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Purpose: Neurodegenerative diseases are associated with neuroinflammation along with activation of microglia and oxidative stress, 
but currently lack effective treatments. Punicalagin is a natural bio-sourced product that exhibits anti-inflammatory effects on several 
chronic diseases; however, the anti-inflammatory and anti-oxidative effects on microglia have not been well examined. This study 
aimed to investigate the effects of punicalagin on LPS-induced inflammatory responses, NLRP3 inflammasome activation, and the 
production of ROS using murine microglia BV2 cells.
Methods: BV2 cells were pre-treated with punicalagin following LPS treatment to induce inflammation. The secretion of NO and 
PGE2 was analyzed by Griess reagent and ELISA respectively, while the expressions of iNOS, COX-2, STAT3, ERK, JNK, and p38 
were analyzed using Western blotting, the production of IL-6 was measured by ELISA, and the activity of NF-κB was detected using 
promoter reporter assay. To examine whether punicalagin affects NLRP3 inflammasome activation, BV2 cells were stimulated with 
LPS and then treated with ATP or nigericin. The secretion of IL-1β was measured by ELISA. The expressions of NLRP3 
inflammasome-related proteins and phospho IκBα/IκBα were analyzed using Western blotting. The production of intracellular and 
mitochondrial ROS was analyzed by flow cytometry.
Results: Our results showed that punicalagin attenuated inflammation with reduction of pro-inflammatory mediators and cytokines 
including iNOS, COX-2, IL-1β, and reduction of IL-6 led to inhibition of STAT3 phosphorylation by LPS-induced BV2 cells. 
Punicalagin also suppressed the ERK, JNK, and p38 phosphorylation, attenuated NF-κB activity, inhibited the activation of the NLRP3 
inflammasome, and reduced the production of intracellular and mitochondrial ROS by LPS-induced BV2 cells.
Conclusion: Our results demonstrated that punicalagin attenuated LPS-induced inflammation through suppressing the expression of 
iNOS and COX-2, inhibited the activation of MAPK/NF-κB signaling pathway and NLRP3 inflammasome, and reduced the 
production of ROS in microglia, suggesting that punicalagin might have the potential in treating neurodegenerative diseases.
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Introduction
Neurodegenerative disease, also known as the silent epidemic, is characterized by a progressive loss of neuronal cells in 
the brain. As a consequence of increase in the aging population, the range of medical resources used to treat and prevent 
senile-related diseases are also increasing year by year. Alzheimer’s disease is the most common type of neurodegen-
erative disease, and at present, there are ample studies to demonstrate that Alzheimer’s disease is characterized by the 
deposition of extracellular amyloid-beta and abnormal tau phosphorylation expression around the affected area of the 
brain;1,2 additionally, these cause dementia, progressive memory loss and the impairment of cognitive function.3 

Oxidative stress and neuroinflammation are important factors in the pathogenesis of neurodegenerative diseases.4 

Chronic oxidative stress is associated with neuroinflammation and neurodegeneration by activating signaling pathways 
of proinflammatory activities.4 As the major resident macrophage-like immune cells in the central nervous system, 
microglia have a pivotal role in neuroinflammation and furnish multiple beneficial functions to neuron cells, including 
maintenance of cellular homeostasis and innate immunity.5

Neuroinflammation is a crucial defense mechanism that competes with infection or trauma in the central nervous system. 
During neuroinflammation, microglia recognize pathogen-associated molecular patterns (PAMPs) (eg lipopolysaccharide 
(LPS) through Toll-like receptor-4 (TLR-4) and induce the robust activation of innate immune responses leading to an increase 
in the production of inflammatory mediators and cytokines such as nitric oxide (NO), prostaglandin E2 (PGE2) and 
cyclooxygenase (COX)-2, interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-1β as well as promoting the generation 
of reactive oxygen species (ROS) through nicotinamide-adenine dinucleotide phosphate oxidase.6,7 Additionally, microglial 
cells are stimulated by damage-associated molecular patterns (DAMPs) like adenosine triphosphate (ATP) and bind to P2X7 
receptors then further induce the assembly of the nucleotide-binding oligomerization domain (NOD)-like receptor family 
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pyrin domain containing 3 (NLRP3) inflammasome.3 NLRP3 inflammasome is a cytosolic protein complex composed of 
NLRP3, an apoptotic speck-containing protein with a CARD (ASC) and caspase-1 that is formed in response to both PAMPs 
and DAMPs stimuli consequently leading to cleavage of pro-caspase-1 while promoting maturation of IL-1β and inducing 
pyroptosis.8 Inhibition of NLRP3 inflammasome activation has been considered as a therapeutic strategy for ameliorating the 
progression of Alzheimer’s disease.9–11

Polyphenols are found in various kinds of food sources such as tea, cocoa, fruits, berries, and vegetables, which have been 
demonstrated to exhibit antioxidative and anti-inflammatory properties12,13 and represent a protective role in many chronic 
diseases including cardiovascular disease, neurodegenerative diseases and diabetes.14 Punicalagin is a large polyphenol 
compound with a molecular mass of 1084.7 and is the main compound of pomegranate (Punica granatum).15 Although 
previous studies have demonstrated that punicalagin has benefits in inflammation-associated chronic diseases,16–18 the anti- 
oxidative and anti-inflammatory effects of punicalagin on microglia have not been well examined; consequently, we aimed to 
investigate the anti-oxidative and anti-inflammatory effects of punicalagin on microglia while concurrently examining these 
effects on the activation of NLRP3 inflammasome in LPS-induced BV2 cells.

Materials and Methods
Materials and Reagents
Punicalagin (purity ≥ 98%) was purchased from ChemFaces (catalog number: CFN99938, Wuhan, Hunan, China). 
Lipopolysaccharide (LPS from E. coli. O111:B4, catalog number: L3024), Griess reagent, and protease inhibitor cocktails 
were obtained from Sigma Aldrich (St. Louis, MO, USA). MTT reagent (3-(4, 5-Dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide) was supported by MDBio, Inc. (catalog number: 101-298-93-1, Taipei, Taiwan, R.O.C). IL-1β (catalog 
number: 88-7013-86) and IL-6 (catalog number: 88-7064-86) enzyme-linked immunosorbent assay (ELISA) kits, reactive 
oxygen species (ROS) detection reagent (catalog number: D399), and mitosox red mitochondrial superoxide indicator 
(catalog number: M36008) were purchased from Invitrogen (Carlsbad, CA, USA). PGE2 ELISA kit (catalog number: 
514010), nigericin (catalog number: 11437), and ATP (catalog number: 14498) were purchased from Cayman Chemical 
(Ann Arbor, MI, USA). Phosphatase inhibitor cocktails and Radioimmunoprecipitation assay (RIPA) buffer (catalog 
number: RIPA-50) were obtained from FIVEphoton Biochemicals (San Diego, CA, USA). BCA protein assay kit (catalog 
number: 23225) was purchased from Thermo Scientific (Waltham, MA, USA). Zeocin (catalog number: ant-zn-1p) was 
purchased from Invivogen (San Diego, CA, USA). Antibodies for phospho-signal transducer and activator of transcription 
3 (STAT3) (catalog number: 9145), STAT3 (catalog number: 9139), phospho-c-Jun N-terminal kinase (JNK) (catalog 
number: 9255), JNK (catalog number: 9258), phospho-p38 MAPK (catalog number: 4511), p38 MAPK (catalog number: 
8690), phospho-extracellular signal-regulated kinase (ERK)1/2 (catalog number: 4370), ERK1/2 (catalog number: 4695), 
ASC (catalog number: 67824), cleaved-IL-1β (catalog number: 52718), IL-1β (catalog number: 12242), cleaved-caspase-1 
(catalog number: 67314), caspase-1 (catalog number: 24232), phospho-IκBα (catalog number: 2859), and IκBα (catalog 
number: 4814) were purchased from Cell Signaling Technology (Danvers, MA, USA). COX-2 (catalog number: sc- 
514489) and iNOS (catalog number: sc-7271) antibodies were obtained from Santa Cruz Biotechnology (Dallas, TX, 
USA). NLRP3 (catalog number: GTX00763) and β-actin (catalog number: TA328070) antibodies were purchased from 
GeneTex (Irvine, CA, USA) and OriGene Technologies (Rockville, MD, USA) respectively.

Cell Culture
Mouse microglial BV2 cell line was obtained from the Food Industry Research and Development Institute (Hsinchu, 
Taiwan, R.O.C). Cells were cultured in a humidified atmosphere at 37°C under 5% CO2 in high-glucose Dulbecco’s 
modified Eagle’s medium supplemented with 10% fetal bovine serum and 100 U/mL penicillin and 100 U/mL 
streptomycin (Gibco, Waltham, MA, USA).

MTT Assay for Cell Viability
Cell viability of BV2 cells was measured by MTT assay. Briefly, BV2 cells (1 × 105 cells/well) were cultured in 96-well 
culture plates and allowed to attach overnight. Afterward, cells were pre-treated with different concentrations of 
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punicalagin for 30 min following 1 μg/mL LPS treatment for 24 h. Then, 10 μL of 5 mg/mL MTT solution was added to 
each well and further incubated at 37°C for 4 h. Subsequently, 100 μL acidic isopropanol/HCl (isopropanol with 0.04 N 
HCl) was added to dissolve the formazan crystals. The absorbance was determined by spectrophotometry at 570 nm, and 
the percentage of viable cells was normalized to the untreated control.

Nitric Oxide Assay
The concentration of nitric oxide in the medium was measured by Griess reagent. Briefly, BV2 cells (1 × 105 cells/well) 
were cultured in 96-well culture plates and allowed to attach overnight. Afterward, cells were pre-treated with various 
concentrations of punicalagin for 30 min and then treated with LPS (1 μg/mL) for 24 h. Cell culture supernatant was 
collected and the concentration of nitric oxide was assessed by Griess reagent. The absorbance was determined at 540 nm 
by spectrophotometrically and the standard curve of NaNO2 was used to calculate the nitric oxide concentration.

Western Blot Analysis
Cells were washed with PBS and lysed by RIPA buffer supplemented with protease inhibitor cocktails and phosphatase 
inhibitor cocktails. The protein concentration was determined by the BCA protein assay kit. Equal amounts of protein 
were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to polyvinylidene fluoride 
membranes. After blocking with 5% non-fat milk or BSA in TBST for 1 h, the membranes were incubated overnight with 
primary antibodies at 4°C overnight. Afterward, blots were washed three times by TBST, blocked with anti-rabbit or anti- 
mouse horseradish peroxidase-conjugated immunoglobulin G secondary antibodies diluted in TBST (1:5000) for 1 h at 
room temperature, and then the blots were washed three times using TBST. The intensities of protein bands were 
determined by Molecular Imager® Gel Doc™ XR System (Bio-Rad Laboratories, Hercules, California, USA) with Image 
Lab™ Software using an ECL chemiluminescence substrate (Thermo Scientific, Waltham, MA, USA). The result of β- 
actin was used to normalize the quantity of the protein bands.

Enzyme-Linked Immunosorbent Assay (ELISA)
The levels of IL-6, IL-1β, and PGE2 in the medium were measured by ELISA. Briefly, BV2 cells (1 × 105 cells/well) 
were cultured in 96-well culture plates and allowed to attach overnight. Cells were pre-treated with different concentra-
tions of punicalagin for 30 min following 1 μg/mL LPS treatment for 24 h or 48 h. Cell culture supernatant was collected 
for analysis according to the manufacturer’s protocol.

NF-κB Promoter Reporter Assay
BV2-Blue cells were derived from BV2 cells that were stably expressing a secreted embryonic alkaline phosphatase 
(SEAP) gene inducible by NF-κB as described in the previous study19 and maintained in Dulbecco’s modified Eagle’s 
medium supplemented with Zeocin (15 μg/mL) (InvivoGen, San Diego, CA, USA). Cells (1 × 105 cells/well) were 
seeded in a 96-well plate and allowed to attach overnight. Afterward, cells were pre-treated with different doses of 
punicalagin for 30 min and then treated with LPS (1 μg/mL) for 24 h. The medium then was harvested and mixed with 
QUANTI-Blue medium (100 μL cell culture supernatant to 100 μL QUANTI-Blue medium) (InvivoGen, San Diego, CA, 
USA) in 96-well plates and incubated at 37 °C for 45 min. SEAP activity was assessed by measuring the optical density 
at 655 nm using a microplate reader.

Flow Cytometry
The productions of intracellular ROS and mitochondrial ROS were measured by flow cytometry. BV2 cells (5 × 105 

cells/well) were cultured in 6-well plates and allowed to attach overnight. Afterward, cells were pre-treated with different 
concentrations of punicalagin for 30 min following 1 μg/mL LPS treatment for 24 h. For the detection of intracellular 
ROS, cells were stained by the fluorescent probe dichloro-dihydro-fluorescein diacetate (DCFH-DA) reagent (Invitrogen, 
Carlsbad, California, USA) with 10 μM in HBSS buffer. For the detection of mitochondrial ROS, cells were stained by 
the MitoSOX™ Red reagent with 5 μM in HBSS buffer. After staining for 40 or 45 min, cells were washed with PBS and 
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then analyzed using flow cytometry (Beckman Coulter Cytomics FC500 MCL Flow Cytometer System with CXP 
cytometer software, Elkin, NC, USA).

Immunofluorescence Staining
BV2 cells were seeded on the coverslips at a density of 2×105 cells/well, placed in 6-well plates and allowed to attach 
overnight. The cells were pre-treated with different doses of punicalagin for 30 min following 1 μg/mL LPS treatment for 
24 h, then stained with DCFH-DA or MitoSOX™ Red following the above experimental conditions. Afterward, cells 
were washed with PBS and then stained with DAPI. Images were taken by fluorescence microscope (Nikon, Tokyo, 
Japan).

Statistical Analysis
The experimental results are presented as mean ± standard deviation (SD). All data are shown from three independent 
experiments. Statistical analysis was performed by one-way ANOVA followed by Tukey post-hoc test using GraphPad 
Prism 6 (San Diego, CA, USA). The significant difference between the groups was defined as *p < 0.05; **p <0.01; ***p 
<0.001.

Results
Punicalagin Reduces the Production of NO and PGE2 and Inhibits the Expression of 
COX-2 and NOS2 in LPS-Induced BV2 Cells
To determine the toxic effect of punicalagin, the effect of punicalagin on the cell viability of BV2 cells was examined. 
Cells were pre-treated with various doses (0, 25, 50, 75, 100 μM) of punicalagin for 30 min following 1 μg/mL LPS 
treatment for 24 h. The results showed that the LPS-alone group slightly reduced cell viability, whereas punicalagin had 
no cytotoxic effect on BV2 cells when cells were treated with 0 to 100 μM punicalagin (Figure 1A). In addition, at higher 
doses of punicalagin groups (75 and 100 μM), punicalagin rescued LPS-induced cell death compared with the LPS-alone 
group (Figure 1A). To examine whether punicalagin affected LPS-induced NO and PGE2 productions, BV2 cells were 
pre-treated with various doses (0 to 100 μM) of punicalagin for 30 min and then treated with LPS (1 μg/mL) for 24 h. 
The levels of NO and PGE2 in cell culture supernatants were examined by Griess reagent and ELISA respectively.

As shown in Figure 1B, punicalagin significantly attenuated NO production by LPS-induced BV2 cells in a 
concentration-dependent manner. In addition, a high dosage (100 μM) of punicalagin significantly decreased the secretion 
of PGE2 by LPS-induced BV2 cells (Figure 1C). Inducible nitric oxide synthase (iNOS) is a key enzyme generating nitric 
oxide (NO) from the amino acid L-arginine,20 while cyclooxygenase-2 (COX-2) is a key enzyme converting arachidonic 
acid into PGE2.21 We further examined whether punicalagin affected the expression of iNOS and COX-2. BV2 cells were 
pre-treated with various doses of punicalagin (0 to 100 μM) for 30 min following 1 μg/mL LPS treatment for 24 h. The 
expression of iNOS and COX-2 was detected by Western blot. As shown in Figure 1D–F, punicalagin significantly 
suppressed both iNOS and COX-2 expressions in a dose-dependent manner as compared with LPS alone.

Punicalagin Reduces the Secretion of IL-6 and Inhibits the Phosphorylation of STAT3 
by LPS-Induced BV2 Cells
The pro-inflammatory cytokine IL-6 is demonstrated as being involved in the etiopathology of Alzheimer’s disease.22 To 
examine whether punicalagin affects the secretion of IL-6 by LPS-induced BV2 cells, cells were pre-treated with various 
doses of punicalagin (0 to 100 μM) for 30 min following 1 μg/mL LPS treatment for 24 h. The level of IL-6 in the cell 
culture medium was detected by ELISA. As shown in Figure 2A, punicalagin significantly decreased the secretion of IL- 
6 by LPS-induced BV2 cells in a dose-dependent manner. IL-6 is known to regulate the phosphorylation of the signal 
transducer and activator of transcription 3 (STAT3) during LPS/TLR4-driven inflammation.23 To further examine 
whether punicalagin affects STAT3 activation by LPS-induced BV2 cells, cells were pre-treated with various doses of 
punicalagin (0 to 100 μM) for 30 min following 1 μg/mL LPS treatment for 2 h. The expression of phospho-STAT3 and 
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STAT3 was determined by Western blot. As shown in Figures 2B and C, the experimental results showed that punicalagin 
significantly suppressed the phosphorylation of STAT3 in a concentration-dependent manner.

Punicalagin Attenuates the Activation of Both MAPK and NF-κB Signaling Pathways in 
LPS-Induced BV2 Cells
Both MAPK and NF-κB signaling pathways are known to drive inflammation-associated gene expressions during LPS- 
induced inflammation.24,25 To assess whether punicalagin regulated the activation of MAPK and NF-κB signaling pathways 
by LPS-induced BV2 cells, cells were pre-treated with various doses of punicalagin (0 to 100 μM) for 30 min following 1 μg/ 

Figure 1 The effect of punicalagin on the production of pro-inflammatory mediators (NO and PGE2) by LPS-induced BV2 cells. BV2 cells were pre-treated with various 
concentrations (0, 25, 50, 75, 100 μM) of punicalagin for 30 min, and then treated with LPS (1 μg/mL) for 24 h. (A) The cell viability was determined by MTT assay. (B and C) 
The secretion of NO and PGE2 was measured by Griess reagent assay and ELISA respectively. Expressions of iNOS and COX-2 were analyzed using Western blot. The 
representative images are shown in (D) and the quantitative results of three independent experiments shown in (E and F). β-actin was used as a loading control. Statistical 
significance was indicated as *p < 0.05; **p <0.01; ***p <0.001.

Figure 2 The effect of punicalagin on the production of IL-6 and the activation of STAT3 in LPS-induced BV2 cells. Cells were pre-treated with punicalagin (0, 25, 50, 75, 100 
μM) for 30 mins and then treated with LPS (1 μg/mL) for 24 h. (A) The level of IL-6 was measured by ELISA. The data are presented as the means ± SD of three independent 
experiments. Statistical significance was assessed by one-way ANOVA represented as follows: ***p < 0.001 vs LPS alone. Cells were pre-treated with punicalagin (0, 25, 50, 
75, 100 μM) for 30 min and then treated with LPS (1 μg/mL) for 2 h. The expression of phospho-STAT3 and STAT3 was determined by Western blot. The representative 
images are shown in (B) and the quantitative results of three independent experiments shown in (C). β-actin was used as a loading control. Statistical significance was 
indicated as ***p <0.001.
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mL LPS treatment for 6 h. The expression of phospho-ERK, ERK, phospho-JNK, JNK, phospho-p38, and p38 was examined 
by Western blot. As shown in Figure 3A–D, punicalagin significantly decreased the phosphorylation of ERK, JNK, and p38 in 
LPS-induced BV2 cells in a dose-dependent manner. In addition, we also determined the effect of punicalagin on the 
activation of NF-κB by LPS-induced BV2 cells using promoter reporter assay. The NF-κB reporter BV2 cells, BV2-Blue 
cells, were pre-treated with various doses of punicalagin (0 to 100 μM) for 30 min following 1 μg/mL LPS treatment for 24 h. 
The SEAP activity in the cell culture medium was examined. As shown in Figure 3E, the experimental results demonstrated 
that punicalagin significantly attenuated the activation of NF-κB by LPS-induced BV2-Blue cells. Since IκBα phosphorylation 
is an essential event driving NF-κB activation,25 we further assessed whether punicalagin affected IκBα phosphorylation by 
LPS-induced BV2 cells using Western blot. As shown in Figure 3F and G, punicalagin significantly inhibited the phosphor-
ylation of IκBα by LPS-induced BV2 cells.

Punicalagin Attenuates the Secretion of IL-1β and Inhibits the Cleavage of IL-1β and 
Caspase-1 in LPS/ATP-Induced and LPS/Nigericin-Induced BV2 Cells
The activation of NLRP3 inflammasome has been demonstrated to associate with neuroinflammatory diseases including 
Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis.26,27 To examine whether punicalagin affected 
NLRP3 inflammasome activation, BV2 cells were pre-treated with various doses of punicalagin for 30 min, primed with LPS 
for 47.5 h, and then stimulated with ATP or nigericin for 30 min. The secretion of IL-1β was analyzed by ELISA and the 
expression of inflammasome-associated proteins was examined using Western blot. As shown in Figures 4A and B, the 
experimental results revealed that punicalagin significantly reduced the secretion of IL-1β by both LPS/ATP-induced and LPS/ 
nigericin-induced BV2 cells in a dose-dependent manner. Furthermore, our results also showed that punicalagin significantly 
decreased the expressions of cleave-IL-1β and cleave-caspase-1 by both LPS/ATP-induced and LPS/ nigericin-induced BV2 cells 
(Figures 4C–H).

Figure 3 The effects of punicalagin on the activation of both MAPK and NF-κB signaling pathways by LPS-activated BV2 cells. BV2 cells were pre-treated with punicalagin (0, 25, 
50, 75, 100 μM) for 30 min following 1 μg/mL LPS treatment for 6 h. The expressions of phospho-ERK, ERK, phospho-JNK, JNK, phospho-p38, p38 were determined by 
Western blot. The representative images are shown in (A) and the quantitative results of three independent experiments shown in (B–D). β-actin was used as a loading control. 
(E) BV2-Blue cells were pre-treated with punicalagin (0, 25, 50, 75, 100 μM) for 30 min following 1 μg/mL LPS treatment for 24 h. The activation of NF-κB was measured by 
detected SEAP activity. BV2 cells were pre-treated with punicalagin (0, 50, 100 μM) for 30 min following with 1 μg/mL LPS treatment for 50 min. The expressions of phospho- 
IκBα and IκBα by LPS-activated BV2 cells were determined by Western blot. The representative images are shown in (F) and the quantitative results of three independent 
experiments shown in (G). β-actin was used as a loading control. Statistical significance was indicated as *p < 0.05, **p < 0.01 and ***p < 0.001 vs LPS alone.
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Punicalagin Attenuates the Production of Both Intracellular and Mitochondrial ROS in 
LPS-Induced BV2 Cells
ROS plays a vital role in immunity by enhancing immunological defense and causing oxidative damage.28 Next, we 
further investigated the anti-oxidation potential of punicalagin by determining the levels of reactive oxygen species 
(ROS) in intracellular and mitochondrial using DCFH-DA and MitoSOX red staining respectively. The results were 
examined by flow cytometry and fluorescent microscopy. As shown in Figure 5, punicalagin significantly inhibited 
intracellular ROS production in LPS-induced BV2. Moreover, punicalagin also attenuated the mitochondrial ROS levels 
by LPS-induced BV2 cells (Figure 6).

Discussion
Neurodegenerative diseases are common in aging adults globally and cause serious health problems by progressive 
morbidity, memory and cognitive impairment.29 By 2020, about 50 million people worldwide were suffering from 
dementia, and as the most common type of neurodegenerative disease, Alzheimer’s disease accounts for 60% to 80% of 
causes of dementia.30 Neuroinflammation and oxidative damage are the key features of neurodegenerative diseases, and 
the hallmark of neuroinflammation is the activation of microglia in the central nervous system. Activated microglia in 
neurodegenerative processes induce the release of proinflammatory cytokines and mediators including IL-1β, IL-6, TNF- 
α and ROS, thereby causing neuronal cell degeneration.31,32 Currently, there is no effective treatment to slow or stop the 
progression of neurodegenerative diseases other than relying on supportive and symptomatic care;29,33 therefore, 
suppressing activated microglia-induced inflammatory responses have been considered as a therapeutic strategy for 
treating these diseases.31 In this study, our experimental results revealed that punicalagin effectively inhibited LPS- 
activated murine microglial BV2 cells by attenuating the secretion of inflammatory mediators and cytokines, inhibiting 
the activation of the NLRP3 inflammasome, and suppressing the production of intracellular and mitochondrial ROS.

Figure 4 The effects of punicalagin on the activation of NLRP3 inflammasome by LPS/ATP-activated and LPS/nigericin-activated BV2 cells. BV2 cells were pre-treated with 
punicalagin (0, 25, 50, 75, 100 μM) for 30 min, and then treated with LPS (1 μg/mL) for 47.5 h followed by ATP (5 mM) or Nigericin (10 μM) treatments for 30 min. (A and B) 
The secretion of IL-1βwas determined by ELISA. The expressions of cleaved-IL-1β, IL-1β, cleaved-caspase-1, caspase-1, ASC and NLRP3 were analyzed by Western blot. The 
representative images are shown in (C and F) and the quantitative results of three independent experiments shown in (D, E, G and H). β-actin was used as a loading 
control. Statistical significance was indicated as *p < 0.05, **p < 0.01 and ***p < 0.001.
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Natural products are important sources for new drug development.34 Punicalagin is a major active component mainly 
found in pomegranate, a plant widely distributed in the tropics and subtropical regions.35 Previous studies have reported 
that punicalagin alleviates macrophage-mediated acute inflammation,36,37 acute lung injury and acute respiratory distress 
syndrome,38,39 acute kidney injury,40 and chronic diseases including arthritis, diabetes, obesity, cardiovascular and 
neurodegenerative diseases.16,17,41 Neuroinflammation is mediated by several proinflammatory molecules. As an inflam-
matory mediator, iNOS is one of the three different isoforms of NOS that expresses in glial cells, macrophages and 
neutrophils, and is only generated after induction by inflammatory mediators like cytokines or endotoxins.42 It has a 
neurotoxic effect on neurodegenerative diseases when generating higher concentrations of NO.42 Furthermore, inhibiting 
COX-2 and subsequent synthesis of PGE2 leads to a decrease in neuronal degeneration.43 Proinflammatory cytokine IL-6 
is reported to be associated with the pathogenesis of Alzheimer’s disease,22 and it may cause neuroinflammation by 
recruiting leukocytes across the blood-brain barrier and promoting the LPS-driven inflammatory responses by regulating 
the phosphorylation of STAT3.23 In addition, the MAPK cascade and NK-κB signaling pathway both regulate the 
expression and production of LPS-induced proinflammatory cytokines.24 NF-κB has been demonstrated to play an 
integral role in the progression of Alzheimer’s disease44 and ischemic stroke.45 A previous murine model in vivo and 
in vitro study revealed the anti-neuroinflammatory effect of punicalagin on microglia and astrocytes by inhibiting the 
production of proinflammatory cytokines including IL-1β, IL-6 and TNF-α and interfering with NF-κB signaling via 
binding to its subunit p50 directly.46 Similarly, our results demonstrated that punicalagin suppressed LPS-induced 
inflammatory responses by reducing the expression of iNOS, COX-2, inhibiting the secretion of NO, PGE2 and IL-6 
while suppressing the phosphorylation of STAT3, IκBα, and MAPKs in BV2 cells, indicating that punicalagin has 
potential in attenuating microglia-induced inflammation.

Figure 5 The effects of punicalagin on the production of intracellular ROS in LPS-activated BV2 cells. BV2 cells were pre-treated with punicalagin (0, 25, 50, 75, 100 μM) for 
30 min and then treated with LPS (1 μg/mL) for 24 h. The production of (A) intracellular ROS was analyzed by flow cytometry. The quantitative value (mean fluorescence 
intensity) compared to the peak of LPS group (#1) was shown in (B). The data are presented as the means ± SD of three independent experiments. Statistical significance 
was indicated as ***p < 0.001 vs LPS alone. The immunofluorescence staining of ROS in (C) cytoplasm was examined using DCFH-DA.
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Previous studies have indicated that activation of either NF-κB and MAPK signaling pathways was partly responsible for 
inducing the expression and activation of NLRP3 inflammasome proteins in neurons and brain tissue.34,47,48 Activation of 
NLRP3 inflammasome is associated with neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease and 
amyotrophic lateral sclerosis.26,27 Neuroinflammation and activation of microglia around the degenerating neurons with 
subsequent secretion of proinflammatory molecule IL-1β lead to neuronal damage.31 The canonical activation of the NLRP3 
inflammasome, a multiprotein complex composed of NLRP3, ASC and caspase-1, is responsible for the production of IL-1β 
from microglia upon cellular stress as well as induction of pyroptosis, a type of programmed cell death that causes rupture of the 
cell membrane resulting in the release of more pro-inflammatory cytokines thereby promoting the inflammatory response.8,49

Previous studies have indicated that the levels of NLRP3, ASC, and caspase-1 proteins were upregulated in the brain and 
plasma of patients with neurodegenerative diseases including Alzheimer’s disease and Parkinson’s disease,27,50 as well as in 
an Alzheimer’s disease mice model.9,10 Inactivation of NLRP3 inflammasome has been suggested as a therapeutic target for 
neurodegenerative diseases.9–11,48,50,51 Punicalagin has been reported to possess anti-inflammatory effects on a diabetic 
nephropathy mice model by inhibiting pyroptosis based on the NLRP3 pathway52 and a neuroinflammation mice model via 
inhibition of NF-κB.46 Our results demonstrated that punicalagin suppressed the secretion of IL-1β and inhibited the cleavage 
of caspase-1 and IL-1β by LPS/ATP- and LPS/nigericin-activated BV2 cells, indicating that punicalagin can inhibit NLRP3 
inflammasome activation in activated microglia.

Oxidative stress is an imbalance state between prooxidant and antioxidant species and is characterized by an increasing 
level of reactive species including ROS and nitrogen reactive species (RNS).4,28 Previous evidence shows that oxidative stress 
and neuroinflammation play important roles in the development and progression of neurodegenerative diseases because 
reactive species can become injurious under chronic oxidative stress by oxidizing intracellular proteins and lipids, causing 
DNA damage, and mediating activation of microglia and astrocytes that promote inflammatory responses.4 Alzheimer’s 

Figure 6 The effects of punicalagin on the production of mitochondrial ROS in LPS-activated BV2 cells. BV2 cells were pre-treated with punicalagin (0, 25, 50, 75, 100 μM) 
for 30 min and then treated with LPS (1 μg/mL) for 24 h. The production of (A) mitochondrial ROS was analyzed by flow cytometry. The quantitative value (mean 
fluorescence intensity) compared to the peak of LPS group (#1) was shown in (B). The data are presented as the means ± SD of three independent experiments. Statistical 
significance was indicated as **p < 0.01 vs LPS alone. The immunofluorescence staining of ROS in (C) mitochondria was examined using MitoSOX red staining.
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disease is the most common type of neurodegenerative disease and its pathogenesis is associated with oxidative stress and 
amyloid-β, a major component of the senile plaques found in the pathology of patients with Alzheimer’s disease.1,2,53 

Altogether, the increase of ROS production and intracellular Ca2+ cause excessive Ca2+ influx into mitochondria resulting 
in mitochondrial impairment and subsequently releasing pro-apoptotic molecules leading to neuronal degeneration and 
damage.53 Mitochondria are important cellular organelles and as being considered the powerhouse in cells, mitochondrial 
impairment leads to defective energy metabolism and excessive production of ROS.53

Furthermore, damaged mitochondria might promote the activation of caspase-1, release of proinflammatory cytokines 
and activation of inflammasome formation.8 Recent studies have suggested antioxidants counteract the oxidative damage 
conferred by ROS as a therapeutic target in treating neurodegenerative diseases including Alzheimer’s disease.12,53 

Punicalagin has been reported to have the potential of being an effective antioxidant in attenuating cardiac mitochondrial 
impairment in an obesity rat model15 while reducing the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α as well as 
reactive species hydrogen peroxide (H2O2) in brain tissue of an LPS-stimulated mouse model.46 In line with our study, 
our results indicate that punicalagin presented an anti-oxidative effect by attenuating the production of intracellular ROS 
and mitochondrial ROS in LPS-activated microglia.

Conclusion
Our study demonstrated the anti-inflammatory effects of punicalagin through alleviating LPS-induced inflammation 
through MAPK and NF-κB signaling pathways and suppressing the activation of NLRP3 inflammasome in microglia. 
Furthermore, punicalagin also presented anti-oxidative effects in LPS-activated microglia by attenuating the production 
of both intracellular and mitochondrial ROS. Our results shed light on the molecular mechanism of anti-inflammatory 
and anti-oxidative effects of punicalagin as an agent possessing potential for treating neurodegenerative diseases.
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