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Background: Type 2 diabetes mellitus (T2DM) is caused by diverse environmental and genetic risk factors. Previous studies have 
reported that cytochrome P450 (CYP) is a promising gene for T2DM. Therefore, we aimed to determine the effects of CYP7A1 and 
CYP2E1 polymorphisms on T2DM susceptibility among the Chinese Han population.
Methods: A case-control study was conducted to assess the potential relationship of four polymorphisms (rs8192879, rs12542233, 
rs2070672 and rs2515641) with T2DM susceptibility in the Chinese population, involving 512 T2DM patients and 515 age- and 
gender-matched healthy individuals. We used the Agena MassARRAY platform to detect CYP7A1 and CYP2E1 polymorphisms. The 
relationship between genetic polymorphisms and T2DM risk was evaluated using odds ratios (ORs) and 95% confidence intervals 
(CIs) in various genetic models.
Results: After adjusting for age and gender, rs12542233 in the CYP7A1 gene was significantly associated with decreased T2DM risk 
(recessive: OR = 0.67, 95% CI = 0.49–0.91, p = 0.012; after FDR correction, p = 0.048). The CYP7A1 rs12542233 was associated with 
a reduced risk of T2DM in people over 59 years of age (p = 0.010). In the population with BMI ≤ 24 kg/m2, CYP7A1 rs12542233 was 
associated with an increased risk of T2DM (p < 0.05). In the population with BMI > 24 kg/m2, CYP2E1 rs2515641 can significantly 
reduce the risk of T2DM (p < 0.05). And rs8192879, rs2070672 and rs2515641 could significantly increase the risk of diabetes 
retinopathy in T2DM patients (p < 0.05). Furthermore, the Trs8192879Crs12542233 haplotype was significantly associated with T2DM 
(p = 0.019).
Conclusion: CYP7A1 and CYP2E1 polymorphisms may contribute to T2DM susceptibility in the Chinese Han population, especially 
in stratified analysis.
Keywords: diabetes mellitus, type 2, gene polymorphisms, case-control study, CYP7A1, CYP2E1

Background
Diabetes mellitus (DM) is a complex metabolic disease characterized by hyperglycemia, which is caused by deficiencies 
in insulin secretion and function. According to the International Diabetes Federation (IDF), there were about 463 million 
people with diabetes worldwide in 2019 (diabetes prevalence was 9.3%). It is estimated that the number of diabetes 
patients in the world will reach 578 million (diabetes prevalence is 10.2%) by 2030, and will increase to 700 million 
(diabetes prevalence is 10.9%) by 2045.1 Type 2 diabetes mellitus (T2DM) accounts for approximately 90% of patients 
with diabetes.2 Diabetes complications are the main cause of death in diabetes patients, including diabetes retinopathy, 
renal failure, diabetes foot and cardiovascular disease. One-third of diabetes patients will have diabetes retinopathy, 
which is related to the risk of systemic vascular complications.3 It is well known that genetic factors, lifestyle and 
environmental factors have an important impact on susceptibility to diabetes. Numerous studies have demonstrated that 
the significance of genetic polymorphisms in cytochromes P450 (CYP) in the pathogenesis of T2DM, such as CYP2C9, 
CYP2C19, CYP2D6, CYP3A4, and CYP2J2.4–6 Cholesterol 7 α-hydroxylase (cytochrome P450 7A1, CYP7A1), 
a member of the CYP family, plays an essential role in regulating the homeostasis of cholesterol and bile acids. It has 
been reported that bile acids are signaling molecules, which can activate bile acid receptors to regulate bile acid synthesis 
and glucose metabolism.7 Some studies have demonstrated that the bile acid pool and excretion increase in diabetic 
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human patients and diabetic animals.8 Gerhard et al have found that diabetic patients have significantly higher serum bile 
acid levels than healthy controls.9 In addition, Prawitt et al showed that the administration of a bile acid sequestrant 
decreased plasma glucose and HbA1c concentrations.10 Moreover, previous studies indicated that insulin inhibits the 
expression of CYP7A1 in rat hepatocytes, the key enzyme in bile acid synthesis pathways.11 These findings suggested 
that CYP7A1 may be involved in the development of T2DM through bile acid synthesis pathways. CYP7A1 polymorph-
isms have been associated with the susceptibility of coronary heart disease, gall bladder stone disease and cancers.12–15 

However, the relationship between CYP7A1 and T2DM is unclear.
Cytochrome P450 2E1 (CYP2E1) is another member of the CYP superfamily and is responsible for the metabolic 

activation of many low-molecular weight compounds, including ethanol, benzene, vinyl chloride, and N- nitrosamines.16 

The overexpressed CYP2E1 exhibits a high capacity of produce free radicals that probably cause liver damage and lipid 
peroxidation in obese T2DM patients.17 It has been shown that there is elevated activity of CYP2E1 in the liver of obese 
patients with T2DM.18 Previous studies also have shown that T2DM could induce increased levels of CYP2E1 protein 
and increase the activities of liver-related enzymes. Moreover, T2DM enhances the toxicity and/or carcinogenic effects of 
chemicals in the liver by inducing CYP2E1-dependent drug-metabolizing enzymes.19 This evidence suggests that 
CYP2E1 plays a crucial role in T2DM development. In addition, a large body of literature has demonstrated that 
CYP2E1 polymorphisms are correlated with the risk of cancer and other diseases.20,21 However, no studies have focused 
on the association of CYP2E1 polymorphisms with susceptibility to T2DM.

To explore the relationship of CYP7A1 and CYP2E1 polymorphisms with T2DM risk in the Chinese Han populations, 
we designed this case-control study and focused on the correlations between four polymorphisms (CYP7A1: rs8192879 
and rs12542233; CYP2E1: rs2070672 and rs2515641) and T2DM susceptibility.

Methods
Study Populations
A total of 512 diabetic patients and 515 healthy controls were enrolled from the First affiliated hospital of Xi’an Jiaotong 
University in China. All patients were diagnosed based on the 2022 American Diabetes Association (ADA) diagnostic 
criteria for diabetes. Criteria for the diagnosis of diabetes: 1) fasting blood glucose (FBG) ≥7.0 mmol/L, 2) 2-h plasma 
glucose (2-h PG) ≥200 mg/dL (11.1 mmol/L) during oral glucose tolerance test (OGTT), 3) A1C ≥6.5% (48 mmol/mol), 4) 
In a patient with classic symptoms of hyperglycemia or hyperglycemic crisis, a random plasma glucose ≥200 mg/dL (11.1 
mmol/L).22 A person who accord with one of these criteria is diagnosed diabetes. Patients suffering from type 1 diabetes, 
gestational diabetes, inflammation, malignancy, renal dysfunction, other chronic or endocrine disease, and who have 
receiving any drugs like antidiabetics were excluded. The controls were age- and gender-matched healthy population and 
had no history of diabetes, metabolic disorders or severe diseases. The demographic and clinical characteristics of the study 
population, such as age, gender, body mass index (BMI), smoking status, drinking status, Complication, Antidiabetes drug, 
Insulin, diabetic retinopathy, Fasting blood glucose (FBG), hemoglobin A1C (HbA1C), total cholesterol (TC), Triglycerides 
(TG), Low-density lipoprotein (LDL), High-density lipoprotein (HDL), Urea, Creatinine, Cystatin C, glomerular filtration 
rate (GFR) were required from their medical records (Table 1). The study was approved by the ethical committee of the 
First affiliated hospital of Xi’an Jiaotong University, and informed consent forms were signed by all individuals before the 
study according to the Helsinki Declaration.

Genotyping
Genomic DNA was isolated using GoldMag–Mini Purification Kit (GoldMag Co. Ltd. Xi’an, China) and stored at −80°C 
until analysis. The genetic variations of CYP7A1 and CYP2E1 were obtained through Ensembl (http://grch37.ensembl. 
org/Homo_sapiens/Tools/VcftoPed) database.23 Using Haploview software, we selected tagSNPs based on Hardy- 
Weinberg equilibrium (HWE) > 0.01, minor allele frequency (MAF) > 0.05, Minimum genotype (Min Genotype) > 
75%, and Tagger r2 >0.8. Combined MassARRAY, HWE > 0.05, MAF > 0.05 and the call rate > 95% in our study 
population, four candidate SNPs (rs8192879, rs12542233, rs2070672 and rs2515641) were randomly selected in order to 
study their potential role in T2DM risk (Table 2). We applied the Agena MassARRAY Assay Design 3.0 software (Agena 
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Bioscience, San Diego, California, USA) to design PCR and extension primers of each SNP (Table 3). All SNPs were 
genotyped by the MassARRAY iPLEX platform. Then, we performed data management and analysis using the Agena 
Typer 4.0 Software. HaploReg v4.1 (https://pubs.broadinstitute.org/mammals/haploreg /haploreg.php)24 was conducted 
to predict the potential functions of the candidate variants.

Data Analysis
Data analysis was performed using SPSS version 20.0 software (SPSS, Chicago, IL, USA). The differences in demographic 
variables and genotype distribution were assessed by the chi-square test and student’s t test between diabetes patients and 
healthy controls. We used Fisher’s exact test to evaluate the HWE of each SNP in controls. The association of diabetes risk 

Table 1 Demographic and Clinical Characteristics of Participants

Variables Cases (n = 512) Controls (n = 515) p

Age (mean ± SD), years 59.23 ± 9.59 59.27 ± 10.97 0.962
>59 264 (52%) 272 (53%)

≤59 248 (48%) 243 (47%)

Gender
Male 281 (55%) 283 (55%)

Female 231 (45%) 232 (45%)

BMI
≤24 130 (25%) 126 (24%)

>24 190 (37%) 123 (24%)
Smoking status

Yes 135 (26%) 132 (26%)

No 231 (45%) 137 (27%)
Drinking status

Yes 69 (13%) 98 (19%)

No 278 (54%) 138 (27%)
Complication

One 108 (21%)

Multiple 141 (27%)
Antidiabetes drug

Yes 128 (25%)

No 204 (40%)
Insulin

Yes 175 (34%)

No 157 (31%)
Diabetic retinopathy

Yes 213 (42%)

No 149 (29%)
FBG (mmol/L) 9.95 ± 4.69 5.67 ± 0.78 < 0.000
HbA1C (%) 9.30 ± 2.47 5.88 ± 0.79 < 0.000
TC (mmol/L) 4.62 ± 1.32 4.94 ± 0.95 0.004
TG (mmol/L) 2.49 ± 2.25 1.76 ± 1.42 < 0.000
LDL (mmol/L) 2.77 ± 0.95 2.68 ± 0.69 0.325

HDL (mmol/L) 1.22 ± 0.64 1.20 ± 0.24 0.742
Urea (mmol/L) 6.38 ± 3.33 5.05 ± 1.27 < 0.000
Creatinine (μmol/L) 63.30 ± 19.91 60.26 ± 13.20 0.069

Cystatin C (mg/L) 0.97 ± 2.17 0.88 ± 0.20 0.904
GFR (mL/min) 122.78 ± 36.00 94.09 ± 15.93 < 0.000

Notes: p values were calculated by two sided Chi-square test with logistic regression analysis. Bold indicates significant difference, p < 
0.05 indicates statistical significance. 
Abbreviations: BMI, body mass index; FBG, fasting blood glucose; HbA1C, hemoglobin A1C; TC, total cholesterol; TG, triglycerides; 
LDL, low density lipoprotein; HDL, high density lipoprotein; GFR, glomerular filtration rate.
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Table 2 Primary Information of CYP7A1 and CYP2E1 Polymorphisms

Gene SNP Location dbSNP Alleles 
A/B

MAF p HWE HaploReg OR (95% CI) p * FDR Correction

Case Control k FDR Q= p * 
(m/k)

CYP7A1 rs8192879 Chr8: 59,403,576 3’-UTR Variant T/C 0.286 0.280 0.584 DNAse, GRASP QTL hits, 
Selected eQTL hits

1.03 (0.85–1.25) 0.743 3 0.990

rs12542233 Chr8: 59,414,401 2KB Upstream 

Variant

T/C 0.421 0.454 0.214 Motifs changed, Selected eQTL 

hits

0.87 (0.73–1.04) 0.128 1 0.510

CYP2E1 rs2070672 Chr10:133,527,044 2KB Upstream 

Variant

G/A 0.183 0.185 0.379 Promoter and Enhancer histone 

marks, Motifs changed, DNAse,

0.99 (0.79–1.24) 0.909 4 0.909

rs2515641 Chr10:133,537,858 Synonymous 
Variant 

(p.Phe421=)

C/T 0.164 0.154 0.865 Enhancer histone marks, Motifs 
changed, Selected eQTL hits

1.08 (0.85–1.37) 0.521 2 1.041

Notes: p HWE: p values of Hardy-Weinberg equilibrium were calculated using Chi-square test with logistic regression analysis, p *: p values were calculated by two sided Chi-square test with logistic regression analysis, k: sequential 
number sorted by p *, m: numbers of SNP. 
Abbreviations: SNP, single nucleotide polymorphism; MAF, minor allele frequency; HWE, Hardy - Weinberg equilibrium; OR, odds ratio; CI, confidence interval; FDR, false discovery rate.
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Table 3 Primer Sequence of CYP7A1 and CYP2E1 SNPs for PCR and UEP Used in This Study

Gene SNPs First Primer (5’-3’) Second Primer (5’-3’) UEP_DIR UEP SEQ (5’-3’)

CYP7A1 rs8192879 ACGTTGGATGAGCCTGGACAGCTTAGTGAG ACGTTGGATGCAATCTGCCAATTAGAATAC R gcttcGTGAGATCCCGTCTCC
CYP7A1 rs12542233 ACGTTGGATGGACTGGGATATCTTGCTGTG ACGTTGGATGGCATTTATTTAGACAGGTGG R TGTATAAGATCAGCTTTTCTATAA

CYP2E1 rs2070672 ACGTTGGATGACTCCAAACAAATGCATGGG ACGTTGGATGCCAACCCATAGTTAAGAACG F aaAGTTCCCCGTTGTCTA

CYP2E1 rs2515641 ACGTTGGATGGCCAGAACACTTCCTGAATG ACGTTGGATGTCTCACCTGTGGAAAATGGC F gTCCTGAATGAAAATGGAAAGTT

Abbreviations: SNP, single nucleotide polymorphism; UEP, unextended sequencing primer; DIR, direction.
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and genetic polymorphisms was assessed using odds ratios (ORs) and 95% confidential intervals (95% CI) using logistic 
regression adjusted by sex and age. In addition, linkage disequilibrium (LD) and haplotype analysis were analyzed by 
Haploview software (version 4.0) and PLINK software.25,26 Multifactor dimensionality reduction (MDR) analysis was used 
to identify the best SNP–SNP interaction model. The p values <0.05 were considered significant in our study.

Results
Characteristics of Participants
The demographic and clinical characteristics of study participants are shown in Table 1. The mean age was 59.23 ± 9.59 
years and 59.27 ± 10.97 years in cases and controls, respectively. No significant differences were observed in the 
distributions of age, gender BMI and other characteristics of subjects. However, there were significant differences in 
FBG, HbA1c, TC, TG, urea, GFR and other clinical indicators between the T2DM patients and the healthy control.

Association of CYP7A1 and CYP2E1 Polymorphisms with Diabetes Risk
In Table 2, the primary information of CYP7A1 and CYP2E1 polymorphisms are presented. The results of stratified 
analysis by age, gender, BMI, etc. are listed in Supplemental Table 1. All genetic polymorphisms were in accordance 
with HWE (P> 0.05). HaploReg showed that candidate polymorphisms were associated with the regulation of promoter 
and/or enhancer histone, DNase, motifs changed, GRASP QTLhits and selected eQTL hits.

The genotypes frequencies of diabetes patients are shown in Table 4. CYP7A1 rs12542233 was significantly related to 
T2DM risk in recessive model (p = 0.012, OR = 0.67, 95% CI = 0.49–0.91; after FDR correction, p = 0.048). In addition, 
in order to further explore the relationship between these four variants genotypes and T2DM susceptibility, we performed 
subgroup analysis stratification on age, sex, BMI, etc. (Supplemental Table 2).

Table 4 The Association of CYP7A1 and CYP2E1 Genotypes with Susceptibility of Diabetes

Gene SNP Model Genotype OR (95% CI) p* FDR Correction

k FDR Q = p (m/k)

CYP7A1 rs8192879 Homozygous TT vs CC 0.91 (0.57–1.46) 0.687 3 0.916

Heterozygou TC vs CC 1.14 (0.88–1.48) 0.306 1 1.222
Dominant TT + TC vs CC 1.10 (0.86–1.41) 0.436 2 0.873

Recessive TT vs TC + CC 0.86 (0.54–1.35) 0.503 2 1.006

Additive 1.03 (0.85–1.25) 0.741 3 0.988
rs12542233 Homozygous TT vs CC 0.71 (0.49–1.02) 0.06 1 0.240

Heterozygou TC vs CC 1.10 (0.83–1.46) 0.495 3 0.660
Dominant TT + TC vs CC 0.98 (0.75–1.27) 0.861 4 0.861

Recessive TT vs TC + CC 0.67 (0.49–0.91) 0.012 1 0.048
Additive 0.87 (0.73–1.04) 0.125 1 0.502

CYP2E1 rs2070672 Homozygous GG vs AA 1.20 (0.58–2.47) 0.624 2 1.249

Heterozygou GA vs AA 0.94 (0.72–1.22) 0.631 4 0.631

Dominant GG + GA vs AA 0.96 (0.74–1.24) 0.742 3 0.989
Recessive GG vs GA+ AA 1.22 (0.60–2.51) 0.583 3 0.777

Additive 0.99 (0.79–1.24) 0.91 4 0.910

rs2515641 Homozygous CC vs TT 0.85 (0.35–2.08) 0.721 4 0.721
Heterozygou CT vs TT 1.15 (0.87–1.51) 0.327 2 0.655

Dominant CC + CT vs TT 1.13 (0.86–1.47) 0.39 1 1.560

Recessive CC vs CT + TT 0.82 (0.34–1.99) 0.658 4 0.658
Additive 1.08 (0.85–1.38) 0.512 2 1.023

Notes: p: p values were calculated by two sided Chi-square test with logistic regression analysis, Bold indicates significant difference, p < 0.05 indicates 
statistical significance, k: sequential number sorted by p *, m: numbers of SNP. 
Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval; FDR, false discovery rate.
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Stratification Analysis by Age and BMI
The relationship between genotypes of four variants and T2DM susceptibility stratified by age and BMI are shown in 
Table 5. The CYP7A1 rs12542233 Recessive model was associated with a reduced risk of T2DM in people over 59 years 
of age (p = 0.010, OR = 0.55, 95% CI = 0.35–0.87). In the population with BMI ≤ 24 kg/m2, CYP7A1 rs12542233 
Heterozygou (p = 0.023, OR = 2.08, 95% CI = 1.11–3.90) and Dominant (p = 0.026, OR = 1.94, 95% CI = 1.08–3.49) 
models were associated with an increased risk of T2DM. In the population with BMI > 24 kg/m2, CYP2E1 rs2515641 
Homozygous (p = 0.038, OR = 0.10, 95% CI = 0.01–0.89) and Recursive (p = 0.038, OR = 0.10, 95% CI = 0.01–0.88) 
models can significantly reduce the risk of T2DM.

The Association of CYP7A1 and CYP2E1 Polymorphisms with Susceptibility of Diabetic 
Retinopathy
We stratified the T2DM patients according to diabetes retinopathy (Table 6). The results showed that rs8192879 
Heterozygou (p = 0.032, OR = 1.65, 95% CI = 1.05–2.60) and Dominant (p = 0.033, OR = 1.61, 95% CI = 1.04– 
2.48) models, rs2070672 Heterozygou (p = 0.028, OR = 1.75, 95% CI = 1.06–2.87), Dominant (p = 0.027, OR = 1.71, 
95% CI = 1.06–2.75) and Additive (p = 0.046, OR = 1.53, 95% CI = 1.01–2.32) models, rs2515641 Dominant (p = 0.045, 
OR = 1.64, 95% CI = 1.01–2.67) and Additive (p = 0.042, OR = 1.61, 95% CI = 1.02–2.55) models could significantly 
increase the risk of diabetes retinopathy in T2DM patients.

Haplotype Analysis
Then, we conducted LD and haplotype analyses on the polymorphisms of CYP7A1 and CYP2E1. These analyses revealed one 
block in CYP7A1, including rs8192879 and rs12542233 (Figure 1). Haplotype frequencies and their association with T2DM risk 

Table 5 Stratification Analyses of the Association of CYP7A1 and CYP2E1 Polymorphisms with Susceptibility of 
Diabetes

Gene SNP Model Genotype OR (95% CI) p

Age > 59

CYP7A1 rs12542233 Homozygous TT vs CC 0.61 (0.37–1.02) 0.061
Heterozygou TC vs CC 1.21 (0.82–1.78) 0.336

Dominant TT + TC vs CC 1.01 (0.70–1.45) 0.969
Recessive TT vs TC + CC 0.55 (0.35–0.87) 0.010
Additive 0.84 (0.66–1.07) 0.161

BMI (kg/m2)

≤ 24

CYP7A1 rs12542233 Homozygous TT vs CC 1.75 (0.88–3.47) 0.111
Heterozygou TC vs CC 2.08 (1.11–3.90) 0.023

Dominant TT + TC vs CC 1.94 (1.08–3.49) 0.026
Recessive TT vs TC + CC 1.08 (0.63–1.87) 0.774

Additive 1.30 (0.92–1.82) 0.136

> 24

CYP2E1 rs2515641 Homozygous CC vs TT 0.10 (0.01–0.89) 0.038
Heterozygou CT vs TT 1.01 (0.61–1.69) 0.968

Dominant CC + CT vs TT 0.87 (0.53–1.43) 0.587
Recessive CC vs CT + TT 0.10 (0.01–0.88) 0.038
Additive 0.76 (0.49–1.18) 0.227

Notes: p: p values were calculated by two sided Chi-square test with logistic regression analysis, Bold indicates significant difference, p < 0.05 
indicates statistical significance. 
Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.
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are listed in Table 7. We found that Crs8192879Trs12542233 was markedly related to lower risk of diabetes (p = 0.019, OR = 0.75, 
95% CI = 0.59–0.95). The results of hierarchical analysis are listed in Supplemental Table 3.

MDR Analysis
MDR was used to analyze the interactions of these four SNPs. The results of the MDR model analysis of the SNP-SNP 
interactions are demonstrated in Table 8. The results showed that rs12542233 was the best single-locus model to predict 
trait anxiety (cross-validation consistency, 9/10; testing accuracy, 0.5010; p = 0.011). The best multi-loci model was the 
three-locus model, a combination of rs12542233, rs2070672 and rs2515641, with cross-validation consistency (7/10), the 
testing accuracy (0.4902) and p = 0.001.

Association of CYP7A1 and CYP2E1 Polymorphisms with Clinical Characteristics 
Among T2DM Patients
Among the T2DM patients, the different genotypes of CYP7A1 rs819287 were significantly correlated with the levels of 
total cholesterol (TC, p = 0.036) and low-density lipoprotein (LDL, p = 0.031). And, TC level also was related to 
CYP2E1 rs2070672 genotypes (p= 0.040, Table 9).

Table 6 The Association of CYP7A1 and CYP2E1 Polymorphisms with Susceptibility of Diabetic 
Retinopathy

Gene SNP Model Genotype OR (95% CI) p

Diabetic retinopathy

CYP7A1 rs8192879 Homozygous TT vs CC 1.39 (0.58–3.36) 0.461
Heterozygou TC vs CC 1.65 (1.05–2.60) 0.032

Dominant TT + TC vs CC 1.61 (1.04–2.48) 0.033
Recessive TT vs TC + CC 1.12 (0.48–2.65) 0.792
Additive 1.39 (0.98–198) 0.068

CYP2E1 rs2070672 Homozygous GG vs AA 1.42 (0.41–4.97) 0.582
Heterozygou GA vs AA 1.75 (1.06–2.87) 0.028

Dominant GG + GA vs AA 1.71 (1.06–2.75) 0.027
Recessive GG vs GA + AA 1.22 (0.35–4.23) 0.752
Additive 1.53 (1.01–2.32) 0.046

rs2515641 Homozygous CC vs TT 2.60 (0.28–24.19) 0.402

Heterozygou CT vs TT 1.61 (0.99–2.64) 0.057
Dominant CC + CT vs TT 1.64 (1.01–2.67) 0.045
Recessive CC vs CT + TT 2.27 (0.25–21.11) 0.470

Additive 1.61 (1.02–2.55) 0.042

Notes: p: p values were calculated by two sided Chi-square test with logistic regression analysis, Bold indicates significant difference, p < 
0.05 indicates statistical significance. 
Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.

Figure 1 Haplotype block map for the SNPs of CYP7A1. Block includes rs8192879 and rs12542233. The LD between two SNPs is standardized by D′.
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Discussion
In this study, we assessed the influence of four SNPs in CYP7A1 and CYP2E1 on susceptibility to T2DM. Our results 
showed that CYP7A1 rs12542233 was significantly associated with T2DM risk in the Chinese Han populations. Stratified 
analysis revealed that rs12542233 was associated with the reduced risk of T2DM patients without diabetic retinopathy. 
CYP7A1 rs12542233 had strong relationship with diabetes risk in the subgroups of age >59 years and BMI ≤ 24 kg/m2. 
Additionally, haplotype analysis showed Crs8192879Trs12542233 was associated with lower risk of T2DM.

In recent years, studies generally believed that genetic variation is one of the genetic factors of cancer and other 
diseases. And SNPs are important genetic variation. Several studies have found that genetic polymorphisms are 
associated with the risk of diabetes in Iranian population. Genome-wide association studies indicated that HHET 
rs1111875G/A and rs5015480C/T variants significantly increased the risk of T2DM.27 Hamidreza Galavi et al found 
the SREBF-2 gene rs2267439C/T polymorphism increased T2DM susceptibility.28 IGF2BP2 rs11705701 and rs1470579 
gene polymorphisms may be associated with T2DM.29 Case-control study showed that functional miR-143/145 variants 
may affect the risk of T2DM.30 In addition, the SIRT1 functional variants rs12778366 significantly increased the risk of 
T2DM, and the rs3758391 was associated with a reduced risk of T2DM.31 SLC30A8 gene rs2466293 and rs2466294 
variants are associated with increased risk of T2DM, and different genetic models of rs13266634 are associated with 
decreased risk of T2DM.32 In T2DM patients, the mean levels of HbA1c were significantly different between CC and TT 
genotype carriers of the rs28514894 polymorphism.33 HOTAIR rs920778 C/T, rs12826786 C/T, rs4759314 A/G poly-
morphisms were positively correlated with T2DM, while rs1899663 G/T was negatively correlated with T2DM 
susceptibility.34 In our study, the levels of TC and LDL were significantly different in rs8192879TT, TC and CC 
genotypes in T2DM patients. Genome-wide association studies revealed that CYP7A1 rs2081687 is an SNP associated 
with lipids in African Americans.35 However, there are no studies on the role of rs8192879 and rs12542233 in T2DM 
development. In our study, we found CYP7A1 rs125422333 significantly decreased T2DM risk in recessive model. More 
studies are required to confirm this result in a larger and well-designed study. The prevalence of diabetes was varied in 
factors, such as age, sex, and BMI. Sex and age are major risk variables in epidemiology of multiple diseases. The 
incidence, prevalence or mortality of non-insulin-dependent T2DM increases steeply with age.36,37 Diabetes is particu-
larly prevalent in adults who are thin at birth but have a high BMI later in life.38,39 LeRoith et al showed that T2DM is 
becoming more and more common in people, especially in individuals over 65 years old.40 Our results showed that 
rs12542233 and rs2515641 could protect individuals from T2DM among the elderly Chinese population (age >59 years). 

Table 8 SNP–SNP Interaction Models of the CYP7A1 and CYP2E1 Genes for T2DM Predisposition

Model Training Bal. Acc. Testing Bal. Acc. CVC OR (95% CI) p

rs12542233 0.5322 0.5010 9/10 1.50 (1.10–2.07) 0.011
rs12542233, rs2515641 0.5438 0.4912 5/10 1.38 (1.08–1.77) 0.011
rs12542233, rs2070672, rs2515641 0.5548 0.4902 7/10 1.50 (1.18–1.92) 0.001
rs8192879, rs12542233, rs2070672, rs2515641 0.5632 0.4893 10/10 1.70 (1.31–2.20) <0.000

Notes: p: p values were calculated by two sided Chi-square test with logistic regression analysis, Bold indicates significant difference, p < 0.05 indicates statistical significance. 
Abbreviations: MDR, multifactor dimensionality reduction; Bal. Acc., balanced accuracy; CVC, cross–validation consistency; OR, odds ratio; CI, confidence interval.

Table 7 Haplotype Frequencies and the Association with the Risk of Diabetes

Gene Chr Haplotypes OR (95% CI) p

CYP7A1 8 rs8192879|rs12542233 - TT 1.02 (0.84–1.24) 0.838
8 rs8192879|rs12542233 - TC 0.75 (0.59–0.95) 0.019
8 rs8192879|rs12542233 - CC 0.88 (0.74–1.05) 0.149

Notes: p: p values were calculated by two sided Chi-square test with logistic regression analysis, Bold indicates significant 
difference, p < 0.05 indicates statistical significance. 
Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.
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Table 9 Clinical Characteristics of Diabetes Patients Based on CYP7A1 and CYP2E1 Polymorphisms

Characteristics rs8192879 rs12542233 rs2070672 rs2515641

TT TC * CC p TT TC * CC p GG GA AA p TT CT CC p

FBG (mmol/L) 9.65±4.75 10.26±5.93 9.75±3.43 0.630 9.53±5.46 10.27±5.10 9.64±3.42 0.448 10.08±4.54 9.74±5.25 9.04±1.62 0.700 8.96±1.95 9.47±4.76 10.14±4.69 0.489

HbA1C (%) 8.96±1.96 9.33±3.02 9.32±2.02 0.805 8.82±2.10 9.53±2.84 9.16±1.92 0.172 9.33±2.21 9.27±3.13 9.00±1.25 0.909 8.40±0.73 9.22±3.08 9.35±2.22 0.701

TC (mmol/L) 4.77±1.20 4.39±1.18 4.78±1.42 0.036 4.59±1.11 4.50±1.20 4.81±1.57 0.183 4.71±1.38 4.33±1.15 5.08±1.02 0.040 4.67±0.44 4.44±1.14 4.68±1.39 0.358

TG (mmol/L) 2.19±1.42 2.35±1.93 2.64±2.56 0.475 1.98±1.34 2.40±1.96 2.90±2.94 0.053 2.62±2.57 2.19±1.38 2.41±0.86 0.321 2.63±1.15 2.23±1.28 2.59±2.54 0.447

LDL (mmol/L) 3.00±0.98 2.61±0.76 2.88±1.06 0.031 2.84±0.88 2.75±0.89 2.78±1.08 0.844 2.81±0.96 2.62±0.91 3.15±0.93 0.106 2.70±0.47 2.72±0.92 2.79±0.97 0.814

HDL (mmol/L) 1.13±0.34 1.20±0.53 1.25±0.74 0.643 1.18±0.30 1.25±0.67 1.21±0.71 0.766 1.24±0.68 1.19±0.56 1.14±0.20 0.747 1.12±0.26 1.19±0.56 1.24±0.67 0.770

Urea (mmol/L) 6.30±1.81 6.20±1.99 6.52±4.20 0.727 6.70±3.68 6.54±3.95 5.94±1.58 0.279 6.41±3.65 6.40±2.58 5.48±1.90 0.664 6.50±2.15 6.24±2.29 6.43±3.67 0.904

Creatinine (μmol/L) 68.32±30.27 64.29±18.80 61.80±18.87 0.263 62.39±24.73 62.97±18.69 64.30±19.19 0.821 63.12±20.62 64.26±18.99 59.00±12.21 0.695 67.62±13.09 63.11±19.25 63.29±00.31 0.907

Cystatin C (mg/L) 0.83±0.18 0.85±0.28 1.08±3.00 0.665 0.80±0.17 1.08±2.95 0.87±0.66 0.641 1.00±2.59 0.83±0.27 1.33±1.85 0.714 2.39±3.00 0.83±0.27 0.99±2.54 0.357

GFR (mL/min) 120.02 
±36.47

122.63 
±34.59

123.32 
±37.19

0.918 127.72 
±36.01

123.18 
±38.14

119.50 
±32.24

0.428 122.55 
±36.75

123.02 
±35.22

125.44 
±28.70

0.968 102.97 
±29.45

125.89 
±34.57

121.93 
±36.59

0.450

Notes: TC *: genotype – TC, p: p values were calculated by two sided Chi-square test with logistic regression analysis, Bold indicates significant difference. p < 0.05 indicates statistical significance. 
Abbreviations: FBG, fasting blood glucose; HbA1C, hemoglobin A1C; TC, total cholesterol; TC, total cholesterol; TG, triglycerides; LDL, low density lipoprotein; HDL, high density lipoprotein; GFR, glomerular filtration rate.
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Rs12542233 and rs2515641 also had strong relationships with diabetes risk in the individuals with different BMI. 
Meanwhile, the exact mechanism of the genetic variants in development of T2DM needs to be further studied.

Inevitably, this study has several limitations. First, the sample size is limited, so future large-scale studies are needed 
to verify our findings. Secondly, data on the potential function of these SNPs were predicted in silico only; thus, further 
functional assay is necessary to explore the underlying functions and mechanisms of these polymorphisms. Third, our 
study did not conduct cell or animal experiments, so we can supplement this part of the study in the future to make the 
relationship between CYP7A1 and CYP2E1 and diabetes more definite.

Conclusion
In summary, our study firstly evaluated the association of CYP7A1 and CYP2E1 polymorphisms with T2DM risk in 
a Chinese population. We have found that CYP7A1 and CYP2E1 gene polymorphisms were significantly associated with 
the risk of T2DM, especially in stratified analysis. It provides evidence that CYP7A1 and CYP2E1 may be associated 
with diabetes susceptibility, and suggests a vital role for CYP7A1 and CYP2E1 in the progression of diabetes.

Abbreviations
T2DM, type 2 diabetes mellitus; CYP, cytochrome P450; ORs, odds ratios; CIs, confidence intervals; DM, diabetes 
mellitus; CYP7A1, cytochrome P450 7A1; CYP2E1, cytochrome P450 2E1; BMI, body mass index; CHB, the Han 
Chinese in Beijing; CHS, Southern Han Chinese; HWE, Hardy-Weinberg equilibrium; MAF, minor allele frequency; LD, 
linkage disequilibrium; MDR, multifactor dimensionality reduction; LDL, low-density lipoprotein.
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