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Introduction: Head and neck tumors account for more than 6% of all cancers. The primary treatment for tumors of the head and neck 
is radiation therapy, which can induce oropharyngeal mucositis as a side effect. At present, there is no widely available therapeutic for 
the treatment of oropharyngeal mucositis in clinical practice. Based on the traditional prescription Liushen Wan, the pathogenesis and 
pathology, we developed a new Chinese medicine prescription and made Zhenhuang submicron emulsion (ZHSE) spray, which has an 
efficacious therapeutic effect for oropharyngeal mucositis. However, its mechanism is unclear.
Methods: This research explored the mechanism behind the modulatory effects of ZHSE by a strategy of metabolomics and 
network pharmacology. Multivariate data analyses, including unsupervised principal component analysis (PCA) and supervised 
orthogonal partial least squares discriminant analysis (OPLS-DA), were performed. Potential biomarkers were identified depending 
on the mass-charge ratio of the selected compound. Statistical and pathway enrichment analysis was performed in the KEGG 
pathway database. Network pharmacology combining metabolomic analyses was conducted to illustrate the key targets and 
pathways.
Results: Critical metabolic pathways were investigated, 56f biomarkers were enriched and key metabolites such as linoleic acid, 9, 
10-epoxyoctadecenoic acid, acetoacetic acid and citric acid were identified. A complex network of “compound-target-potential 
metabolite” interactions was drawn to illuminate the regulation of chemical constituents on key metabolites. These findings manifest 
that ZHSE regulates endogenous metabolite disorders during the treatment of oropharyngeal mucositis by various constituents, 
interacting with multiple targets associated with inflammation and pain.
Conclusion: In this work, we determined several critical biomarkers and metabolic pathways and identified the possible regulatory 
mechanism by which ZHSE functions in the treatment of oropharyngeal mucositis. This study provides a new perspective on 
integrating metabolomics and network pharmacology for exploring improved therapy for head and neck tumors based on the 
traditional classic prescription of LSW.
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Introduction
Head and neck tumors generally refer to all malignant tumors from the base of the skull to the clavicle and the front of 
the cervical spine. They do not include malignant tumors of the skull, cervical spine or eyes. According to the data 
Global Cancer Statistics 2020, more common head and neck tumors, including tumors located in the thyroid, lip, oral 
cavity, nasopharynx, oropharynx, and hypopharynx, contributing 1,279,935 new cases and 388,153 deaths, accounting 
for 6.63% of all cancers (129,927,895 new cases) and 3.90% of all cancer deaths (9,958,133 deaths) worldwide in 2018.1 

The complex anatomical structure and vascular deformation of the head and neck results in poor surgical accessibility. 
Squamous cell carcinoma, which responds well to radiation therapy, is a common cause of pathological head and neck 
tumors. Radiotherapy alone or as part of a definitive chemoradiotherapy regimen plays an irreplaceable role in the 
treatment of head and neck squamous cell carcinoma of different stages.2

Radiation-induced mucositis is a common acute side effect during head and neck radiotherapy; it occurs in almost all 
patients who receive head and neck radiotherapy.3,4 The clinical symptoms of radiation-induced oropharyngeal mucositis 
include dry throat, sore throat, foreign body sensation, and trouble swallowing. The extent of the clinical symptoms and 
duration is related to the field of radiation and the radiation dosage. Radiation therapy can cause infection, inflammation, 
or other damage to the mucous membrane of the pharynx, resulting in mucosal congestion, redness, ulcers, and gland 
destruction.

The intense pain caused by radiation-induced mucositis not only affects the intake of nutrients through eating food but 
can also often require opioid analgesia depending on severity. Mucositis negatively affects the quality of life of head and 
neck radiotherapy patients.5 In the case of severe radiation-induced mucositis, suspension of the radiotherapy may be the 
only course of action, thereby interrupting the chemotherapeutic process,6 and subsequently impacting treatment efficacy 
and disease prognosis. Chemotherapy-induced mucositis requires symptomatic treatment and nutritional support and may 
cause secondary infection and hospitalization.7 The occurrence of these conditions will result in a heavier economic 
burden associated with cancer of the head and neck.

At present, there is no widely used drug for the treatment of radiation oropharyngeal mucositis with a recognized 
effect in clinical practice. Herein, we have formulated a new Chinese medicine formula according to the pathogenesis 
and pathology based on the traditional classic prescription-Liushen Pill, which we have packaged into a ZHSE spray. 
ZHSE spray can increase the residence time of the drug at the skin, and at the same time increase the penetration rate of 
the drug and improve the bioavailability of the drug.

Metabolomics can detect the refined alterations in biological pathways and reveal the profile of the mechanisms that 
underlie altered physiological processes.8 Due to the research dilemma caused by the complex components of traditional 
Chinese medicine and the numerous targets involved, researchers in traditional Chinese medicine have increasingly 
resorted to metabolomics to explore the mechanism behind its treatment of different diseases.9 These diseases include but 
are not limited to coronary heart disease,10 type 2 diabetes mellitus,11 metabolic diseases,12 traumatic brain injury,13 

Alzheimer’s disease14 and lung cancer.15–17 Network pharmacology is also increasingly applied in the research of 
traditional Chinese medicine.18 Abundant information including bioactive compounds, targets, and the interactions 
between these can be obtained by constructing a network pharmacology model.19 According to reported data, the 
paradigm of investigation can be shifted from a “one-target, one-drug” to a “network-target, multiple-component- 
therapeutics” mode, which is more conducive to the analysis of traditional Chinese medicine.20

Preliminary studies have revealed the effectiveness of the preparation of ZHSE. Herein, we conducted 
a holistic investigation of metabolomics and network pharmacology for profiling the latent mechanism underlying 
ZHSE in the treatment of oropharyngeal mucositis. Numerous metabolites were identified as being involved in the 
response to ZHSE in complex biological matrices. Identified metabolites were further applied to the discovery of 
differentially expressed biomarkers (DEBs) analysis. The related target of DEB, after analysis, was integrated into 
a multi-path, multi-component, and multi-target network forming a holistic depiction of the mechanism of ZHSE.
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Materials and Methods
Chemicals and Reagents HPLC-Grade
Chinese herbal medicine products were purchased from Huamiao Pharmaceutical Co, Ltd. (Beijing, China). ZHSE was 
self-prepared with decoction products as raw materials. Methanol and Acetonitrile for mobile phases were both HPLC 
grade; methanol was obtained from Fisher Chemicals (Pittsburgh, PA, United States) and acetonitrile was obtained from 
Merck (Darmstadt, Germany). Purified water was produced by Millipore’s ultrapure water system (Millipore, Bedford, 
MA, United States). All other chemicals and reagents were of analytical grade and were used as received without further 
purification unless otherwise indicated.

Preparation of ZHSE
The formula of the ZHSE was derived from the improvement of the classic traditional Liushen pill. The detailed process 
was represented in a previous study.21 Briefly, the ZHSE is composed of six raw materials, which meet the requirement 
of the standards specified by Chinese Pharmacopoeia. Raw materials included MARGARITA, BOVIS CALCULUS 
ARTIFACTUS, BORNEOLUM SYNTHETICUM, CORYDALIS RHIZOMA, OROXYLI SEMEN and CANARII 
FRUCTUS at a ratio of 3:3:2:20:20:30. The six raw materials were heated and refluxed with purified water for 1 
h. After the extract was concentrated and filtered, the borneol was dissolved in the filtrate as a water extract and 60% 
ethanol was added and heated at reflux for 1 h. The extract was concentrated and filtered and used as an alcohol extract. 
An appropriate amount of Tween 80, propylene glycol, lecithin 80H and purified water was added to the water extract, 
and a high-shear emulsifying and dispersing machine was used to make an aqueous phase. Next, medium-chain 
triglycerides were added to the alcohol extract and a high-performance dispersing instrument was used to make the oil 
phase. After mixing the water phase and the oil phase, a high-performance dispersing instrument was utilized to prepare 
the emulsion. A high-pressure homogenizer was used to homogenize the emulsion to prepare the ZHSE. The micro-
emulsion properties utilized were as follows: spherical droplets with a mean diameter of 148.46±5.00nm, a polydispersity 
index of 0.19±0.04, a zeta potential of −20.11±1.01mv, a marker (with bile acid as a marker) with a concentration of 
15.54 ±1.66 µg/mL; the in vitro release of bile acid from 1mL submicron emulsion was 1.22±0.26µg for 60min.

Animals, Oropharyngeal Mucositis Model, and Sample Collection
17 male SD (certificate number 11401300081802) rats at 8 weeks of age, initially weighing 180–220 g, were purchased 
from Beijing HFK Bioscience Co., Ltd. During the first week of acclimatization, all rats were housed in standard 
ventilated cages (2–4 per cage) under a constant temperature of 25°C in a 12:12-h light/dark cycle, with free access to 
standard rat chow and drinking water. The study was approved by the Animal Ethics Committee of Cancer Hospital, 
Chinese Academy of Medical Sciences. All experimental procedures involving animals complied with the Chinese 
national legislation and local guidelines.

The modeling methodology was determined according to the results of our previous study regarding oropharynx 
pathology modeling.21 In brief, the two groups were modeled using the following method: after the rats were 
anesthetized and fixed, the rats’ tongue was pulled out and pressed down before 15% chloral hydrate was sprayed into 
its pharynx. This was repeated 3 times a day for 3 days. Animals in the Model group were treated with 3 sprays of 
distilled water twice per day, once in the morning and afternoon, for 4 days. Meanwhile, animals in the ZHSE group were 
treated with 3 sprays of ZHSE delivered to the oropharynx once in the morning and afternoon, for 4 days. Animal serum 
was obtained from blood taken by abdominal aorta after anesthesia 24 hours after the final treatment; the blood was 
centrifuged and the supernatant was taken after blood coagulation.

Sample Handling for Metabolomics
To a 200 μL sample of serum, 600 μL of methanol was added, and the mixture was mixed by vortexing for 1 min and 
centrifuged at 10,000 rpm for 10 min at 4 °C. The supernatant obtained after centrifugation was collected and purified 
with 0.22 µm cellulose syringe filters. A 5-μL aliquot of purified supernatant was analyzed.
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Liquid Chromatography and Mass Spectrometry Conditions
Liquid chromatography-mass spectrometry (LC-MS) analysis was performed using a Agilent 6550 iFunnel Q-TOF LC/ 
MS (Agilent Technologies, USA). The chromatographic separations employed a ZORBOX RRHD C18 analytical 
column (100mm×2.1 mm., 1.7 μm, Agilent Technologies, USA). Binary gradients consisted of ultrapure water with 
0.1% formic acid (solvent A) and acetonitrile with 0.1% formic acid (solvent B) with a flow rate of 0.3  mL/min applied 
for the elution. The gradient program was as follows: Initial 95% A, 0–1 min, 95% A and held for 1 min; 1–9 min, 95 to 
60% A; 9–19 min, 60 to 10% A; 19–21 min, 10 to 0% A; 21–25 min, finally 100% B held for 4 min. The total run time 
was 30 min. The sample injection volume was 4 μL. All samples were maintained at 4°C during the experimental period.

Positive and negative electrospray ionization sources (ESI) were both included with the analysis by Agilent 6550 Q- 
TOF/MS to profile the entire mass spectrometry. The MassHunter platform (Agilent Technologies, California, United 
States) was used as is standard to acquire and process the data, with sample products ranging from 80 to 1200 Da. For 
positive mode and negative mode, typical parameter values were as follows: electrospray capillary voltage 4.0 kV (ESI+) 
and 3.0 kV (ESI-), nozzle voltage 500 V, nebulizer pressure 45 psig (ESI+) and 35 psig (ESI-), dry gas flow rate 11L/min, 
dry gas temperature 225 °C (ESI+) and 200°C (ESI-), sheath gas temperature 350°C, sheath gas flow rate 11 L/ min.

Multivariate Data Processing and Identification of Biomarkers
The raw mass spectrum data were standardized by MetaboAnalyst 5.0 (www. metaboanalyst.ca/) to provide a normalized 
data matrix. Multivariate data analyses, including unsupervised principal component analysis (PCA) and supervised 
orthogonal partial least squares discriminant analysis (OPLS-DA), were performed using SIMCA-P 14.1 software 
(Umetrics, Umea, Sweden) to describe the differences and relationships between groups and mine for potential metabolites. 
S-plots were generated to validate the result by determining whether there was a significant difference based on the position 
of the variable in the s-plots. Variable contribution of different variables in the OPLS-DA model was depicted by the variable 
importance in the projection (VIP), and variables with VIP values > 1 were considered to be related to the difference between 
groups. Meanwhile, variables with the |p (corr)| ≥ 0.5, p-value < 0.05 and folder changes >2 or <0.5 were considered as 
important molecules for further data analysis. Potential biomarkers were identified in the human metabolome database 
(http://www.hmdb.ca/) depending on the mass-charge ratio of the selected compound. An online statistical and pathway 
enrichment analysis was performed in the library of Rattus norvegicus (rat) in the KEGG (www.genome.jp/kegg/) pathway 
database on the website of MetaboAnalyst 5.0 (http://www.metaboanalyst.ca/).

Exploring Compound-Target-Potential Metabolite Relationships
The relationship between metabolites and their related targets was elucidated using a combination of metabolomics and 
network pharmacology. All components contained in the six decoction samples used in the preparation of submicron 
emulsion were obtained from the lab of the systems pharmacology database and analysis website (https://old.tcmsp-e. 
com/tcmsp.php), while other resources were used to assist in determining the ingredients of medicinal materials. Components 
with oral bioavailability greater than or equal to 30% and drug-likeness greater than or equal to 0.18 were selected for 
subsequent analysis;22 the relevant targets of these medicines were recorded for later integration with metabolite targets. The 
potential protein targets of the different metabolites were obtained by searching the MBRole 2.0 database (http://csbg.cnb. 
csic.es/mbrole2/). All data in form of protein ID were converted to their associated UniProt IDs for comparability of results. 
A “compound-target-metabolite” network was constructed based on the protein-protein interaction (PPI) data and visualized 
by using. Cytoscape 2.8.3 software (National Institute of General Medical Sciences, United States).

Protein-Protein Interaction Network
Instances of discovery of compounds and metabolites acting together were extracted for key targets and protein 
interaction analysis. A protein-protein interaction (PPI) network was constructed based on an online analysis of the 
string database (Version 11.5, https://cn.string-db.org/).
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Statistical Analysis
A Kruskal–Wallis H rank-sum test was used to statistically analyze the score results (SPSS version 15.0; IBM: Chicago, 
IL, USA, 2006). P<0.05 indicated that the differences between groups were statistically significant, and P < 0.01 
suggested highly significant differences.

Results
Metabolomics Analysis of Serum
The mass data obtained by high-performance liquid chromatography-mass spectrometry (HPLC-MS) in positive and 
negative ion modes were entered into a Principal component analysis (PCA) of metabolomic profiles in SIMCA-P 
14.1 software to generate a graphical representation and investigate the similarities and differences in principal 
components between the model group and the ZHSE group. PCA score scatter plots were reported for both ESI + 
and ESI- mode. The stability of the instrument throughout the analysis process can be verified by the tightness of 
the distribution of the quality control samples in these graphs (Figure 1). The tightly grouped distribution 
characteristics of the quality control samples shown indicated that the instrument was stable throughout the 
analytical process. The variables representing the serum samples of the model group and the ZHSE group were 
concentrated in different areas of the PCA score scatter plot, indicating that there are significant differences in 
metabolite levels between the two groups.

To further reveal the potential inter-group variance, the supervised orthogonal partial least squares discriminant 
analysis (OPLS-DA) model was utilized, as shown in Figure 2. The OPLS-DA scores plot in ESI + and ESI- mode for 
the model group and the ZHSE group showed clustering in respective regions of the plot, indicating that the model could 
make accurate predictions in the dimension of the sample groups. Both models are quantitatively described by the 
parameters R2X (0.792, 0.753) and Q2 (0.914, 0.662) values in the ESI + and ESI- modes, respectively, to illustrate the 
quality of the model. The characteristics of satisfactory interpretation rate of the matrices with accurate fitness and 
prediction could be determined by interpreting the value of R2X and Q2 as greater than 0.5.

The S-plots for the model group and the ZHSE group are shown in Figure 3, in which the compounds with a VIP of 
larger than 1 and p (corr) greater than or equal to 0.5 were marked in red. From the data underlying the S-plots, the 
variables in red that meet the additional screening criteria (P <0.05 and fold change (FC) > 2 or <0.5) are selected as 
potential biomarkers for subsequent analysis. According to the classification of molecular ions, A jittered scatter plot 
(Figure 4) was created to illustrate up- and down-regulated ions with different degrees. An online search in the Human 
Metabolome Database (https://hmdb.ca/) was conducted to obtain an accurate molecular formula based on the exact 
mass-to-charge ratio of potential biomarkers.

Figure 1 Principal component analysis (PCA) score plots obtained from the quality control group (QC), the blank group (B), the model group (M), and the ZHSE group (Z) 
in positive and negative electrospray ionization source (ESI) mode.
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Figure 2 The results of OPLS-DA modeling using the data from the model group (M) and the ZHSE group (Z) in positive and negative electrospray ionization source (ESI) mode.

Figure 3 S-score plots constructed from the results in positive and negative modes.

Figure 4 Up- and down-regulated ions with different degrees. The notations are as follows: (1) positive ions with a mass-to-charge ratio greater than 500; (2) positive ions 
with a mass-to-charge ratio less than 500; (3) negative ions with a mass-to-charge ratio greater than 500; (4) negative ions with a mass-to-charge ratio less than 500.
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Identification of Potential Biomarkers and Pathway Enrichment
In total, 161 potential biomarkers were input into the metabolomics data analysis platform, MetaboAnalyst 5.0 for 
KEGG pathway enrichment. The enrichment analysis bubble diagram is shown in Figure 5, in which parameters 
such as quantity and p-value are introduced into the Cartesian coordinate system to represent the relationship 
between the three variables. Fifty-six biomarkers enriched in metabolic pathways were identified. The pathways 
were allocated high correlations based on a combination of raw p and impact factors, the top 5 of which were 
linoleic acid metabolism and synthesis, degradation of ketone bodies, the citrate cycle (TCA cycle), arachidonic acid 
metabolism, in addition to alanine, aspartate, and glutamate metabolism. In these pathways, the metabolites involved 
include linoleic acid, 9.10-epoxyoctadecenoic acid, acetoacetic acid, citric acid, cis-aconitic acid, 5(S)- 
hydroperoxyeicosatetraenoic acid, leukotriene A4, prostaglandin E2, and N-acetyl-L-aspartic acid. After the data 
was normalized by the log2 method, R language was used to draw a clustering heat map (Figure 6), which revealed 
significant differences in enriched key metabolites between the two groups of samples. A comprehensive network 
(Figure 7) was created according to the top 5 enriched pathways and the identified potential biomarkers. At the 
metabolite level, the differences between the model group and the ZHSE group were compared to investigate the 
mechanism behind the treatment.

“Compound-Target-Potential Metabolite” Network Construction Based on Network 
Pharmacology
According to search results from the TCMSP website, we obtained a total of 104 non-repetitive compounds 
(Supplementary Table 1) and 315 non-repetitive targets related to them. Considering the targets associated with chemical 
constituents of the drug, as well as the potential metabolites screened in the above experiment, we drew a diagram of the 
complex network of the “compound-target-potential metabolite” interactions, to identify the regulatory effects that 
chemical constituents of ZHSE have on metabolites. As shown in Figure 8, 96 active chemical constituents, 277 targets 
linked to them, 41 potential metabolites, and 488 targets related to potential metabolites contributed to the interactive 
“potential metabolite-target-component” network.

Figure 5 The bubble diagram from the enrichment analysis.
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“Protein-Protein-Interaction” Network Construction
51 proteins co-targeted by compounds and metabolites were searched from the “Potential Metabolite-Target-Component” 
interaction network. According to analysis results from the STRING website, a total of 50 non-repetitive items with 
interactions were introduced into the protein-protein interaction network (Figure 9).

Discussion
Liu Shen Wan (LSW) is a classic prescription with hundreds of years of history in traditional Chinese medicine. This 
prescription contains six medicinal materials including bezoar, toad venom, musk, pearl powder, borneol, and 
realgar.23,24 Based on its detoxification and anti-inflammatory pharmacological effect, it is widely used in the treatment 
of many inflammatory throat diseases including influenza, tonsillitis, pharyngitis, mumps, etc.24 According to the theory 
of traditional Chinese medicine, the research presented herein prepared ZHSE spray by recombining the prescription and 
using modern technology. The results of previous studies revealed that ZHSE was more effective than LSW after 
prescription adjustment. It could significantly reduce the inflammatory lesions in rats with acute pharyngitis without any 
toxic side effects and was also shown to inhibit the expression of many inflammatory-related factors in the serum of 
model animals.21

To further clarify the mechanism of ZHSE, we studied the correlation between metabolomic characteristics and the 
phenotypic characteristics of oropharyngeal mucositis. In this study, 56 differentially expressed metabolites were 
identified, which were enriched in 22 metabolic pathways (Figure 4). Linoleic acid metabolism and synthesis, degrada-
tion of ketone bodies, the citrate cycle (TCA cycle), arachidonic acid metabolism, and alanine, aspartate, and glutamate 
metabolism were the main pathways that were enriched.

ZHSE appears to play a major role in inflammatory development and pain regulation through the linoleic acid 
metabolism and synthesis pathways. Oxidized linoleic acid metabolites may be important targets for reducing mechanical 
and thermal hyperalgesia in peripheral inflammation from acute to chronic causes of inflammation and inflammatory 
pain.25 In terms of pain, both low oleic acid intake26,27 in clinical trials and decreases in oleic acid levels in blood28 

showed strong correlations with pain reduction, indicating oleic acid and its derivatives were an influential family of 
endogenous mediators that mediate chronic pain and itchiness.29 In terms of inflammation, Cytochrome P450-derived 
linoleic acid metabolites, NF-κB, and AP-1 transcription factors all mediate inflammation and could be activated by 
linoleic acid and high concentrations of 9.10-EpOME and 9.10-DiHOME. However, another oleic acid derivative, 12.13- 

Figure 6 The clustering heatmap of the enriched key differential metabolites in different samples.
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Figure 7 Schematic diagram of the metabolic pathways related to ZHSE and the trends of biomarkers enriched in these metabolic pathways. The notations are as follows: 
(↑) in green boxes, metabolite higher in the ZHSE group than in the model group; (↓) in red boxes, metabolite lower in the ZHSE group than in the model group. The 
relevant metabolic pathways are described at the bottom of the boxes.
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DiHOME may contribute to the suppression of the immune response, as evidenced by its ability to inhibit the respiratory 
burst and its increase in concentrations in healthy adult men during intralipid infusion.30 The levels of Linoleic acid and 
9.10-Epoxyoctadecenoic acid in the ZHSE group were significantly increased compared with the model group, which 
suggested that ZHSE might accelerate the body’s natural immune response and inflammatory response process by 
inducing NF-κB and AP-1 transcription factors to treat oropharyngeal mucositis. Moreover, the consumption of oleic 
acid and its derivatives at this stage also helps to avoid the conversion of acute oropharyngeal mucositis to chronic 
oropharyngeal mucositis and inhibit the associated pain.

Figure 8 The “Potential Metabolite-Target-Component” interaction network with all target information for active chemical constituents and potential metabolites. The 
yellow nodes represent active chemical constituents of the ZHSE. The purple nodes represent potential metabolites. The green nodes represent the protein targets of active 
chemical constituents. The pink nodes represent the targets associated with potential metabolites. The orange nodes represent the proteins that were targets of both active 
chemical constituents and potential metabolites.

https://doi.org/10.2147/DDDT.S376984                                                                                                                                                                                                                               

DovePress                                                                                                                                     

Drug Design, Development and Therapy 2022:16 3178

Chen et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


The arachidonic acid metabolism pathway is another substantial metabolic pathway identified in the enrichment analysis 
that serves as an inflammatory regulatory pathway for the treatment of oropharyngeal mucositis. Arachidonic acid generation 
is initiated by cyclooxygenase and lipoxygenases and is used in two complex biochemical cascade reactions to generate 
prostaglandins, prostacyclins, thromboxanes (catalyzed by cyclooxygenase) and leukotrienes (catalyzed by lipoxygenases).31 

There is a complex synergistic network of biochemical factors involved in the process of inflammation, in which arachidonic 
acid and its metabolites, together with mediators released by activating other inflammatory cells, form the nodes of the 
cooperative network. The cooperation of mediators varies according to the inflammatory situation and anatomical location.31 

As shown in Figure 5, due to the action of ZHSE, 5(S)-Hydroperoxyeicosatetraenoic acid and leukotriene A4 are up-regulated, 
and prostaglandin E2 is down-regulated; these metabolic variations allow the modulation of the immune network to further 
improve the treatment process for pharyngitis. LTA4 can be further modified to LTB4,32 which is involved in the initiation and 
regulation of immune response and M1 macrophage potentiation.33 Prostaglandin E2 (PGE2) facilitates the generation of 

Figure 9 The “Protein-protein-interaction” network with target proteins co-targeted by compounds and metabolites. Purple edges: known Interactions (from curated 
databases). Pink edges: known Interactions (experimentally determined). Green, red and blue edges: Predicted Interactions.
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M1.33 EP4-receptor-mediated downregulation of PGE2 was observed in human systemic inflammation disease.34 Arachidonic 
acid (AA) metabolism plays a critical role in initiating and regulating inflammation.33

After integrating the data regarding the drug components in Chinese Herbal Medicines and the post-administration 
differential metabolites, 51 common targets were obtained through network pharmacology analysis, suggesting that these targets 
may be of great significance for treating the radiation oropharyngeal mucositis and uncovering the underlying mechanism.

Among the many common targets, some were related to inflammation, and these targets may affect the regulation of 
inflammation in radiation oropharyngeal mucositis. LTB4 is a potent pro-inflammatory lipid mediator, with a large body of 
scientific literature describing its diverse roles in inflammatory processes. The catalytic activity of leukotriene A4 hydrolase 
(LTA4H) plays an important role in inflammatory processes; it has two distinct but overlapping active sites that confer different 
catalytic activities.35 LTB4 is involved in inducing anti-microbial factors, the release of inflammatory mediators, enhancing 
phagocytosis, and is also implicated in diseases in which neutrophils are strongly involved.36 In allergic mucosal inflammation, 
LTB4 expression levels are significantly increased in Neutrophils, monocytes, and lymphocytes, suggesting a strong involvement 
in this process.37 Some studies have confirmed that the expression of PRKCA is closely related to the inflammatory response of 
different systems, including the respiratory system and digestive system. It has been reported that acute lung injury and associated 
inflammatory responses could be alleviated by promoting the expression of PRKCA,38 and esophageal inflammation develop-
ment was linked to elevating the expression of PRKCA.39 There may therefore be some indirect effect of inflammatory inducers 
of NF-κB that not only could activate inflammation, but also could alter the regulation of gene expression of PRKCA.40

In the treatment of oropharyngeal mucositis with ZHSE, which upstream pathways are incorporated to regulate metabo-
lism and the key target protein? After the general direction of the interaction of the various chemical components from the 
ZHSE was clarified, by which mechanism do they work exactly during oropharyngeal mucositis treatment? Answering these 
questions will require further research and elucidation. In conclusion, these findings manifest that ZHSE regulates endogenous 
metabolite disorders during the treatment of oropharyngeal mucositis by various constituents interacting with multiple targets 
linked to inflammation and pain. This study provides a new perspective on integrating metabolomics and network pharma-
cology for exploring the improved treatment based on the traditional classic prescription of LSW.
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