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Background: Semen Ziziphi spinosae, known as Suanzaoren (SZR) in Chinese, is a Chinese herbal medicine widely used in sedatives 
and tranquilizers. Although SZR is important for the clinical treatment of Tourette syndrome (TS), its mechanism of action remains 
unclear. Therefore, we investigated the pharmacological mechanisms of SZR in TS treatment using network pharmacology and 
systems biology approaches.
Methods: The bioactive components and potential targets of SZR were screened using the TCMSP database. UniProt was used to 
identify targets by mapping the known genes related to SZR. The known genes related to TS were identified by GeneCards and OMIM 
databases. A protein-protein interaction network was constructed using information from STRING 11.0 database. Cytoscape 3.8.0 
software and Bioinformatics online platform were used for plotting this network. Gene ontology and KEGG enrichment analyses were 
performed using Metascape. Finally, AutoDock was used to verify the molecular docking.
Results: We found that SZR had 10 active compounds. There were 30 overlapping target genes between TS and SZR. These genes 
were associated with several signaling and metabolic pathways. AChE, SLC6A4, and HTR3A were the top three hub genes. The active 
components in SZR had a high binding affinity for the key targets.
Conclusion: SZR therapy for TS could achieve network regulation through the action of various active components of Chinese 
medicine on different targets and generate a complex regulatory relationship via interaction with potential targets, thereby playing 
a therapeutic role. Thus, SZR is a potential candidate for treating TS because it regulates nervous system functions.
Keywords: Tourette syndrome, tics, Semen Ziziphi spinosae, suanzaoren, network pharmacology, molecular docking

Introduction
Tourette syndrome (TS) is a common childhood-onset neurodevelopmental condition characterized by the presence of 
multiple sudden, involuntary, rapid, recurrent, and non-rhythmic motor tics and at least one vocal tic that persists for at 
least a year.1 The prevalence of TS in school children ranges from 0.3% to 0.9%,2 while that of other chronic tic disorders 
ranges from 0.9% to 2.8%.3 It is widely believed that the occurrence of TS is causally related to the interactions of genetic, 
neurobiochemical, inflammation-related, immunological, and environmental factors. However, our understanding of the 
pathophysiological mechanisms of TS remains limited. Current research suggests that abnormalities of neurotransmitters, 
including dopamine, glutamate, serotonin, and acetylcholine, which participate in the cortico–striato–thalamo–cortical 
(CSTC) circuit are the primary reason for the development of TS.4

Patients with TS may experience subjective discomfort, sustained social problems, and emotional problems.5,6 The 
lifetime prevalence of comorbid behavioral disorders is estimated to be 85.7%.7 Moreover, attention-deficit hyperactivity 
disorder (ADHD), obsessive-compulsive disorder (OCD), and anxiety disorders are commonly associated with TS.7,8 

About 5% of the patients with TS have life-threatening symptoms, including mild self-injurious behaviors and borderline 
personality disorder, especially in severe cases.9 Medications and behavioral treatments are the primary means of treating 
TS.10,11 Comprehensive behavioral intervention for tics is the main method used in behavioral treatments. However, this 
kind of treatment cannot be carried out on a large scale and is suitable only for patients aged 9 years and older with mild 
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symptoms. The efficacy of the medications used to treat TS, such as haloperidol, aripiprazole, tiapride, clonidine, and 
risperidone, is not satisfactory.10,11 Furthermore, the medications have many side effects, including fatigue, somnolence, 
and extrapyramidal symptoms.12,13 Consequently, patients with TS are increasingly using complementary and alternative 
medicine.10

Semen Ziziphi spinosae, also known as spine date seed or suanzaoren (SZR), consists of the dried seeds of Ziziphus 
jujuba and is a widely known Chinese herbal medicine.14 According to the available literature on traditional Chinese 
medicine (TCM), SZR is widely used in sedatives and tranquilizers in the treatment of insomnia, anxiety, and other 
neuropsychiatric diseases.15,16 Recently, SZR has also shown significant neuroprotective activities in animals with 
dementia by exerting antioxidant and anti-inflammatory effects.16 Although previous research has shown that SZR 
may play an important role in clinical TS treatment, the underlying mechanism is still unclear.17 Therefore, in this study, 
systems biology approaches were used to screen the active compounds of SZR, identify its target genes, and explore the 
potential molecular mechanism of its therapeutic anti-tic effect.

Materials and Methods
Identification of the Active Compounds of SZR
The relevant data for identifying SZR constituents were retrieved from the database of the traditional Chinese medicine 
systems pharmacology database and analysis platform (TCMSP) database (http://lsp.nwu.edu.cn).18 The active com-
pounds were screened based on absorption, distribution, metabolism, and excretion (known as ADME screening). 
Following this, we examined whether the active compounds of SZR met the criteria of oral bioavailability (OB) ≥ 
25%, drug-likeness (DL) ≥ 0.18, and blood-brain barrier (BBB) ≥ −0.3, as recommended in the TCMSP database. OB 
may represent the percentage of an oral dose of a drug that enters the systemic circulation unchanged.19 DL is 
a qualitative term that refers to the optimized pharmacokinetics of a drug and its properties.20 The BBB restricts proteins 
and potential diagnostic and therapeutic drugs from entering the brain parenchyma.21,22 The detailed calculations of these 
three parameters have been reported by Wang et al.22

Identification of Targets Related to Active Compounds of SZR
The targets related to active compounds of SZR were further predicted based on the computer targeting technology 
developed by the TCMSP. UniProt (http://www.uniprot.org/) is the protein database with the most abundant resources 
and the most extensive categories.23 It is composed of data from Swiss-Prot, TrEMBL, and PIR-PSD. Using the UniProt 
KB search function of UniProt database, SZR target proteins were searched and limited to “human” studies, with the 
UniProt codes of retrieved active compounds of SZR converted into gene symbols.

Identification of Known Genes Related to TS
Known TS genes were acquired from two existing resources: (1) GeneCards database (https://www.genecards.org/) and 
(2) Online Mendelian Inheritance in Man (OMIM) database (https://omim.org). The GeneCards database helps in 
screening correlations between genes and diseases and provides an algorithm to retrieve more relevant targets.24 The 
OMIM database includes information on human diseases that describes the categories and names of new diseases as well 
as the relationship between phenotypes and related etiological genes.25 The keywords “Tourette syndrome” or “Tic 
disorder” were entered, and the repeated genes retrieved were removed from the search results and matched with the 
genes related to the active compounds of SZR to obtain their potential target genes in the treatment of TS.

Protein-Protein Interaction Network of Targets of TS and SZR
Using STRING 11.0, an online software (http://string-db.org),26 the genes included in the intersection of target genes 
related to active compounds of SZR and TS were entered, the organism “Homo Sapiens” was selected, the relevant 
information on the interactions and relationships between proteins were obtained, and a protein-protein interaction (PPI) 
network was constructed. Cytoscape 3.8.0 software (The Cytoscape Consortium, San Diego, CA, USA) was used for 
plotting the network between SZR, active compounds, target genes, and TS.
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Correlation Pathway and Annotation Analysis
Gene ontology (GO) terms belong to three categories, namely, biological processes, molecular functions, and cellular 
components.27 The Kyoto Encyclopaedia of Genes and Genome (KEGG) can consign selected sets of genes to the most 
relevant signaling pathways.28 In this study, Metascape (http://metascape.org)29 was used to conduct GO term and KEGG 
pathway enrichment analyses of the gene sets to explore the molecular mechanism underlying anti-TS effects of SZR, 
with the threshold significance value set at the default P < 0.01. The enrichment GO term histogram and enrichment 
KEGG dot bubble were plotted using Bioinformatics (http://www.bioinformatics.com.cn), an online data visualization 
platform.

Molecular Docking
The crystal structures of the verified components of SZR were obtained from the RCSB Protein Data Bank (PDB, https:// 
www.rcsb.org/).30 The crystal structure of components were stored as a docking ligand in MOL2 format, and the 
iGEMDOCK software wa. Finally, AutoDock was used to verify the molecular docking.

Results
Compounds of SZR
Using TCMSP, it was found that SZR includes 33 kinds of traditional ingredients. Among these ingredients, a total of 10 
active compounds met the criteria of OB ≥ 25%, DL ≥ 0.18, and BBB ≥ −0.3 (Table 1).

Target Gene Prediction
Target sites of SZR were retrieved from TCMSP, and corresponding targets were selected according to the selected 
chemical components. Among these components, one candidate did not have any targets, and a total of 42 non-repeating 
targets were obtained. Moreover, 2624 target genes corresponding to TS were identified from GeneCards and OMIM. 
There were 30 overlapping target genes between TS and SZR (Figure 1).

Protein-Protein Interaction Network
A PPI network of the 30 overlapping target genes in SZR and TS was constructed using the STRING database (Figure 2). 
In this study, the genes with high connectivity (≥ 5) were defined as hub genes. Acetylcholinesterase (AChE), sodium- 
dependent serotonin transporter (SLC6A4), and 5-hydroxytryptamine receptor 3A (HTR3A) were the top three hub genes 
among the 25 hub genes (Figure 3).

Table 1 Detailed Information on the Active Compounds of SZR

Number PubChem CID Molecule Name OB (%) DL BBB

SZR1 64,971 Mairin 55.38 0.78 0.22

SZR2 160,487 (S)-Coclaurine 42.35 0.24 0.06

SZR3 5,742,590 Daucosterol 36.91 0.75 1.15
SZR4 51,346,169 Jujuboside A 34.96 0.62 0.11

SZR5 22,156 dl-Nuciferine 29.26 0.4 1.03

SZR6 222,284 Phytosterol 36.91 0.75 1.16
SZR7 44,566,612 Sanjoinine A 27.32 0.79 −0.01

SZR8 14,729,076 Sanjoinine B 26.86 0.79 −0.2

SZR9 14,729,078 Sanjoinenine 67.28 0.79 −0.24
SZR10 102,063,083 Zizyphusine 41.53 0.55 0.6

Abbreviations: OB, oral bioavailability; DL, drug-likeness; BBB, blood-brain barrier.
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Network Among SZR, Compounds, Target Genes, and TS
The active compounds of SZR and TS-related overlapping target genes were imported into the Cytoscape 3.8.0 software 
to construct the network between SZR-compounds-target genes-TS (Figure 4). The results showed that SZR mainly acted 
on 30 targets through five active compounds, which may affect the occurrence of TS.

Figure 1 Venn diagram of the target genes for TS and SZR active compounds. TS has 2624 target genes, while SZR has 42 target genes. There are 30 overlapping target 
genes between the two sets.

Figure 2 PPI network of the 30 overlapping target genes. Within a PPI network, each protein is represented as a node, and interactions are represented by the lines 
between the nodes. The number of lines linked to a given node is defined as the connectivity degree.
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GO Term and KEGG Pathway Enrichment Analysis
In each major category of the GO terms (Figure 5), the most significantly enriched terms were “chemical synaptic 
transmission”, “postsynaptic membrane”, and “G protein-coupled amine receptor activity.” The overlapping target genes 
were closely related to synapses, receptors, and metabolic signaling pathways (Figures 6 and 7).

Verification of Molecular Docking
When the main active components of a therapeutic agent are docked with a core target, the more stable the binding 
conformation, the lower the binding energy required. In this study, binding energy < −9.0 kcal/mol was selected as the 
screening condition, as shown in Table 2. We selected AChE docking with the verified SZR active molecules. (S)-Coclaurine, 
Sanjoinine B and Zizyphusine had the three lowest energy value, with binding energies of −10.03, −9.76, and −9.7 kcal/mol. 
Moreover, Pymol 2.1 software was used to create the schematic diagram for the docking result with the lowest binding energy 
(Figure 8). This shows that (S)-coclaurine has a good binding ability to AChE protein.

Discussion
TS is a neurodevelopmental condition characterized by the presence of tics and associated behavioral problems.1 Some 
Chinese herbs may play an important role in clinical TS treatment, Bombyx Batryticatus have been used to treat 
convulsions.31 Os Draconis, Concha Ostreae, and Radix Bupleuri have been used to relieve epileptic symptoms.32 

SZR is a Chinese herbal medicine that has been widely used in sedatives and tranquilizers in traditional clinics.17 Based 
on the current clinical and experimental research status of SZR treatment for TS, the present study further explored the 
mechanism of action of SZR by using a systems biology approach.

Figure 3 Hub nodes from the PPI network. AChE has the highest connectivity degree. Nodes that possess important biological functions usually have a high connectivity 
degree and are also named hub genes.
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Figure 4 Network of SZR, compounds, target genes, and Tourette syndrome (TS). Red rectangle, TS; yellow diamond, SZR; yellow triangle, compounds; blue octagon, target genes.

Figure 5 GO term enrichment analysis.
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In this study, SZR was found to have 10 compounds and 42 non-repeating targets. Among the compounds, there were 
5 active components: (S)-coclaurine, dl-nuciferine, sanjoinine B, sanjoinenine, and zizyphusine. DL-Nuciferine is an 
isoquinoline derivative that acts as a D-2-like receptor agonist.33 Sanjoinine B is a cyclic alkaloid peptide, while 
zizyphusine, sanjoinenine, and (S)-coclaurine are alkaloids. They all exert diverse effects on nerve cells, neurotransmit-
ters, receptors, and sleep parameters.34,35 These findings suggest that they may be the key compounds of SZR that play 
a role in TS treatment. The active amino acid residues bound by (S)-coclaurine and AChE include Glu-199, His-440, 
Phe-330, Ser-122, and Tyr-334. Hydrogen bonds are formed between the hydroxyl and hydrogen atoms of (S)-coclaurine 
and the active amino groups of Glu-199, His-440, Ser-122, and Tyr-334. For example, strong hydrogen bonds are formed 
between hydroxyl protons and amino protons of Glu-199, His-440, Ser-122, and Tyr-334 with distances of 2.1 Å, 2.7 Å, 
2.0 Å, and 2.6 Å, respectively. The bond length of a conventional hydrogen bond is markedly less than 3.5 Å. In addition, 
the benzene ring of (S)-coclaurine can form π-π conjugated interactions with the benzene ring of Phe-330 residue. These 
hydrogen bonds and π-π conjugate interactions indicate that (S)-coclaurine binds strongly to AChE protein and can match 
the active pocket of AChE protein suitably.

There were 30 overlapping target genes between TS and SZR. Twenty-five hub genes were identified using PPI 
network analysis. AChE, SLC6A4, and HTR3A were the top 3 hub genes among them; they are all closely related to 
neuropsychiatric diseases. AChE can termination of neurotransmission at cholinergic synapses by rapid hydrolysis of the 
ACh,36 and exerts beneficial effects in several neurological disorders such as Alzheimer disease and Creutzfeldt-Jakob 
disease through its critical role in termination of cholinergic neurotransmission.37,38 The corpus striatum of the basal 

Figure 6 KEGG pathway enrichment analysis.
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ganglia possesses the highest density of AChE markers, thereby highlighting the importance of AChE in this structure. 
Accumulating evidence from several animal experiments has indicated that the nicotinic-cholinergic system is involved 
in physiological motor control. Therefore, the development of AChE drugs can play a pivotal role in treating movement 
disorders.39

Numerous studies have shown that SLC6A4 is associated with the etiology of TS.40 Increased blood SLC6A4 mRNA 
levels in the striatum of TS38 rats has been found to be positively correlated with the severity of the tic.41,42 The 
serotonin transporter (SERT)-linked polymorphic region (5-HTTLPR) in the promoter region directly upstream of 
SLC6A4 has been implicated in the etiology of OCD and TS.43,44 5-HTTLPR is a 43-base pair repeat with a long (L) 
and a short (S) allele. The L allele is associated with increased SLC6A4 mRNA expression in blood, resulting in reduced 
serotonergic neurotransmission through the increased serotonin clearance mediated by SERT.40 SLC6A4 has also been 
implicated in other neuropsychiatric disorders, such as ADHD and OCD, which are important and common complica-
tions of TS.41 HTR3A is one of the serotonin receptor subtypes. Serotonin has been implicated in various neuropsychia-
tric disorders; therefore, it may affect the detected variants contributing to the severity of these diseases. Serotonergic 
dysfunction is thought to be involved in the pathophysiology of TS.45 These candidate genes offer vast potential benefits 
for application in gene-targeted therapy of TS.

To further understand the mechanism of action, GO and KEGG enrichment analyses were performed on these target 
genes. GO enrichment analysis demonstrated that SZR plays a regulatory role in chemical synaptic transmission, 

Figure 7 KEGG pathway enrichment analysis demonstrating the interactions among various pathways.

Table 2 AChE Docking Results for the Compounds of SZR

Name Target Binding Energy  
(kcal/mol)

Combination Type

(S)-Coclaurine AChE −10.03 Hydrogen bonds, hydrophobic interactions, π-stacking

Sanjoinine B AChE −9.76 Hydrogen bonds, hydrophobic interactions, π-stacking
Zizyphusine AChE −9.7 Hydrogen bonds, hydrophobic interactions, π-stacking
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postsynaptic membrane, G protein-coupled amine receptor activity, and other biological processes. According to the 
enrichment results of the KEGG pathway, SZR plays a role in treating TS through neuroactive ligand-receptor 
interaction, cholinergic synapse, cGMP-PKG signaling, serotonergic synapse, cocaine addiction, morphine addiction, 
and retrograde endocannabinoid signaling. These research results are consistent with the holistic view of TCM and the 
principle of treatment based on ZHENG differentiation.46 Therefore, it is speculated that SZR may not only through the 
action of various active components on different targets, but also through the interaction among potential targets, thereby 
playing a therapeutic role in TS. Moreover, the present findings can facilitate the isolation of active compounds in SZR to 
optimize therapy.

Previous studies had shown the therapeutic potential of SZR in treating TS.15,16 SZR had also been used in 
a randomized, double blind, double dummy, parallel controlled trial with TS children.17 Further studies could be designed 
to subsequent cell and animal experiments to reveal the underlying pharmacological and therapeutic effects of SZR for 
the treatment of TS.

Limitations
However, the present study had some limitations. First, because we could not validate these results experimentally in this 
study, the specific mechanism of action is still unclear and needs to be studied further. Second, we chose the criteria of 
oral bioavailability (OB) ≥ 25%, drug-likeness (DL) ≥ 0.18, and blood-brain barrier (BBB) ≥ −0.3, as recommended in 
the TCMSP database, to identified the active compounds of SZR in this study. Thus, the chooses of different criterias 
may lead to different results.

Conclusions
In general, the present study revealed the active compounds of SZR and possible targets and mechanism of action in the 
treatment of TS from the perspective of network pharmacology. The key molecules identified in this study are candidate 
drug targets, and the critical status of these molecules indicates that they may be the key targets of disease control.43 

Network pharmacology is categorized as data mining research, and the research results are mainly based on existing 
studies and prediction system analysis of active ingredients and targets; therefore, there are some differences between the 
current results and those of actual experiments and clinical trials, which need to be further verified in the future.

Abbreviations
SZR, Suanzaoren; TS, Tourette syndrome; CSTC, cortico–striato–thalamo–cortical; ADHD, attention-deficit hyperactiv-
ity disorder; OCD, obsessive-compulsive disorder; TCM, traditional Chinese medicine; TCMSP, traditional Chinese 
medicine systems pharmacology database and analysis platform; OB, oral bioavailability; DL, drug-likeness; BBB, 
blood-brain barrier; OMIM, Online Mendelian Inheritance in Man; PPI, protein-protein interaction; GO, Gene Ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genome; Ach, acetylcholine.

Figure 8 Binding pattern of (S)-coclaurine) and AChE protein.
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