed the predictive 

accuracy (PA) as:

 
PA TP TN

TP FN TN FP
(%) =

+
+ + +

× 100
 

(8)

Results
Datasets
Fuzzy k-NN classifiers were used for the identification and 

classification of CARs. To test their capability, the NCBI 

database was searched to allow the construction of CAR 

datasets. Highly homologous proteins in the datasets were 

removed, based on protein sequence distance analysis results. 

A similarity P-distance threshold value of 0.05 was used to 

ensure the maximum exclusion of homologous proteins. Four 

datasets of experimentally known CARs from different 

Table 3 calculation results of matrix A2 (as described in 
Equation 2) for a specific peptide containing 30 amino acid residues 
mlsifkpaphkarlpaaeidptyrrlrwqi

Amino acid  
residue

The result of A2 matrix for a peptide with 
sequence as mlsifkpaphkarlpaaeidptyrrlrwqi

s 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0

A 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0

L 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 0, 0, 0, 0, 0

V 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0

e 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0

P 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0

r 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
3, 2, 1, 1, 0, 0, 0, 0

g 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0

i 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 0

n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0

K 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0

D 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0

T 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 
0, 0, 0, 0, 0, 0, 0, 0

F 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0

Y 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
0, 0, 0, 0, 0, 0, 0, 0

M 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0

h 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0

Q 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 0, 0

c 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0

W 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 0, 0, 0

Table 2 The datasets for the classification of cell adhesion 
receptor (protein sequence distance P-value cutoff = 0.05)

Dataset Number of sequences

Dataset C  
(Training dataset)

Dataset D  
(Testing dataset)

ncAr 1211 576
cMcAr 286 228
isMcAr 59 47
sMcAr 38 20
iMcAr 236 182
Total 1830 1053

Abbreviations: cMcAr, cadherin-mediated cell adhesion receptor; isMcAr, 
immunoglobulin superfamily-mediated cell adhesion receptor; sMcAr, selectin-
mediated cell adhesion receptor; iMcAr, integrin-mediated cell adhesion receptor; 
ncAr, noncell adhesion receptors.
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 species were prepared by careful examination of literature 

reports. Any “controversial”, “putative”, “predicted”, or 

“hypothetical” data were excluded from the datasets. The 

negative dataset consisted of proteins representing various 

intracellular enzymes, for example: “dehydratease”, “kinase”, 

“acyl-CoA synthase”. Finally, we obtained four datasets 

(A, B, C, D) as shown in Tables 1 and 2. Datasets A and B 

were used for the identification of APs, and datasets C and 

D were used for the classification of CARs.

Determination of the Psi
PSIs were computed with the algorithm described in the 

Methods section. For each protein, a (1 × 160) vector was 

constructed. The vector, includes the amino acid composition 

of each protein (initial 20 elements in the PSI) and the fitting 

coefficients of 20 amino acids for the protein (following 140 

elements in the PSI), respectively.

Figure 2 shows the fitting results of 20 amino acids with 

the PSI of mannosyltransferase (GenBanK accession 
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Figure 2 Fitting curves of protein sequence index (Psi) obtained from the protein sequence of mannosyltransferase (genBanK accession no: XP_721742) using equation 3. 
The x-axis represents the protein sequence length of mannosyltransferase, the y-axis represents the amino acid survival value. The blue line represents the relationship 
between amino acid survival value and protein sequence length. The green line represents the fitting curves using Equation 3.
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No: XP_721742) obtained from Equation 2. Our results show 

that the coefficients of PSI can accurately fit decay efficien-

cies of different amino acids (Figure 2). After we calculated 

PSI for each protein, datasets were used to train the fuzzy 

k-NN classifier.

Determination of predictive accuracy
Identification and classification efficiencies of fuzzy k-NNs 

for CARs using PSIs were determined. The computation was 

performed on an ASUS machine (ASUS Computer Interna-

tional, Fremont, CA) with an Intel 2.6 GHz CPU and 

2G RAM.

The identification results for APs and NAPs using the first 

fuzzy k-NN classifier are given in Table 4. When training 

dataset A is used in self-consistence testing using the leave-

one-out cross-validation algorithm, the predictive accuracy 

in identification of AP and NAP is 98.5% and 99.7%, 

 respectively. When testing dataset B is used in independent 

testing, the predictive accuracy in identification of AP and 

NAP is 94.5% and 94.4%, respectively. In identification of 

APs and NAPs, the fuzzy k-NN classification using PSI can 

achieve higher accuracy relative to fuzzy k-NN classification 

using amino acid composition (Table 4). We designed an 

artificial neural network (ANN) classification to compare with 

the fuzzy k-NN classification using MATLAB. The ANN 

classification is a two-layer feed-forward network. ANN has 

one hidden layer with five tan-sigmoid transfer function 

(TANSIG) neurons. The second layer has one log-sigmoid 

transfer function (LOGSIG) neuron, and the epoch parameter 

is set as 100, and the goal of the training is set as 0.01. In our 

experimental conditions, after ANN was trained with dataset 

A, then tested with dataset B, the fuzzy k-NN shows a better 

predictive accuracy relative to ANN (Table 4).

The classification results for NCARs, CMCARs, ISM-

CARs, SMCARs, and IMCARs using the second fuzzy k-NN 

classifier are given in Table 5. When training dataset C is 

used in self-consistence testing using the leave-one-out 

 cross-validation algorithm, the predictive accuracy in 

 classification of NCARs, CMCARs, ISMCARs, SMCARs, 

and IMCARs is 99.7%, 95.4%, 98.3%, 97.3%, and 97.4%, 

respectively. When testing dataset D is used in independent 

testing, the predictive accuracy in classification of NCARs, 

CMCARs, ISMCARs, SMCARs, and IMCARs is 94.4%, 

92.1%, 95.7%, 95.0%, and 98.9%, respectively. In classifica-

tion of NCARs, CMCARs, ISMCARs, SMCARs, and 

IMCARs, the fuzzy k-NN classification using PSI can 

achieve higher accuracy relative to fuzzy k-NN classification 

using amino acid composition (Table 5). In our experimental 

conditions, after ANN was trained with dataset C, then tested 

with dataset D, the fuzzy k-NN shows a better predictive 

accuracy relative to ANN (Table 5).

Discussion
With the rapid increase in the size of biological databanks, 

understanding the data has become critical.41,42 Although 

laboratory experiment is the most effective method for find-

ing CARs, it is difficult and time-consuming. Therefore, 

computational tools have been widely used in the fields of 

classification and cluster analysis of biological data.43–45 

There are many computational algorithms available for the 

classification analysis of biological data, including decision 

trees,46–48 discriminant analysis,49–51 and neural networks.52–54 

Here, we have used the fuzzy k-NN classification in our 

experiment, because the fuzzy k-NN classifier is fast, easy, 

and efficient.26

CARs have been receiving much attention in recent years. 

CARs are essential in almost all aspects of cell develop-

ment.55, 56 CARs localize on the cell surface and play impor-

tant roles in different cells. The importance of CARs has 

been elucidated in many organisms, including bacteria.16,57 

The cell adhesion function is highly significant in cell divi-

sion, cell migration, cell differentiation and apoptosis,58 and 

therefore, classification of CARs is an important research 

topic in bioinformatics.30

In this report, we have applied fuzzy k-NNs to identify 

APs and to classify CARs. We determined PSIs of different 

Table 4 Predictive accuracy in identification of AP (adhesion protein) and NAP (nonadhesion protein)

Classes Predictive accuracy in identification

Fuzzy k-NN ANN

Using PSI Using amino acid composition Using PSI

Self consistence test  
(Dataset A)

Independent test  
(Dataset B)

Independent test  
(Dataset B)

Independent test  
(Dataset B)

AP 98.5% 94.5% 69.3% 83.4%
nAP 99.7% 94.4% 70.8% 89.9%
Overall 99.3% 94.5% 70.1% 86.9%

Abbreviations: ANN, artificial neural network; NN, nearest neighbor; PSI, Protein Sequence Index.
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protein datasets, and PSI values were used to train fuzzy 

k-NNs. Our results show that the fuzzy k-NNs can identify 

and classify protein sequences into APs or CARs with high 

accuracy. These predictors could serve as new leads for 

further experimental characterization.

In order to improve predictive accuracy, we applied the 

following conditions for the selection and construction of 

datasets:

1. To improve the quality of datasets, we used well-anno-

tated preferably experimentally validated data, and 

avoided sequences with ambiguous annotations, conflict-

ing experimental evidence, or those that were annotated 

through prediction;

2. To improve the performance of the classif ier, we 

attempted to collect as many sequences as possible to 

develop an accurate classifier;

3. To avoid redundancy, we removed redundant or highly 

similar sequences from datasets to avoid biasing the 

algorithm towards groups of similar sequences, with the 

protein P-distance similarity cutoff value set at 0.05 

between different protein sequences.

The predictive accuracy of nonmembers appears to be 

better than that of members. The higher prediction accuracy 

for nonmembers probably results from the availability of 

a more diverse set of nonmembers than that of members, 

which enables a classifier to perform better statistical 

learning for the recognition of nonmembers. This may 

partly explain why the prediction accuracy for members is 

generally lower than that for nonmembers. In our experi-

ments, fuzzy k-NN classification is more efficient than 

ANN classif ication in handling unbalanced datasets. 

 Obviously, it is inappropriate to simply reduce the number 

of nonmembers to artificially match that of members, 

because this will reduce the diversity to fully represent all 

 nonmembers. In the future, if we can combine the fuzzy 

k-NN classifier with other classifiers in identification and 

classification, the predictive accuracy should be signifi-

cantly improved in the treatment of very large unbalanced 

datasets.

In summary, prediction of protein sequences with low 

similarity to specific protein function sequences is a major 

challenge in computational biology in the postgenomic era. 

Fuzzy k-NNs with PSI appear to be potentially useful tools 

for the identification of APs and classification of CARs. It is 

time for us to produce a proteome level PSI database, so that 

this algorithm can be applied to genomes. The fuzzy k-NN-

derived classification systems with PSI developed in this 

work can be accessed from http://code.google.com/p/

adhen.
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