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Abstract: The interferon (IFN) family comprises various cytokines with potent responses 

against RNA and DNA viruses as well as antitumor activities. A recently identified interferon 

subgroup consists of the so-called lambda interferons with several members, including IFN-λ1, 

IFN-λ2, and IFN-λ3 (also denoted interleukin [IL]-29, IL28-A, and IL28-B). They represent 

a newly identified group of the class II cytokine family. While they are functionally related 

to type I IFNs, they are structurally related to the IL-10 cytokine family. The lambda IFNs 

signal through a cytokine receptor complex which is unique for IL-28 and IL-29, designated 

IL-28Rα, and a second chain, the IL-10R2, which is shared with receptors for IL-10 related 

cytokines such as IL-22 and IL-10. In this review, we summarize recent findings about the 

relationship between type I and type III IFN signaling as well as their antiviral and antitumor 

activity. A  better understanding of the functional role of IFN-λ in viral infections and immune 

responses in innate and adaptive immunity opens new therapeutical approaches for the treatment 

of chronic inflammatory diseases and cancer.
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Introduction
Interferon (IFN) was first identified in the late 1950s (1957) by Isaacs and Lindemann.1 

They found that IFN production was induced by virus-infected chicken embryo cells 

and that IFN functions as inhibitor of viral replication. For a long time IFNs were 

thought to have an impact only in virus infection but later on it was shown that they 

have also proinflammatory effects and this is especially true for the IFNγ cytokine. 

IFNs such as IFN-α, IFN-β, and IFN-γ may act on innate immune cells as well as on 

the adaptive immune system. Innate immunity relates to the first barrier defense against 

invading pathogens, and one of the first responses of virally infected organisms consists 

of the secretion of IFNs. Studies in mice have shown that insensitivity towards IFNs 

results in impaired capacity to sustain viral defense and to control viral infections.2–4 

The relevance of these findings is highlighted by studies in patients showing that 

dysfunctions in IFN expression and/or signaling cause a high prevalence of viral 

infections. Additionally, the IFN pathways are also activated in multiple diseases 

like systemic lupus erythematosus, rheumatoid arthritis, and systemic sclerosis,5 

 underscoring the potential relevance of treating inflammatory diseases by modulating 

IFN function. Indeed, the clinical use of IFNs was started in the 1980s for the treatment 

of viral diseases, multiple sclerosis, and cancer.6

In addition to the known groups of IFNs, a novel group of IFNs was recently 

 discovered independently by two groups: Kotenko and Gallagher7 and a group 
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around Klucher and coworkers.8 They identified from human 

genomic sequences a family of three cytokines, designated 

interleukin-28A (IL-28A), IL-28B, and IL-29, also called 

IFN-λ2, IFN-λ3, and IFN-λ1. Based on these findings, IFNs 

can now be classified into three different types, which share 

similar properties, amino acid sequences, and structural 

motifs (Table 1). Functionally, IFN-λs are related to type I 

IFNs. Structurally, they are related to the IL-10 superfamily 

and are now referred to as type III IFNs.7 Whereas IL-29 is 

present in humans, in mice it is encoded by a pseudogene 

and therefore not functionally active.

The IFN family and their signaling 
pathways
Type I IFNs are a homologous cytokine family whose genes are 

located on chromosome 9. They are mostly nonglycosylated 

proteins of 165 to 200 amino acids that share 30% to 85% 

homology within a species. Type I IFNs binds on cell-surface 

receptors composed of two ubiquitously expressed transmem-

brane proteins, IFN receptor 1 (IFNAR1) and IFNAR2. The 

signaling is dependent on the association of two cytoplasmic 

tyrosine kinases, TYK2 and the Janus tyrosine kinase (JAK) 

1 (Figure 1). After ligand binding the signal transducers and 

activators of transcription (STATs) become phosphorylated, 

form heterodimers together with IFN regulatory factor 9 

(IRF9) to build the heterotrimeric complex IFN-stimulated 

gene factor (ISGF3), and translocate to the nucleus to acti-

vate the transcription of antiviral genes.9–11 Type I IFNs can 

be expressed by almost every cell type. However, it should 

be noted that humans have 13 functionally active IFN-α 

molecules expressed predominantly by leucocytes and one 

IFN-β molecule produced by fibroblasts and plasmocytoid 

dendritic cells, and to a lesser extent IFN-ω, IFN-ε, and IFN-κ. 

There is only one type II IFN, namely IFN-γ. This type of IFN 

is mainly produced by natural killer (NK) and T cells and 

signals through a distinct heterodimer of  two membrane span-

ning receptors, IFN-γR1 and IFN-γR2. The former receptor is 

constitutively expressed on all cell types, whereas the latter 

receptor is tightly regulated and expressed on few cell types 

only (eg, T lymphocytes). In T cells, the receptor is capable 

of recruiting STAT1 on activation, leading to STAT1 phos-

phorylation and translocation in the nucleus.12–16 Finally, the 

key transcription factor T-bet becomes activated, leading to 

IL-12Rbeta2 chain expression and subsequent Th1 T cell 

differentiation.

Finally, an IFN family distinct from type I IFNs are the 

type III IFNs. They are also called lambda IFNs and consist 

of three subtypes: IFN-λ1, IFN-λ2, and IFN-λ3. They acti-

vate the same signaling pathway as do type I IFNs but act by 

binding to a different receptor complex. Together with IRF9, 

STAT1 and STAT2 form then a trimeric complex, ISGF3, 

that drives transcription of IFN-stimulated genes for antiviral 

activity.17 The IFN-λ receptor is composed of two membrane 

spanning proteins, IFNLR1 and IL-10R2.18 Whereas IFNARs 

are expressed ubiquitiously, IFNLR1 (IL-28Rα) is expressed 

on only few cell types, especially on epithelial cells.7,8,19 The 

different expression of type I versus type III receptors is a 

key difference between these types of IFNs. This appears to 

be the main reason for the different biological activities of 

these functionally related cytokines with antiviral response 

in vivo. The major parts of the interferon signaling cascade 

are mediated via STATs and JAKs. All three receptor types of 

the IFN signaling pathways are associated with the binding 

of JAK family members. After ligand binding they become 

activated and then phosphorylated. After that dimers are 

formed that transduce signals to the nucleus where target 

structures like ISRE (IFN stimulated response element) and 

GAS (IFN-λ activated sequence) are activated.

Regulation of IFN-λ gene expression 
and cellular targets
The production of IFNs is induced by stimulation with 

 various viruses including RNA and DNA viruses, protozoa, 

and microbial products or by chemical inducers.20 Similarly to 

Table 1 The interferons and their subclasses

Class Subclass Genes Receptor Cell types Function

I α 
β 
ε, κ, ω

17 but 13 only 
functional in human

IFNAR1 
IFNAR2

NK/CD8+ 
DC 
B-cells

Cytotoxicity, TH1, survival, antiviral, antitumor, 
proapoptotic, antiproliferative effects

II γ IFN-γ IFNGR1 
IFNGR2

NK/T cells 
Macrophages

TH1, immune responses, antitumor effects

III λ IL-28A 
IL-28B 
IL-29 (mouse: pseudogene)

IFNLR1 
IL-10R2

epithelial cells 
Hepatocytes 
pDC/keratinocytes

Antiviral, antitumor, pro- and antiapoptotic,  
antiproliferative effects, immune regulation

Abbreviations: DC, dendritic cells; pDC, plasmacytoid DC; IFN, interferon; IL, interleukin; NK, natural killer; TH, T helper.
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type I IFNs, lambda IFNs are induced by viral infections and 

exhibit antiviral activity in cell culture.7,8 They  demonstrate 

similarities in the expression pattern to type I IFNs.21 

Furthermore, the IFN-λ gene promoter shares sequence 

similarities with IFN promoters and is activated by the virus-

activated transcription factors IRF3 and IRF7.22,23 Lauterbach 

et al recently showed that mouse CD8α+ dendritic cells (DCs) 

and their human counterparts BDCA3+ DCs are the major 

producers of IFN-λ on stimulation with double-stranded RNA 

and TLR3 ligand.24 This observation correlates with the find-

ings from Kotenko et al7 and Sheppard et al8 as these authors 

showed that peripheral blood mononuclear cells produce 

high amounts of IFN-λ on TLR3 activation and stimulation 

with double stranded RNA. Thus, poly I:C appears to be an 

important adjuvant which induces the systemic production 

of IFN-λ. Additionally, IFN-λ3 was shown to be an adjuvant 

of T cell responses in mice.24,25 Using a systematic screen 

Ank et al found that only few hematopoetic cells respond to 

IFN-λ. In particular, however, plasmacytoid dendritic cells 

were susceptible to stimulation with IFN-λ.26 Furthermore, in 

contrast to hematopoetic compartments, epithelial cells and 

keratinocytes were highly responsive to IFN-λ treatment.26 

Another group investigated the tissue specificity of IFN-λ 

responsiveness. They showed that the expression of the 

IL-28Rα and therefore the responsivness to type III cytokines 

is predominantly seen in stomach, intestine, lung, and skin 

cells. In particular, epithelial cells were highly responsive 

to type III IFNs.27 Within the liver, the receptor was found 

to be predominantly expressed on hepatocytes.28 Recently, 

our group showed that IL-28A emerges as a key regulatory 

cytokine with pathogenic function in T cell-mediated liver 

injury.29 In addition, IFN-λ has been shown to be expressed 

predominantly by dendritic cells on viral infection and may 

act directly on epithelial cells or hepatocytes.

Genetics and biological effects 
of IFN-λ: single-nucleotide 
polymorphisms of IFNs and their 
influence in diseases
Three independent groups, namely Suppiah et al,30 

Kotenko et al7 and Ge et al31 identified several single-

 nucleotide polymorphisms (SNPs) near the IL-28B gene 

region on human chromosome 19 by using genome-wide 

association studies (GWAS). They additionally showed 

that the presence of certain SNPs is associated with the 

response to pegylated IFN-α and ribavirin treatment in 

hepatitis C virus (HCV) -infected patients in Europe,30,31 

Africa,31 and Asia.32 There is striking evidence that the 

frequency of the CC allele is associated with a higher rate 

of sustained virological response in HCV-infected patients 

as compared to patients with the TT genotype. The C allele 

is quite common throughout eastern parts of Asia, but is 

less frequent in Africa.33 Thus, the IL-28B gene encoding 

for IFN-λ3 has been identified as a key regulator of the 

immune response in HCV infection. The exact mechanisms 

of how SNPs in this gene affect the gene function is not well 
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Figure 1 Interferon signaling. Schematic presentation of receptor complexes, intracellular JAK/STAT signaling, and antiviral gene activation for all three types of interferons.
Abbreviations: JAK, Janus tyrosine kinase; STAT, signal transducer and activator of transcription; IRF, IFN regulatory factor; ISRe, IFN stimulated response element;  
GAS, IFN-λ activated sequence.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Interferon, Cytokine and Mediator Research 2011:3submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

54

Dornhoff et al

established, however. Another question is how these SNPs 

may affect the outcome of other chronic viral infections. On 

this question, Martin et al showed that the C/C genotype of a 

specific IL-28B polymorphism (rs12979860) does not influ-

ence the outcome of hepatitis B virus or HIV infection.34 On 

the other hand IL-28A (IFN-λ2) and IL-29 (IFN-λ1) were 

considered to inhibit HIV-1 infection in macrophages.35 

However, coinfection of HCV and HIV increases the risk 

of death and the standard therapy with pegylated IFN-α and 

ribavarin has been found to induce significantly lower rates 

of sustained virological response.36 Recently, it was found 

that IFN-λ1 has, besides its antiviral activity, a relevant role 

in immunomodulatory responses. Specifically, it was noted 

that this cytokine regulates the development of T helper 

(TH) 1 and TH2 cells. Additionally, Srinivas et al showed 

a markedly IFN-λ1-dependent diminished IL-13 secretion 

in T cell cultures where IL-4 had been added. Therefore, 

IFN-λ1 appears to be an inhibitor of human TH2 responses 

directed towards IL-13.37,38 Interestingly, there is a recipro-

cal control of IL-4 and IFN-λ secretion. Megjugorac et al 

showed that IL-4 stimulation of monocytes leads to an 

elevated secretion of IL-1 receptor antagonist, which acts 

directly on plasmacytoid DCs (pDCs) to augment their 

IFN-λ1 production and function.39 Accordingly, there is 

a mechanism in regulating IFN-λ1 secretion and pDC 

function in which IFN-λ1 emerges as a cytokine with an 

immunomodulatory role for TH2 generation. Furthermore, 

IFN-λ leads to the generation of partially mature DCs with 

a tolerogenic phenotype. These DCs express high levels 

of major histocompatibility complex (MHC) I and MHC 

II but low levels of costimulatory molecules, and they 

have the ability to migrate to lymph nodes, once injected 

into immunodeficient mice. In addition, they showed the 

ability to induce mature DCs that where able to induce an 

IL-2-dependent proliferation of CD4+CD25+Foxp3+ T cell 

population with a regulatory phenotype.40 Recently, it was 

found that the IL-28 cytokine expression was diminished in 

allergic asthma. Koltsida et al showed a novel role of IL-28 

cytokines in TH1 generation and protection from allergic air-

way disease. Thus, beside high expression of IL-28Rα on the 

gut epithelium the lung epithelium reveals expression of the 

IFN-λ receptor and is therefore highly responsive to IFN-λ. 

The authors described an improvement of allergic airway 

disease after treating the mice with rIL-28A. Such treat-

ment suppressed the TH2 and TH17 responses but induced 

local TH1 immune responses.41 Abrogation of endog-

enous IL-28 cytokine signaling by IL-28Rα deficiency in 

mice aggravated experimental ovalbumin-mediated airway 

disease by increasing TH2 and TH17 responses as well as 

IgE levels.

IFN-λ and its antitumor activity
In addition to its antiviral activity, type I IFN (IFN-α/β) has 

been found to inhibit tumor cell growth. This observation 

suggested the potential benefit of type I IFN therapy in sev-

eral forms of cancer. However, type I IFN is a pleiotropic 

cytokine with many effects on various cell types due to 

the wide expression of its receptor complex. Accordingly, 

numerous side effects have been noted in patients treated 

with type I IFNs.42 The discovery of a new subgroup of 

IFNs (IFN-λ) with antiviral properties but more restricted 

receptor expression thus might represent a suitable alterna-

tive for cancer therapy. In fact, lambda IFNs revealed potent 

antitumor activity in murine models of cancer and have been 

proposed as novel tools for cancer treatment in patients.19,43,44 

Due to the fact that the cellular receptor expression differs 

between IFN-α and IFN-λ, such therapy may result in fewer 

side effects. Indeed, the receptor for IFN-λ is expressed only 

on a narrow range of cell types and the activity of IFN-λ 

appears to be more tissue specific.28

First clinical trials with pegylated-IFN-λ1 in patients with 

chronic HCV infection encouraged the idea that IFN-λ is a 

promising therapeutic agent as an alternative to IFN-α.45,46 

In contrast to the IFN-α receptor, the type III IFN receptor 

was mainly detected on tumor cells and many tumor cell 

lines. Studies in tumor cells lines have addressed the 

antiproliferative and antiapoptotic effects of lambda IFNs. 

For instance, Dumoutier et al showed that IFN-λ1 inhibited 

growth of the murine BW5147 thymoma cell line but failed 

to inhibit the proliferation of the B lymphoma cell line 

Daudi.47 It was also found that IFN-λ inhibits cell growth in 

the human glioblastoma LN319 cell line48 and additionally 

induces apoptosis in human neuroendocrine BON1 tumor 

cells,49 the human keratinocyte cell line HaCaT, and the 

human fibrosarcoma 2fTGH cell line50 as well as in murine 

melanoma and colon cancer cells.43 Thus, in contrast to 

IFN-α, IFN-λ could promote apoptosis in different cell lines 

and was more effective in inducing an antiproliferative effect 

associated with the induction of apoptosis. Interestingly, 

the combination of both IFNs augmented the effects on 

antiproliferative responses. As most solid tumors are of 

epithelial origin and as the IL-28Rα is predominantly 

expressed on epithelial cells, it appears likely that 

type III IFNs have proapoptotic effects in cancer cells. Indeed, 

a proapoptotic effect of IFN-λ in colorectal adenocarcinoma 

HT29 cells was noted that leads to caspase activation, 
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externalization of phosphatidylserin, DNA fragmentation, 

and cell death.51 Another recent finding in colon26 and 

murine melanoma B16 cell lines revealed a functional IFN-λ 

receptor expression on the tumor cell surface. Transient 

transduction of IFN-λ enhanced MHC I and surface Fas 

(CD95) expression and suppressed cell proliferation by 

induction of p21Waf/Cip1 and activation of caspase 3 and 7 

activity. These findings indicated that lambda IFNs favor 

the induction of apoptosis in tumor cells accompanied with 

cell cycle arrest.43 However, the antitumor activity of IFN-λ 

was mediated by tumor apoptosis and NK cell-mediated 

immunological tumor destruction. Another recent study 

confirmed these results in a different tumor cell line. In this 

series of studies, it was also discovered that the antitumor 

activity was partially dependent on IFN-γ but independent of 

IL-12, IL-17, and IL-23. Concomitant systemic administration 

of IL-12 augmented IL-28-mediated antitumor activity in the 

presence or absence of IFN-γ.44 In summary, virus-induced 

IL-28 expression by innate immune cells may be used for 

lysis of tumor cells and reduction of tumor burdens.52–54 

Consistent with this concept, Wongthida et al identified that 

IL-28, induced by viral activation of innate immune cells, is 

a key modulator of antiviral and antitumor activity in B16 

ova tumors.55 They showed also that the vesicular stromatitis 

virus activity depends on host CD8+ and natural killer cells. 

They clear the virus, and lambda IFNs have both direct 

and indirect antitumor activity.56,57 IFN-λ1 also induced G1 

phase arrest or apoptosis in oesophageal carcinoma cells.58 

These data suggest that IFN-λ1 might be a useful therapeutic 

agent for oesophageal carcinoma without marked damage of 

surrounding tissues.

In summary, these results illustrate that IFN-λ has 

therapeutic properties for the clinical treatment of human 

malignancies and for suppression of tumor growth in vivo. As 

initial studies with recombinant lambda interferons in HCV 

infection showed relatively few side effects, such therapy 

might be both safe and effective. Controlled clinical trials 

addressing this concept are highly warranted.

Conclusion
The main role of IFNs is to inhibit viral replication in infected 

cells as well as to protect uninfected cells from viruses. The 

lambda IFNs IL-28A, IL-28B, and IL-29 are a new class of 

IFNs with potent antiviral and antitumor activities. These 

cytokines are produced in response to viral infections by 

various cell types including dendritic cells and macrophages. 

Although signaling events induced by lambda IFNs are 

similar to those of type I IFNs, lambda IFNs interact with a 

different, unique receptor complex that has a more restricted 

expression pattern compared with receptors for type I IFNs. 

For that reason type III IFNs have a higher tissue specificity 

than type I IFNs. Additionally, variations found in the IL-28B 

gene appear to influence the kinetics of viral response to 

therapy, as shown for patients with HCV infection bearing 

the C/C genotype. Because of the tissue specificity of type 

III IFNs and the predominant expression of their receptor 

on epithelial cells, these cytokines appear to be a promising 

new approach for the treatment of several cancer forms in 

humans. Consistently, various studies have identified potent 

antitumor effects of lambda IFNs on cancer cells ex vivo or 

in animal models of cancer in vivo. Thus, lambda IFNs have 

opened new therapeutical strategies for viral infections and 

tumor immunity.
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