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Background: Genetic variants in GARP (also known as LRRC32) have been reported to have significant associations with asthma and 
eczema in special populations, but little is known about allergic rhinitis. This study purposes to evaluate the association of single nucleotide 
polymorphisms (SNPs) in GARP with house dust mite (HDM)-sensitized persistent allergic rhinitis (PER) in a population of Han Chinese.
Methods: In this hospital-based case–control study, 534 HDM-sensitized PER patients and 451 healthy controls were recruited from 
East China. In this population, six SNPs in GARP were identified. Serum total and specific IgE levels were measured with 
ImmunoCAP. Secondary structure and minimum free energy were predicted by RNAfold.
Results: rs79525962 was associated with the risk of HDM-sensitized PER (P < 0.05). The individuals with CT+TT genotype demonstrated 
a higher risk of HDM-sensitized PER than those with CC genotype (adjusted OR = 1.393, 95% CI = 1.019–1.904). The homozygous genotype 
CC of rs3781699 rendered a lower risk of HDM-sensitized PER than the wild-type genotype AA (adjusted OR = 0.646, 95% CI = 0.427–0.976); 
however, the genotype and allele frequencies of rs3781699 demonstrated no associations with HDM-sensitized PER (P > 0.05). rs79525962 
increased the risk of HDM-sensitized PER in the subgroup aged ≥16 years (adjusted OR = 1.745, 95% CI = 1.103–2.760), and this high risk was 
also found in the females (adjusted OR = 1.708, 95% CI = 1.021–2.856). The G-C haplotype of rs1320646-rs3781699 rendered a lower risk of 
HDM-sensitized PER than the common haplotype G-A (adjusted OR = 0.819, 95% CI = 0.676–0.993). The secondary structure of GARP 
altered in response to different genotypes of rs79525962 and rs3781699.
Conclusion: SNP rs79525962 in the GARP gene marks a risk locus of HDM-sensitized PER in Chinese Hans.
Keywords: allergic rhinitis, mites, GARP, LRRC32, single nucleotide polymorphism, genetic association studies

Introduction
Immunoglobulin E (IgE) mediates inflammation to evoke allergic rhinitis (AR), featuring nasal symptoms such as nasal 
itching, sneezing, rhinorrhea, and nasal congestion.1,2 The prevalence of allergic diseases, such as AR and asthma, has 
kept increasing markedly worldwide over the past 50 years.1 Currently, AR prevalence ranges from 9.8% to 23% in 
China adults.3 Epidemiologic studies have consistently shown that asthma and rhinitis often prevail in the same 
population throughout the world.4–6 As the upper and lower airway inflammatory responses present physiological 
similarities, rhinitis is considered as a risk factor for asthma at the pediatric age.7,8
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AR involves an intricate cooperation between genetic predisposition and environmental factors, with implicated genes 
being intensely studied.9 Genomic searches have verified the roles of chromosomes 2, 3, 4, and 99. Some AR-related single 
nucleotide polymorphisms (SNPs) have also been discovered10–13. Genome-wide association studies have found that 
through biological pathways involved in the immunosuppression of regulatory T lymphocytes (Tregs),14 a common variant 
on chromosome 11q13.5 near the glycoprotein A repetitions predominant gene (GARP, also known as leucine-rich repeat 
containing 32, LRRC32) increases the susceptibility to asthma,15 AR,16 and atopic dermatitis.17 Disease-associated genetic 
polymorphisms within 11q13.5 can regulate GARP expression on human Treg cells.18 In a recent study, by using a model of 
conditional Garp-deficient mice, Lehmkuhl et al19 confirmed that the decreased GARP expression on Tregs increased 
susceptibility to inflammatory diseases. They also found that as Foxp3 protein acetylation diminished, Garp deficiency led 
to an unstable Treg phenotype, suggesting that GARP plays a central role in maintaining immune stability.

Genetic variants in GARP have been reported to have significant associations with asthma and eczema in special 
populations,20 but little is known about AR. Here, we genotyped and analyzed six GARP SNPs in a Chinese Han population 
to manifest the role of GARP polymorphisms in AR induced by house dust mites (HDM), and its clinical phenotypes.

Materials and Methods
Subjects
This is a hospital-based, case–control study of the association between genetic variations in GARP and susceptibility to 
AR. This study included 534 unrelated cases (356 males, 178 females) with persistent allergic rhinitis (PER) ages 2 to 66 
years (median age [quartiles] of 16.0 [10.0–27.0] years) and 451 unrelated healthy controls (278 males, 173 females) 
ages 3 to 63 years (median age [quartiles] of 16.0 [10.0–29.0] years). All these subjects were enrolled from Chinese Hans 
in Jiangsu and Anhui provinces in East China, who had received medical care in the First Affiliated Hospital of Nanjing 
Medical University between 2008 and 2014. PER was diagnosed according to the criteria described in Allergic Rhinitis 
and its Impact on Asthma (ARIA) 2008 Update.1 A questionnaire was used to obtain data about disease history, family 
history, symptoms and concurrent diseases. The controls were recruited from the hospital seeking health care or routine 
health examinations and were frequency-matched with the cases in age (±5 years) and sex. The selection criteria for 
controls:12,13,21 (1) no symptoms and medical history of AR and nasal diseases; (2) no symptoms and medical history of 
other allergic diseases, such as asthma, eczema and urticaria; (3) negative blood test for serum allergen-specific IgE in the 
phadiatop assay (Phadia, Uppsala, Sweden); (4) no history of AR or other allergic diseases in the immediate family. The 
exclusion criteria for all subjects: (1) complicated with acute upper respiratory tract infection, severe deviation of nasal 
septum, rhinosinusitis with or without nasal polyps, neoplasms in paranasal sinuses and nasal cavity; (2) combined with 
other immune diseases and systemic diseases; (3) use of corticosteroids during previous 4 weeks and antihistamines/ 
antileukotrienes during previous 2 weeks. The research protocol complying with the Declaration of Helsinki was 
approved by the Ethics Committee of Nanjing Medical University (20080305), and written informed consent was 
obtained from all participants.

Clinical Parameters
A visual analogue scale (VAS) was used to assess the severity of nasal symptoms. 0 was a score meaning “not at all 
bothersome”, and 10 meaning “extremely bothersome”. VAS score ≤5 indicated mild AR and VAS score >5 indicated 
moderate-to-severe AR.22

After interview, about 5 mL of peripheral blood was collected from each subject for in vitro allergy testing. The 
ImmunoCAP assays (Phadia, Uppsala, Sweden) were carried out to measure the levels of serum total IgE and specific 
IgE antibodies to common inhalant allergens, including Dermatophagoides pteronyssinus (Der p, d1), Dermatophagoides 
farinae (Der f, d2), cat dander (e1), dog dander (e5), Blatella germanica (i6), Alternaria alternata (m6), Ambrosia 
elatior (w1), and Artemisia vulgaris (w6). Specific IgE ≥0.35 kUA/L indicated positivity. AR cases were sensitized with 
HDM (Der p and/or Der f), and 139 of them (26.0%) were further sensitized with other aeroallergens.
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SNP Selection and Genotyping
Six SNPs in the GARP gene (rs947998, rs79525962, rs1320646, rs3781699, rs1803627 and rs7685) were selected based 
on genotype data of Han Chinese in Beijing (CHB) in CSHL-HAPMAP (HapMap Data Rel 27 Phase II+III, Feb09, on 
NCBI B36 assembly, dbSNP b126), and the allele frequency data from 1000GENOMES (pilot_1_CHB+JPT_mar_2010, 
b132). For genotyping, the TaqMan SNP Genotyping Assay was performed using the 384-well ABI 7900HT Real-Time 
PCR System (Applied Biosystems, Foster City, CA, USA). Concordance was 100% in more than 15% of the samples 
randomly selected. The primers and TaqMan probes are shown in Table 1.

In silico Analysis
HaploReg (http://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) and RegulomeDB (https://www.regulomedb. 
org/regulome-search/) were used to predict putative functions of SNPs.23 HaploReg could be used to predict the functions 
of variations, including sequence conservation, regulatory protein binding, expression quantitative trait loci, regulatory 
motifs, and catalog of variants.24 RegulomeDB score represented different functions of SNPs.25 Changes in secondary 
structure and minimum free energy (MFE) in different SNP genotypes were predicted by using RNAfold (http://rna.tbi. 
univie.ac.at/). The alterations of secondary structure and MFE might change the binding affinity to microRNAs.26

Statistical Analysis
A goodness-of-fit χ2 test was first performed to measure allele frequencies against departure from the Hardy-Weinberg 
equilibrium (HWE). Differences in demographic data, selected variables, and frequencies of genotypes and alleles 
between PER patients and the controls were evaluated. Two-sided χ2 test was employed for categorical variables, 
Student’s t-test for continuous variables in normal distribution, and nonparametric test for continuous variables in non- 
normal distribution. Data about serum total IgE were normalized with a logarithmic model. Percentiles of total IgE 
measurements (n = 979) were calculated to divide the total serum IgE into “low” (<90th quantile [712.0 kU/L] after 
logarithmic transformation) and “high” (≥90th quantile [712.0 kU/L] after logarithmic transformation).27 Analysis of 
covariance and nonparametric tests were conducted to manifest the associations between GARP polymorphisms and 
clinical phenotypes. Unconditional univariate and multivariate logistic regression models were established to generate 
crude and adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for the association between GARP polymorph-
isms and the risk of HDM-sensitized PER. Multivariate analysis was performed after age and gender adjustment. The 
SNP indicating a positive association with PER was further submitted to stratification analysis of age, gender, 
concomitant asthma, family history of allergic diseases, VAS score, and serum total IgE levels. The linkage disequili-
brium (LD) between SNPs was computed using the normalized measure of allelic association D’ and r2 and illustrated 
using HaploView 4.2 software.28 Haplotype analysis was performed by HAPSTAT 3.0 (The University of North Carolina 

Table 1 Primers and Probes for Genotyping by TaqMan Assay

NCBI rs No. Base Change Primersa Probesa

rs947998 G>T F: GCCTGATCTTTGAAAACACTACACA G allele: FAM-CCCAGGCCGCAGC-MGB

R: CCACACTGCTTCTCCAAAATTAGTT T allele: HEX-CCCAGGCCTCAGC-MGB
rs79525962 C>T F: GGTTCCCCTGCAGGTTGAG G allele: FAM-ACACCTTTGCCAATC-MGB

R: CTTAAGCCACAATGCCCTGGAG A allele: HEX-ATACACCTTTACCAATCT-MGB

rs1320646 G>A F: TCTTCTGAGAATGACTTTCAGTCTCTCT G allele: FAM-TAGGACCGGAAGAGA-MGB
R: CCAGATCCGAGACACACTCGTA A allele: HEX-TTAGGACCAGAAGAGAG-MGB

rs3781699 A>C F: GCCAAGCTGGGTGCAAAA T allele: FAM-AGAACCAGATATCTAAG-MGB

R: GCTGCTGAGCCAGGAGCTAA G allele: HEX-AGAACCAGATAGCTAAGGT-MGB
rs1803627 T>G F: TCTCTCTGTGCTCTTGCATTCTCT T allele: FAM-ATTCCCTTTTCCTCTATTGA-MGB

R: TCATTCTCTTCCTAAGCCTCAGTTTC G allele: HEX-TTTTCCTCTATGGAGCAGA-MGB

rs7685 T>G F: GCCTGATCTTTGAAAACACTACACA G allele: FAM-CCCAGGCCGCAGC-MGB
R: CCACACTGCTTCTCCAAAATTAGTT T allele: HEX-CCCAGGCCTCAGC-MGB

Note: aThe alleles were arrayed as the location of the primers or probes from 5’ to 3’.
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at Chapel Hill, NC, USA) with observed genotypes. All statistical analyses were accomplished with SPSS software 
version 20.0.0 (IBM Corporation, Armonk, NY, USA). P-value <0.05 was considered statistically significant.

Results
Basic Demographic Data
In terms of frequency distributions (Table 2), the cases and controls were well matched in age (P = 0.535) and gender (P =  
0.101). The median age of all subjects was 16 years. PER cases showed higher serum total IgE (255.1 [118.9–560.5] kU/ 
L) (P<0.001) than controls (25.2 [10.4–47.2] kU/L). All PER cases were sensitized with HDM (Der p and/or Der f), and 
139 of them (26.0%) were further sensitized with other aeroallergens; however, they were not the main allergens causing 
symptoms. The serum levels of allergen-specific IgE against Der p and Der f in PER cases were 27.4 (6.1–69.5) kUA/L 
and 23.1 (6.0–63.0) kUA/L, respectively. In PER cases, 208 (45.6%) had mild and 248 (54.4%) had moderate-to-severe 
AR according to VAS score; 124 (27.5%) reported concomitant asthma and 154 (34.4%) had family history of allergic 
diseases. These variables were subjected to the multivariate logistic regression analysis to eliminate residual confounding 
effect.

Association Analysis of Each SNP
The genotype distributions in controls presented similarity with those in HWE (all P > 0.05, Table 3). As shown in 
Table 4, the genotype (P = 0.034) and allele (P = 0.018) frequencies of rs79525962 were significantly different between 
the cases and the controls. In addition, genotype CT+TT of rs79525962 brought with a higher risk of HDM-sensitized 
PER than the wild-type genotype CC (adjusted OR = 1.393, 95% CI = 1.019–1.904). The homozygous genotype CC of 
rs3781699 brought with a lower risk of HDM-sensitized PER than the wild-type genotype AA (adjusted OR = 0.646, 95% 
CI = 0.427–0.976); however, the genotype and allele frequencies of rs3781699 showed no significant association with the 
risk of HDM-sensitized PER (all P > 0.05).

Table 2 Distribution of Selected Variables Among Cases and Controls

Variables Case (n=534) Control (n=451) P

N % N %

Age (years), median (quartiles) 16.0 (10.0–27.0) 16.0 (10.0–29.0) 0.535a

Gender

Male 356 66.7 278 61.6 0.101a

Female 178 33.3 173 38.4
Serum total IgE (kU/L), median (quartiles) 255.1 (118.9–560.5) 25.2 (10.4–47.2) < 0.001b

Specific IgE (kUA/L), median (quartiles)
Der p 27.4 (6.1–69.5)

Der f 23.1 (6.0–63.0)

Rhinitis severity (VAS score)c

Mild (VAS score ≤ 5) 208 45.6

Moderate-to-severe (VAS score > 5) 248 54.4

Concomitant asthmac

Yes 124 27.5

No 327 72.5

Family history of allergic rhinitisc

Yes 154 34.4

No 294 65.6

Notes: aTwo-sided χ2 test for comparison of discrete variables and nonparametric test for continuous variables with non-normal distribution. 
bSelective variables were transformed into logarithmic model before unpaired Student’s t-test between cases and controls. cData about VAS 
score, concomitant asthma, and family history of allergic diseases were not available in some cases. 
Abbreviations: Der p, Dermatophagoides pteronyssinus; Der f, Dermatophagoides farina; VAS, visual analogue scales.
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Stratification Analysis of SNP rs79525962 in PER Subgroups
Considering that rs79525962 showed a significant association with HDM-sensitized PER, we evaluated the distributions 
of rs79525962 among PER subgroups. PER patients were stratified into six subgroups based on age, gender, concomitant 
asthma, family history of allergic diseases, rhinitis severity and serum total IgE level. As shown in Table 5, in contrast to 
wild-type genotype CC, genotype CT+TT of rs79525962 brought with a higher risk of HDM-sensitized PER in the 
subgroup of age ≥16 years (adjusted OR = 1.745, 95% CI = 1.103–2.760), and this high risk was also found in the females 
(adjusted OR = 1.708, 95% CI = 1.021–2.856). No evident associations were found between rs79525962 with other PER- 
related variables (all P > 0.05).

Association Between GARP Polymorphisms and AR-Related Phenotypes
As shown in Table 6, the genotypes of rs947998, rs79525962, rs1320646, rs3781699, rs1803627 and rs7685 in the GARP 
gene were not linked with the susceptibility to PER with or without asthma in the dominant model (all P > 0.05). Given 
the significant difference in serum total IgE levels between cases and controls, the associations of serum total IgE with 
six SNPs were evaluated separately. As showed in Table 7, both total IgE levels demonstrated no significant difference 
among individuals classified according to genotypes of six SNPs (all P > 0.05). No obvious associations were observed 
between different SNP genotypes and other AR-related phenotypes, including VAS score and specific IgE levels against 
Der p and Der f (all P > 0.05).

Association Between GARP Haplotypes and PER
As shown in Figure 1, the LD between rs1320646 and rs3781699 was quite strong (D′ = 1.0, r2 = 0.058). We then 
identified rs1320646-rs3781699 as a potential GARP haplotype and evaluated its association with PER risk among cases 
and controls. As shown in Table 8, compared with the common haplotype G-A of rs1320646-rs3781699, the 
G-C haplotype exhibited a lower risk of HDM-sensitized PER (adjusted OR = 0.819, 95% CI = 0.676–0.993).

Functions of SNP rs1320646, rs3781699 and rs79525962
Using HaploReg, we observed that rs1320646, rs3781699 and rs79525962 possessed enhancer histone marks, altered 
motifs and selected expression quantitative trait locus (eQTL) hits. Besides, GRASP QTL hits were rich in rs1320646 
and rs79525962. The RegulomeDB scores of rs1320646, rs3781699 and rs79525962 were 1f, 3a and 4, respectively 
(Table 9). RNAfold predicted that rs79525962 C to T substitution led to the alteration in GARP secondary structure, with 
MFE increasing from −21 kcal/mol to −19.1 kcal/mol (Figure 2A), indicating that the C allele had a higher binding 
affinity to microRNAs than the T allele. We also observed that rs3781699 A to C substitution changed the secondary 
structure of GARP, with MFE decreasing from −16.4 kcal/mol to −21.6 kcal/mol, suggesting that the C allele had 
a higher binding affinity to microRNAs than the A allele (Figure 2B). However, no similar results were found in 
rs1320646 (Figure 2C).

Table 3 Primary Information of Six SNPs in the GARP Gene

SNP 
No.

NCBI rs 
No.

Chromosome 
Positiona

Location Base 
Change

MAF P for 
HWEc

Genotyped 
(%)

Databaseb Case Control

1 rs947998 76672762 5’ near gene G>T 0.305 0.310 0.317 0.290 98.1

2 rs79525962 76660374 exon C>T 0.092 0.129 0.095 0.274 99.2
3 rs1320646 76659003 3ʹUTR G>A 0.111 0.093 0.109 0.893 99.3

4 rs3781699 76658741 3ʹUTR A>C 0.407 0.326 0.362 0.392 99.8

5 rs1803627 76658300 3ʹUTR T>G 0.061 0.087 0.081 0.051 99.2
6 rs7685 76657595 3ʹUTR T>G 0.350 0.332 0.355 0.548 99.2

Notes: aSNP position in NCBI dbSNP (http://www.ncbi.nlm.nih.gov/snp). bMAF for CHB from the HapMap databases (http://hapmap.ncbi.nlm.nih.gov) or NCBI dbSNP 
(http://www.ncbi.nlm.nih.gov/snp). cHWE P-value in the control group using a goodness-of-fit χ2 test. 
Abbreviations: SNP, single nucleotide polymorphism; GARP, glycoprotein A repetitions predominant; MAF, minor allele frequencies; HWE, Hardy-Weinberg equilibrium; 
UTR, untranslated region; CHB, Han Chinese in Beijing, China.
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Table 4 Genotypes and Allele Frequencies in GARP Polymorphisms Among Cases and Controls

SNP No. NCBI rs No. Genotypes Case Control Crude OR (95% CI) Adjusted OR (95% CI)a Pb

N % N %

1 rs947998 n=531 n=435

GG 249 46.9 198 45.5 1.000 (reference) 1.000 (reference) 0.911

GT 235 44.3 198 45.5 0.944 (0.724–1.231) 0.937 (0.718–1.225)
TT 47 8.9 39 9.0 0.958 (0.603–1.524) 0.988 (0.620–1.574)

GT+TT 282 53.1 237 54.5 0.946 (0.734–1.220) 0.946 (0.733–1.221) 0.670

T allele 0.310 0.317 0.725

2 rs79525962 n=533 n=444

CC 406 76.2 362 81.5 1.000 (reference) 1.000 (reference) 0.034
CT 117 22.0 80 18.0 1.304 (0.949–1.792) 1.319 (0.959–1.814)

TT 10 1.9 2 0.5 4.458 (0.970–20.481) 4.225 (0.918–19.452)

CT+TT 127 23.8 82 18.5 1.381 (1.011–1.886) 1.393 (1.019–1.904) 0.042

T allele 0.129 0.095 0.018

3 rs1320646 n=532 n=446

GG 442 83.1 354 79.4 1.000 (reference) 1.000 (reference) 0.169

GA 81 15.2 87 19.5 0.746 (0.534–1.041) 0.742 (0.531–1.037)
AA 9 1.7 5 1.1 1.442 (0.479–4.340) 1.460 (0.484–4.405)

GA+AA 90 16.9 92 20.6 0.783 (0.568–1.082) 0.781 (0.565–1.079) 0.138

A allele 0.093 0.109 0.250

4 rs3781699 n=534 n=449

AA 240 44.9 187 41.6 1.000 (reference) 1.000 (reference) 0.151

AC 240 44.9 199 44.3 0.940 (0.719–1.229) 0.932 (0.713–1.220)

CC 54 10.1 63 14.0 0.668 (0.443–1.007) 0.646 (0.427–0.976)
AC+CC 294 55.1 262 58.4 0.874 (0.679–1.127) 0.863 (0.670–1.114) 0.299

C allele 0.326 0.362 0.093

5 rs1803627 n=534 n=443

TT 446 83.5 377 85.1 1.000 (reference) 1.000 (reference) 0.574

TG 83 15.5 60 13.5 1.169 (0.816–1.675) 1.171 (0.817–1.678)
GG 5 0.9 6 1.4 0.704 (0.213–2.326) 0.701 (0.212–2.320)

TG+GG 88 16.5 66 14.9 1.127 (0.796–1.595) 1.128 (0.797–1.597) 0.500

G allele 0.087 0.081 0.645

6 rs7685 n=532 n=445

TT 237 44.5 188 42.2 1.000 (reference) 1.000 (reference) 0.492

TG 237 44.5 198 44.5 0.949 (0.726–1.242) 0.942 (0.719–1.233)

GG 58 10.9 59 13.3 0.780 (0.518–1.175) 0.757 (0.501–1.143)
TG+GG 295 55.5 257 57.8 0.911 (0.706–1.174) 0.899 (0.697–1.161) 0.470

G allele 0.332 0.355 0.281

Notes: aAdjusted for age and gender in multivariate logistic regression model. Bold values denote statistical significance at the P < 0.05 level. bTwo-sided χ2 test for the 
distributions of genotype and allele frequencies. 
Abbreviations: GARP, glycoprotein A repetitions predominant; SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.
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Table 5 Stratification Analysis of rs79525962 in the Dominant Model in PER Subgroups

Variables Subcategory Case Control Adjusted OR (95% CI)a

Age (years) n=533 n=444
< 16 257 225 1.076 (0.693–1.671)

≥ 16 276 219 1.745 (1.103–2.760)
Gender n=533 n=444

Male 356 273 1.241 (0.836–1.840)

Female 177 171 1.708 (1.021–2.856)
Concomitant asthma n=450

No 326 1.000 (reference)

Yes 124 0.936 (0.565–1.552)
Family history of allergic diseases n=447

No 293 1.000 (reference)

Yes 154 0.987 (0.620–1.571)
Rhinitis severity (VAS score) n=455

VAS score ≤ 5 207 1.000 (reference)

VAS score > 5 248 0.909 (0.585–1.411)
Serum total IgEb n=529 n=442

Lower level 431 442 1.000 (reference)

Higher level 98 1.144 (0.696–1.880)

Notes: aAdjusted for age and gender in multivariate logistic regression model. Bold values denote statistical significance at the P < 0.05 level. 
bLower level: below the 90th percentile of logarithmic total IgE; higher level: above the 90th percentile of logarithmic total IgE. 
Abbreviations: Dominant model: MW+MM/WW; MW: heterozygotes; MM: mutation homozygotes; WW: wild homozygotes. PER, persistent 
allergic rhinitis; VAS, visual analogue scale; OR, odds ratio; CI, confidence interval.

Table 6 Genotype Frequencies of GARP Polymorphisms in the Dominant Model in PER Patients with and 
without Asthma

SNP No. NCBI rs No. Case with Asthma vs Control Case without Asthma vs Control

Adjusted OR (95% CI)a Adjusted OR (95% CI)a

1 rs947998 0.670 (0.445–1.008) 1.140 (0.853–1.525)
2 rs79525962 1.249 (0.765–2.041) 1.410 (0.993–2.003)

3 rs1320646 0.948 (0.570–1.576) 0.714 (0.490–1.041)

4 rs3781699 0.919 (0.612–1.380) 0.951 (0.712–1.271)
5 rs1803627 0.950 (0.536–1.684) 1.199 (0.813–1.768)

6 rs7685 1.060 (0.703–1.598) 0.945 (0.707–1.263)

Note: aAdjusted for age and gender in multivariate logistic regression model. 
Abbreviations: Dominant model, MW+MM/WW; MW, heterozygotes; MM, mutation homozygotes; WW, wild homozygotes; GARP, glycoprotein 
A repetitions predominant; PER, persistent allergic rhinitis; SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.

Table 7 Associations Between GARP Polymorphisms and AR-Related Phenotypes

SNP No. NCBI rs No. P for Serum Total IgEa P for Specific IgEb P for VAS Scorec

Case Control Der p Der f

1 rs947998 0.782 0.780 0.179 0.213 0.139
2 rs79525962 0.608 0.270 0.820 0.800 0.524

3 rs1320646 0.713 0.442 0.543 0.244 0.518

4 rs3781699 0.173 0.938 0.803 0.434 0.736
5 rs1803627 0.944 0.232 0.874 0.678 0.717

6 rs7685 0.361 0.956 0.977 0.628 0.529

Notes: aSelective variables were transformed into logarithmic model to normalize the distribution before analysis of covariance adjusted for age 
and gender. bNonparametric test for selective variables with non-normal distribution. cAnalysis of covariance adjusted for age and gender for 
selective variables with normal distribution. 
Abbreviations: GARP, glycoprotein A repetitions predominant; AR, allergic rhinitis; SNP, single nucleotide polymorphism; Der p, 
Dermatophagoides pteronyssinus; Der f, Dermatophagoides farinae.
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Discussion
In this study, we report SNP rs79525962 in GARP appears to mark a genuine HDM-sensitized PER risk locus and the 
GARP gene may contribute to susceptibility of HDM-sensitized PER in this Chinese Han population. Moreover, we 
predict a putative function of the SNPs. Current literature suggests our research unprecedented in exploring the 
relationship between GARP variations and AR risk in Chinese population.

GARP protein, encoded by the GARP gene localized in the 11q13.5 chromosomal region, is a 80-kDa transmembrane 
protein with its extracellular region primarily composed of 20 leucine-rich repeats.14 GARP protein is highly expressed 

Figure 1 Linkage disequilibrium (LD) of six SNPs in the GARP gene. LD of six SNPs was determined using the solid spine of LD option of Haploview 4.2. D’ values are 
displayed in the squares. Empty red squares have a pairwise D’ of 1.0. Red squares indicate strong pairwise LD, gradually coloring down to white squares of weak pairwise LD.

Table 8 Associations Between PER Risk and the Frequencies of Haplotypes

Haplotype Haplotype Frequencies Adjusted OR (95% CI)a

rs1320646-rs3781699 Case Control

G-A 0.581 0.529 1.000 (reference)
G-C 0.326 0.362 0.819 (0.676–0.993)
A-A 0.093 0.109 0.777 (0.573–1.050)

Notes: aDerived from logistic regression model performed by HAPSTAT 3.0 based on observed genotypes. Bold values 
denote statistical significance at the P < 0.05 level. 
Abbreviation: PER, persistent allergic rhinitis; OR, odds ratio; CI, confidence interval.
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on the surface of activated Tregs and increases the immune-suppressing function of Tregs.29 In addition, GARP, 
functioning as a carrier and a cell surface receptor for latent transforming growth factor (TGF)-β, binds directly to the 
latent TGF-β, then modifies latent TGF-β into active TGF-β.14 Tregs can regulate immune tolerance and inflammatory 
responses,30,31 which in turn makes it a potential target in the treatment of allergic diseases. TGF-β is a pleiotropic 
cytokine critical to the generation of Treg cells.32 It plays crucial roles in the remodeling and immunosuppression of 
allergic inflammatory airway diseases33 and mediates pro- and anti-inflammatory responses.34

Our recent studies have found that a TGFB1 promoter polymorphism may be associated with the susceptibility and 
the severity of PER,12 and SNPs in microRNA target sites of TGF-β signaling pathway genes may be associated with risk 
of HDM-sensitized PER stratified by age and gender in Chinese Hans.13 Studies have demonstrated that GARP promotes 
TGF-β secretion and activation, then increases the suppressive function of Tregs through TGF-β.35–37 Moreover, GARP/ 
latent TGF-β1 complexes can induce Th17 differentiation.14 Studies have also reported that human B lymphocytes, upon 
stimulation, produce active TGF-β1 from surface GARP/latent TGF-β1 complexes and induce IgA isotype switching.38,39 

As GARP mediates the immune-suppressing activity of Treg cells,36,37,40,41 and allergen-dependent inflammation is 
suppressed by Tregs via soluble GARP,29 we proposed that GARP might be implicated in the pathogenesis of AR.

The present study is the first to evaluate the genetic association of GARP polymorphisms with AR in Chinese 
population. The results suggested that SNP rs79525962 was significantly correlated with HDM-sensitized PER risk, and 
genotype CT+TT with a high risk of HDM-sensitized PER, compared with the wild-type genotype CC. The C/T 
polymorphism of rs79525962 located within the exon in the GARP gene yields missense coding sequence. This 
polymorphism drives the transition of alanine (C allele) into threonine (T allele), consequently compromising the 
conformation and function of GARP protein and might affect the suppressive role of Tregs. Moreover, we observed 
that rs79525962 C to T substitution altered the secondary structure of GARP. Previous study reported that structural 
changes affect the stability and translation of mRNA.42 Hence, rs79525962 might regulate the translation of GARP and 
subsequent Tregs’ function by this way. Manz et al17 have shown a significant excess of LRRC32 variants, such as 
rs79525962, in patients with atopic dermatitis. Structural protein modeling and bioinformatic analysis have revealed that 
protein transport is disrupted upon these variants. Deficient Tregs responses are associated with various allergic and 
autoimmune diseases,43,44 suggesting that rs79525962 polymorphism of the GARP gene may have a role in these 
diseases.

In the stratification analysis of rs79525962 in PER subgroups, we found rs79525962 exhibited a significant association 
with HDM-sensitized PER risk in the subgroups of age ≥16 years and females. Therefore, age of ≥16 years and female may 
be factors for susceptibility to PER caused by GARP variants. This susceptibility may arise from the immature immunity in 
adolescents and the cycle-mediated endocrine function in women. On the other hand, lack of association was found between 
rs79525962 and AR concomitant asthma. We speculate that GARP polymorphisms increase the risk of allergic sensitization 
which, in turn, increases the risk of subsequent development of AR and asthma. Ferreira et al45 found a genetic variant 
(rs7130588) in GARP was significantly associated with atopic status among asthmatics, suggesting that it is a risk factor for 
allergic but not non-allergic asthma, which was consistent with our results.

Furthermore, as various SNPs may co-work to raise the risk of AR, we identified rs1320646-rs3781699 as a potential 
haplotype. Compared with G-A of rs1320646-rs3781699, the G-C haplotype decreased the susceptibility to HDM-sensitized 

Table 9 Functional Annotation of 3 SNPs in silico Analysis

Chr: Positiona Variant Scoreb Enhancer 
Histone Marks

Motifs Changed GRASP 
QTL Hits

Selected 
eQTL Hits

dbSNP Func 
Annot

11: 76659003 rs1320646 1f 7 tissues 7 altered motifs 2 hits 3 hits 3ʹUTR

11: 76658741 rs3781699 3a 8 tissues Hltf – 3 hits 3ʹUTR

11: 76660374 rs79525962 4 7 tissues 7 altered motifs 2 hits 3 hits Missense

Notes: aBased on NCBI build 38 of the human genome. bBased on RegulomeDB (https://www.regulomedb.org/regulome-search/). 
Abbreviation: SNP, single nucleotide polymorphisms; GRASP, Genome-Wide Repository of Associations Between SNPs and Phenotypes; eQTL, expression quantitative 
trait locus; UTR, untranslated region.
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Figure 2 In silico prediction of secondary structures and minimum free energy (MFE) changes corresponding to GARP SNPs. (A) The MFE changed from −21 kcal/mol to −19.1 
kcal/mol caused by rs79525962 (C > T), indicating a stronger binding affinity of microRNAs to the C allele. (B) The MFE changed from −16.4 kcal/mol to −21.6 kcal/mol caused 
by rs3781699 (A > C), indicating a stronger binding affinity of microRNAs to the C allele. (C) No change was found in MFE caused by rs1320646. 
Abbreviation: GARP, glycoprotein A repetitions predominant.
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PER. Genetic variant rs3781699 was located in the 3ʹUTR region of GARP. At the post-transcriptional level, microRNAs 
bind to the 3ʹUTR of their target messenger RNA to regulate GARP expression.46 Notably, the mutation (A to C allele) in 
rs3781699 decreased MFE from −16.4 kcal/mol to −21.6 kcal/mol, indicating that the C allele has a higher binding affinity to 
microRNAs than the A allele.26 Thus, we speculated that the G-C haplotype of rs1320646-rs3781699 might regulate the 
expression of GARP through this pathway, therefore decreasing the susceptibility to HDM-sensitized PER.

Several limitations of this study should be addressed. First, the homozygous genotype CC of rs3781699 was 
associated with a low risk of HDM-sensitized PER, compared with the wild-type genotype AA; however, no evident 
associations were established between the genotype and allele frequencies of rs3781699 and HDM-sensitized PER, 
which might be explained by that our sample size was not large enough and the effect of rs3781699 on AR pathogenesis 
was mild. Therefore, further larger-scale studies should be required in Chinese population. Second, the cases were 
collected from one single tertiary hospital setting in East China, and they may not be representative enough for the whole 
Han Chinese. Last but not least, GARP-related genes were not analyzed in the present study.

Conclusions
SNP rs79525962 in the GARP gene marks a risk locus of HDM-sensitized PER, suggesting that GARP polymorphisms 
might drive the development of HDM-sensitized PER in this population of Han Chinese. Further functional studies are 
required to demonstrate their molecular mechanisms in PER, and more detailed environmental exposure data are required 
to verify the effect of gene–environment interaction on HDM-sensitized PER.

Abbreviations
AR, allergic rhinitis; ARIA, Allergic Rhinitis and its Impact on Asthma; CHB, Han Chinese in Beijing; CIs, confidence 
intervals; Der f, Dermatophagoides farinae; Der p, Dermatophagoides pteronyssinus; eQTL, expression quantitative trait 
locus; GARP, glycoprotein A repetitions predominant; GRASP, Genome-Wide Repository of Associations Between 
SNPs and Phenotypes; HWE, Hardy-Weinberg equilibrium; IgE, Immunoglobulin E; LD, linkage disequilibrium; 
LRRC32, leucine-rich repeat containing 32; MAF, minor allele frequency; MFE, minimum free energy; ORs, odds 
ratios; PER, persistent allergic rhinitis; SNPs, single nucleotide polymorphisms; TGF-β, transforming growth factor-β; 
Treg, regulatory T lymphocytes; UTR, untranslated region; VAS, visual analogue scale.
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