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Purpose: Actigraphy-based sleep detection algorithms were mostly validated using nighttime sleep, and their performance in 
detecting daytime sleep is unclear. We evaluated and compared the performance of Actiware and the Cole-Kripke algorithm (C-K) 
– two commonly used actigraphy-based algorithms – in detecting daytime and nighttime sleep.
Participants and Methods: Twenty-five healthy young adults were monitored by polysomnography and actigraphy during two in- 
lab protocols with scheduled nighttime and/or daytime sleep (within-subject design). Mixed-effect models were conducted to compare 
the sensitivity, specificity, and F1 score (a less-biased measure of accuracy) of Actiware (with low/medium/high threshold setting, 
separately) and C-K in detecting sleep epochs from actigraphy recordings during nighttime/daytime. t-tests and intraclass correlation 
coefficients were used to assess the agreement between actigraphy-based algorithms and polysomnography in scoring total sleep time 
(TST).
Results: Sensitivity was similar between nighttime (Actiware: 0.93–0.99 across threshold settings; C-K: 0.61) and daytime sleep 
(Actiware: 0.93–0.99; C-K: 0.66) for both the C-K and Actiware (daytime/nighttime×algorithm interaction: p > 0.1). Specificity for 
daytime sleep was lower (Actiware: 0.35–0.54; C-K: 0.91) than that for nighttime sleep (Actiware: 0.37–0.62; C-K: 0.93; p = 0.001). 
Specificity was also higher for C-K than Actiware (p < 0.001), with no daytime/nighttime×algorithm interaction (p > 0.1). C-K had 
lower F1 (nighttime = 0.74; daytime = 0.77) than Actiware (nighttime = 0.95–0.98; daytime = 0.90–0.91) for both nighttime and 
daytime sleep (all p < 0.05). The daytime-nighttime difference in F1 was opposite for Actiware (daytime: 0.90–0.91; nighttime: 0.95– 
0.98) and C-K (daytime: 0.77; nighttime: 0.74; interaction p = 0.003). Bias in TST was lowest in Actiware (with medium-threshold) 
for nighttime sleep (underestimation of 5.99 min/8h) and in Actiware (with low-threshold) for daytime sleep (overestimation of 17.75 
min/8h).
Conclusion: Daytime/nighttime sleep affected specificity and F1 but not sensitivity of actigraphy-based sleep scoring. Overall, 
Actiware performed better than the C-K algorithm. Actiware with medium-threshold was the least biased in estimating nighttime TST, 
and Actiware with low-threshold was the least biased in estimating daytime TST.
Keywords: Actiware, Cole-Kripke algorithm, sleep scoring, shift worker, circadian rhythms

Plain Language Summary
Actigraphy is widely used in both research and clinical settings to estimate sleep. Two commonly used algorithms for actigraphy-based 
sleep scoring are the built-in algorithm of the Actiware software (Philips Respironics) and the Cole-Kripke algorithm. The Cole- 
Kripke algorithm implements re-scoring rules to reduce the overestimation of sleep time. Existing validations of both algorithms 
predominantly focused on nighttime sleep, whereas it is unknown how accurate they are in detecting daytime sleep. Here, we reported 
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that the performance of the two algorithms in identifying sleep epochs remained similar for daytime and nighttime sleep, and both 
algorithms had increased errors in identifying wake epochs during daytime. These findings may provide useful guidance for objective 
evaluation of daytime sleep using ambulatory actigraphy and justify the necessity for improving actigraphy-based algorithms in 
scoring daytime sleep.

Introduction
While polysomnography (PSG) is the gold standard for measuring sleep, it requires costly equipment, electrode 
placement and equipment calibrations by knowledgeable sleep technicians, and time-consuming manual scoring.1 A 
widely used alternative sleep assessment method is actigraphy. Unlike PSG-derived sleep scores that are based on brain 
activity (EEG), eye movements (EOG), muscle activity and skeletal muscle activation (EMG), actigraphy measures body 
(wrist) movement and actigraphy-based algorithms use movement activity data to estimate sleep.2,3 Compared to PSG, 
actigraphy-based sleep assessment has several advantages, including greater ecological validity, less influence on sleep,4 

and the utility for continuous monitoring across days.2 Thus, actigraphy may offer a convenient and naturalistic solution 
of long-term sleep monitoring in the home environment. In 2007, the American Academy of Sleep Medicine published 
guidelines on using actigraphy to diagnose sleep disorders.5 Later, a systematic review and meta-analysis concluded that 
actigraphy is generally a valid and useful tool for diagnosing and assessing treatment outcomes for some sleep disorders, 
such as delayed sleep-wake phase disorder.6

However, because actigraphy distinguishes wake from sleep based on movements in the forms of activity counts and/ 
or raw acceleration, it may erroneously categorize quiet rest as sleep, especially as occurred to insomnia patients who 
may stay awake while lying still in bed7 and patients who are bedbound due to illnesses.8 Indeed, the widely used 
Actiware (Philips Respironics) algorithm shows high sensitivity (ie, correctly scoring sleep epochs) but low specificity 
(ie, correctly scoring wake epochs). For example, specificity of Actiware for overnight sleep was 0.48 among a group of 
38 healthy young adults,9 0.28–0.48 in sleep-disordered patients across different thresholds,10 and 0.67 in 33 middle-aged 
adults with lower back pain;11 specificity of Actiware for daytime naps ranged from 0.36 to 0.64 in healthy young 
adults;12 sensitivity of Actiware was above 0.87 and up to 0.96 in all these studies. Due to low specificity, Actiware as 
well as other actigraphy-based algorithms may generate ambiguous inference about sleep/wake states, resulting in 
overestimation of sleep.2

To address the issue of overestimation of sleep, re-scoring rules have been introduced in the Cole-Kripke algorithm to 
score actigraphy data.13,14 For instance, based on one physiological consideration that people may stop moving for a few 
minutes before falling asleep (ie, the onset of sleep), the first few epochs (eg, 3 minutes) after a certain amount of 
wakefulness (eg, 10 minutes) scored as sleep are re-scored to wake. A study of 40 young adults showed that applying the 
re-scoring rules in the Cole-Kripke algorithm improved the specificity from 0.441 to 0.486 while reducing the sensitivity 
slightly from 0.975 to 0.970.15 Though the Cole-Kripke algorithm is a commonly used algorithm for scoring sleep based 
on actigraphy (eg, Gu et al 2020;16 Widome et al 2020;17 and epidemiological studies such as the Jackson Heart Sleep 
Study),18 especially for data from accelerometer devices other than the Actiwatch (Bend, OR), its performance as 
comparison to Actiware is still not clear. Certain studies showed that the Cole-Kripke algorithm can achieve a specificity 
up to 0.6513 and can reduce the overestimation of total sleep time from 1.89% to 0.81%,14 while other studies showed the 
specificity of the Cole-Kripke algorithm is still low (eg, 0.34 among healthy young adults).19

Previous validation studies of actigraphy-based sleep scoring have predominantly used data collected during night-
time sleep.6 Sleep during daytime, such as recovery sleep during the morning hours after night shift and napping in the 
afternoon before night shift, is common in today’s society and an important component of the 24-hour sleep-wake cycle. 
Many studies have provided convincing evidence for the physiological importance of daytime sleep, showing that, for 
instance, mid-afternoon recovery sleep improves vigilance.20 The performance of actigraphy-based algorithms for 
detecting daytime sleep has rarely been tested.21 It is unclear whether these algorithms perform similarly or differently 
for detecting daytime sleep as for nighttime sleep. Addressing the question is crucial for the design of large-scale field 
sleep studies, in which actigraphy may be the only feasible tool for sleep assessment.

A related question is whether it is appropriate to perform sleep scoring on 24-h actigraphy data when scheduled sleep 
episodes are unknown (eg, sleep/wake diary is not available or not reliable). Though sleep diary/log is often used in 
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conjunction with actigraphy,22 completing sleep diaries adds extra burden to participants and compliance rates vary 
across studies. For example, a two-week study by Maich et al found 99.8% completion rate of sleep diary.23 However, in 
Thurman’s study of 30 healthy adults who were asked to wear actiwatches and keep sleep logs for up to 16 consecutive 
weeks,24 the overall completion rate of sleep logs was 73% and only 60% of participants completed ≥75% of their 16- 
week sleep logs, with lower diary completion rates associated with lower agreement between sleep log and actigraphy. 
On the other hand, considering the health relevance of sleep, long-term sleep monitoring should become more and more 
common in health care as well as in clinical research, especially for older adults who may not be able to complete sleep 
diaries (eg, people with Alzheimer’s disease). Therefore, testing whether Actiware and the Cole-Kripke algorithms can 
perform well with unknown sleep episodes is also of importance for sleep study design using actigraphy.

To fill the gaps in the literature, we examined the performance of Actiware and the Cole-Kripke algorithms using the 
data collected from the same participants during daytime and nighttime sleep. Objective 1 of this study was to test 
whether actigraphy-based sleep assessment detected sleep epochs during daytime and nighttime sleep episodes equally 
accurately against polysomnography. Objective 2 of this study was to compare the performance of the two algorithms 
using the same dataset. If their performance in detecting sleep (ie, sensitivity) differed, we would further explore whether 
the differences were due to differences in detecting light sleep stages, because the Cole-Kripke’s re-scoring rules apply to 
the first few sleep epochs following wakefulness. Objective 3 of this study was to test the importance of sleep/wake diary 
by determining the differences in the performance of actigraphy-based sleep assessment when 24-hour actigraphy data 
were analyzed compared to when only scheduled sleep episodes were analyzed.

Methods
Participants and Protocols
We used data from two experiments each with two multi-day in-laboratory protocols. Other aspects of these protocols, 
designed to test independent hypotheses, have been published previously.25–38 Experiment 1 included 14 non-shift 
worker adults (mean age = 28.16y, SD = 9.20y, age range: 20–50y; eight women) who did not perform any shift work 
in the past three years, were not involved in more than six months of cumulative lifetime shift work, and did not cross 
more than one time zone in the past three months. Experiment 2 included 11 shift workers (mean age = 34.46y, SD = 
7.64y, age range: 24–48y; six women) who had on average 4.52y (SD = 7.74y, range: 1.11–25.09y) of consecutive shift 
work experience and on average 5.30y (SD = 7.66y, range: 1.11–25.09y) of lifetime cumulative shift work experience. In 
both experiments, participants were non-smokers and not taking drugs or medications (except for oral contraceptives). 
Each participant completed a circadian alignment protocol (Experiment 1: Figure 1A; Experiment 2: Figure 1C) and a 
circadian misalignment protocol (Experiment 1: Figure 1B; Experiment 2: Figure 1D). The two protocols were in 
randomized order and separated by 2–8 weeks (Experiment 1: Mean = 4, SD = 2; Experiment 2: Mean = 4, SD = 1). 
During the circadian alignment protocol of both experiments, participants had a daily scheduled sleep episode between 
11pm-7am. A simulated shift work schedule was used to introduce circadian misalignment in both experiments. 
Specifically, in Experiment 1 (non-shift workers), following nighttime sleep episodes between 11pm-7am on Days 
1–3, participants were scheduled to sleep between 3pm-7pm on Day 4 and 11am-7pm on Days 5–8; in Experiment 2 
(chronic shift workers), participants had scheduled sleep episodes between 3pm-7pm on Day 1 and between 11am-7pm 
on Days 2–3.

Experiment 1 consisted of two 8-day (with 7 nights) laboratory protocols. Sleep was recorded via PSG during the scheduled 
nighttime sleep episodes (~11pm-7am) on Day 4 and Day 6 of the circadian alignment protocol and during the scheduled daytime 
sleep episodes (~11am-7pm) on Day 5 and Day 7 of the circadian misalignment protocol (Figure 1A and Figure 1). Experiment 2 
consisted of two 3-day (with 2 nights) laboratory protocols. Participants were instructed to sleep from 11pm to 7am on the night 
before the in-laboratory protocols to reduce prior sleep debt. During the study, PSG was recorded during the scheduled nighttime 
sleep episode (~11pm-7am) on Day 1 of the circadian alignment protocol and during the scheduled daytime sleep episode 
(~11am-7pm) on Day 2 of the circadian misalignment protocol (Figure 1C and Figure 1). For both experiments, each scheduled 
sleep opportunity episode was 8 hours to allow sufficient sleep and increase generalizability to the general population with 
normal sleep duration. Wrist actigraphy (Actiwatch Spectrum, Bend, OR) was continuously worn during the whole study period. 
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More details on the study methods have been previously reported.37,38 Both experiments complied with the Declaration of 
Helsinki, were approved by the Partners Human Research Committee, and were conducted in the Center for Clinical 
Investigation at Brigham and Women’s Hospital (Boston, Massachusetts). All participants provided written informed consent.

Data Collection and Analysis
Polysomnography
During each PSG assessment, data were collected continuously using Vitaport-3 (Temec Instruments, Kerkrade, B.V., 
The Netherlands) with a sampling rate of 256 Hz, including left and right electrooculography (EOG), bipolar submental 
electromyography (EMG), bipolar electrocardiography (ECG), and electroencephalography (EEG; F3, F4, C3, C4, O1 
and O2 channels, referenced to contralateral mastoids). Research personnel inspected and scored the PSG recordings in 
30-second epochs using the Vitascore software (Temec Instruments) based on the American Academy of Sleep Medicine 
guidelines.39 Participants were monitored and kept awake outside the scheduled sleep opportunities, based on study 
protocols.

Actigraphy
The Actiwatch monitored raw acceleration with a sample frequency of 32 Hz and integrated the data to a proprietary 
“count” value for every epoch (1 minute). A built-in capacitive sensor determined whether the device was on-wrist or 
off-wrist. On-wrist epochs of the activity count data were loaded into the following two software packages for sleep/wake 
scoring. (1) Actiware software (version 5.52; Respironics, Inc. Murrysville, PA)40 describes the scoring approach as 
follows:

Whether a particular epoch is scored as wake is determined by comparing [the weighted value of] activity counts [in 5 
consecutive epochs centered at] the [current] epoch in question, to a threshold value which can be set by the researcher … If the 
number of counts exceeds the threshold the epoch is scored as wake. If it falls below, or is equal to, the threshold the epoch is 
scored as sleep. 

Figure 1 Experiment protocols. (A and B) Two 8-day protocols in Experiment 1 were designed for non-shift workers, including (A) a circadian alignment protocol with 
nighttime sleep and (B) a misalignment protocol with nighttime sleep from Day 1 to Day 3, an afternoon nap on Day 4, and daytime sleep from Day 5 to Day 8. (C and D) 
Two 3-day protocols in Experiment 2 were designed for chronic shift workers, including (C) a circadian alignment protocol with nighttime sleep and (D) a misalignment 
protocol with an afternoon nap on Day 1 followed by nighttime sleep on Days 2–3.
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There are three levels for the threshold, 20, 40, and 80 activity counts, that correspond to low-, medium-, and high- 
sensitivity settings, respectively. (2) The ezActi software was developed by the Medical Biodynamics Program at 
Brigham and Women’s Hospital to provide a graphical user interface in the MATLAB platform for activity data analysis, 
and the Cole-Kripke algorithm13,14 was implemented in this software to determine sleep or wake epochs. This software 
can be accessed at: https://github.com/pliphd/Actigraphy.

Temporal Alignment of PSG and Actigraphy Measurements
Because of the difference in length and start time of epochs between PSG and actigraphy, the beginning of each 1-minute 
actigraphy epoch did not align perfectly with the beginning of a 30-second PSG epoch. To resolve this, we identified 
three 30-second PSG epochs that overlapped with each 1-minute actigraphy epoch and considered a 1-minute actigraphy 
epoch as a true sleep epoch when the three 30-second PSG epochs were all sleep epochs. We further categorized the true 
sleep epochs into PSG-light sleep (ie, N1 and N2), PSG-slow-wave sleep (SWS; ie, N3), or PSG-rapid eye movement 
(REM) sleep if their corresponding PSG epochs were all light sleep, SWS, or REM sleep, respectively. Likewise, a 1-min 
actigraphy epoch was considered a true wake epoch if the corresponding three PSG 30-second epochs were wake. 
Otherwise, we categorized an epoch as a transitional epoch (1.93% of all epochs), which was excluded from analyses.

Epoch-by-Epoch Analysis
We compared the epoch-by-epoch scoring from Actiware and the Cole-Kripke algorithm to sleep/wake status obtained 
from PSG and study protocols (scheduled wakeful episodes). For each participant during each study protocol, we 
computed sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), F1 score (ie, a better 
measure of accuracy in the case of imbalanced data, which is less biased than the traditional accuracy), and Cohen’s 
kappa using data during the scheduled sleep episodes with PSG. Then, we repeated the calculation of these measures for 
the 24-h time windows (the 24 hours following the beginning of a sleep opportunity period) in those days with PSG 
(Figure 1). Sensitivity refers to the proportion of true sleep epochs that was correctly scored as sleep by Actiware/Cole- 
Kripke algorithm; specificity refers to the proportion of true wake epochs that was correctly scored as wake by Actiware/ 
Cole-Kripke algorithm.41 PPV is the probability that an epoch scored as sleep by Actiware/Cole-Kripke algorithm was 
truly a sleep epoch and NPV is the probability that an epoch scored as wake by Actiware/Cole-Kripke algorithm was 
truly a wake epoch. F1 score is a measure of accuracy that is less affected by the imbalanced samples in a data set.42 It is 
the harmonic mean of sensitivity and PPV, specifically:

Cohen’s kappa measures agreement between PSG and Actiware/Cole-Kripke algorithm, with values ≤0.2 indicating no or 
slight agreement, 0.2–0.4 indicating fair, 0.4–0.6 indicating moderate, 0.6–0.8 indicating substantial, and 0.8–1.0 
indicating perfect agreement.43 For statistical analyses, we focused on the commonly used metrics (ie, sensitivity, 
specificity, and F1).

Summary Sleep Parameters
In addition to epoch-by-epoch analyses, we compared total sleep time (TST) and wake after sleep onset (WASO) 
measured by the Cole-Kripke algorithm, Actiware, and PSG, because TST and WASO are widely used in both research 
and clinical settings.

Statistical Analysis
We first conducted independent-samples t-tests (for continuous variables) and chi-square (for dichotomous variables) to 
compare participants and their sleep characteristics in the two experiments. Because Experiment 1 and Experiment 2 
participants were demographically similar and they had similar sleep characteristics, we combined the samples of two 
experiments for the following analyses. To compare nighttime and daytime sleep characteristics of the same individuals, 
we conducted mixed-effect models with protocol (2 levels: nighttime/daytime sleep) as the fixed-effect factor and 
individual subject as the random-effect factor. Outcomes were PSG-measured TST, light sleep, SWS, REM sleep, and 
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activity counts per epoch during each sleep stage. Mixed-effect models were further used to investigate whether activity 
counts per epoch were associated with sensitivity.

To evaluate the performance of actigraphy-based sleep, we conducted two models for epoch-by-epoch analyses. 
Model 1: For objective 1 (nighttime vs daytime sleep) and objective 2 (Cole-Kripke vs Actiware), we conducted a mixed- 
effect model with protocol (2 levels: nighttime/daytime sleep), Algorithm (4 levels: Actiware low/medium/high threshold 
or the Cole-Kripke algorithm), and Protocol × Algorithm interaction as fixed-effect factors. Individual subject was 
included in the model as a random-effect factor. Sensitivity, specificity, and F1 scores for scheduled sleep episodes and 
sensitivity during light sleep, SWS, and REM sleep were the outcomes. Post-hoc analyses (pair-wise Tukey LSD test) 
were conducted for significant main and interaction effects.

Model 2: For objective 3 (scheduled sleep vs 24-hour windows), we added Analysis Window (2 levels: scheduled 
sleep or 24-h time windows), Analysis Window × Protocol interaction, Analysis Window × Algorithm interaction, and 
the three-way interaction of Analysis Window × Protocol × Algorithm as fixed-effect factors to model 1. Post-hoc 
analyses (pair-wise Tukey LSD test) were conducted for significant main and interaction effects. Specificity and F1 
scores were the outcomes. Sensitivity was not tested as an outcome, because it is not influenced by analysis window.

For analyses on TST and WASO, we computed the mean difference between the Cole-Kripke/Actiware and PSG as a 
measure of bias and the standard deviation of such difference as a measure of imprecision. We used paired-samples t-test 
to examine whether TST/WASO measured by the Cole-Kripke or Actiware was different from PSG-measured TST/ 
WASO. Complimentarily, we computed the absolute difference between TST/WASO measured by PSG and the Cole- 
Kripke algorithm or Actiware and used one-sample t-test to examine whether such difference was different from 0. To 
test the agreement in TST between the algorithms and PSG, we computed intraclass correlation coefficients (ICC); we 
used two-way mixed-effect models to compute ICCs and estimated the reliability of a single measure to examine the 
consistency between measures.44 ICC values <0.50, 0.50–0.75, 0.75–0.90, and >0.90 indicate poor, moderate, good, and 
excellent agreement, respectively. We computed ICCs in SPSS 28 and performed all other analyses in JMP Pro 16; all 
statistical tests were two-tailed, and statistical significance was accepted at alpha = 0.05.

Results
Participant and Sleep Characteristics
Participants from Experiment 1 and Experiment 2 had similar age (t=1.87, p=0.074) and gender distribution (χ2=0.02, 
p=0.897), as well as PSG-measured TST, light sleep, SWS, and REM sleep minutes per night during nighttime (ps>0.05) 
and daytime sleep (ps>0.05; Table 1). Next, we combined participants from the two Experiments and found that TST 
(F=22.85, p<0.001), light sleep (F=10.47, p=0.004), and REM sleep (F=14.24, p=0.001) were shorter during daytime 
than nighttime sleep. SWS minutes were similar between nighttime and daytime sleep (F=1.78, p=0.198).

Epoch-by-Epoch Analysis
Supplemental Table 1 and Figure 2 present the epoch-by-epoch analysis results for scheduled sleep episodes. 
Supplemental Table 2 presents the number of epochs scored as sleep or wake.

Model 1 showed a significant difference in sensitivity across algorithms (F=248.46, p<0.001), no significant 
difference in sensitivity between nighttime and daytime sleep (F=2.41, p=0.122), and no significant interaction effect 
on sensitivity between protocol and algorithms (F=1.28, p=0.285). Post-hoc analyses showed that Cole-Kripke yielded 
lower sensitivity than Actiware with different thresholds (ps<0.05), and Actiware (low) yielded lower sensitivity than 
Actiware (high) (p<0.05). The difference in sensitivity across algorithms was also observed for each sleep stage (Light: 
F=234.88, p<0.001; SWS: F=37.58, p<0.001; REM: F=149.83, p<0.001; Supplemental Table 3; Figure 3). Cole-Kripke 
was the least sensitive in detecting sleep epochs during any sleep stage (ps<0.05). During both light sleep and SWS, 
sensitivity was similar for nighttime and daytime sleep (light sleep: F=0.02, p=0.887; SWS: F=0.82, p=0.367), which 
was consistent across all algorithms (Protocol × Algorithm interactions for light sleep: F=0.003, p>0.999; SWS: F=1.34, 
p=0.265). In contrast, within REM sleep, the algorithms were overall more sensitive for daytime than nighttime sleep 
(F=6.10, p=0.015), and this difference in sensitivity was similar across algorithms (Protocol × Algorithm interaction: 
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F=2.12, p=0.100). Furthermore, there was no difference in activity counts per epoch between circadian alignment and 
misalignment protocols during wakefulness, NREM light sleep, or SWS (Supplemental Table 4), but activity counts were 
higher during nighttime than daytime REM sleep (p=0.010). During REM sleep, higher activity counts per epoch were 
associated with lower sensitivity in all algorithms (ps<0.001).

Specificity was lower for daytime than nighttime sleep (F=8.37, p=0.004), differed across algorithms (F=124.05, 
p<0.001), and showed no Protocol × Algorithm interaction (F=0.59, p=0.622). Post-hoc analyses revealed that specificity 
was the highest in Cole-Kripke, and it decreased as the Actiware threshold increased from low to high (all pairwise 
ps<0.05). To explore the factors that contributed to the difference in specificity between daytime and nighttime sleep, we 
further examined those PSG-based wake epochs within sleep episodes (Supplemental Table 4). We found that, despite 
longer duration of wake bouts during daytime sleep, mean activity counts in each wake bout during daytime sleep were 
much lower than those during nighttime sleep (p<0.001). In addition, lower activity accounts were associated with lower 
specificity within both daytime and nighttime sleep episodes for all algorithms (ps<0.001).

Table 1 Participant Characteristics and Data Analyzed

Experiment 1  
(Non-Shift Workers)

Experiment 2  
(Shift Workers)

Comparison

N 14 11

Age (years) 28.16 (9.20), 22.08–32.30 34.45 (7.63), 30.10–39.30 t=1.87, p=0.074

Gender (female) 8 (57.14%) 6 (54.55%) χ=0.02, p=0.897

Circadian Alignment Protocol (Nighttime sleep)

Scheduled sleep opportunity with actigraphy and PSG (h) 16 8

PSG total sleep time/night (min) 438.19 (19.68), 424.06–454.25 452.33 (27.77), 445.00–469.00 t=1.37, p=0.187

NREM light sleep (N1 and N2; min) 217.13 (31.27), 192.69–230.69 220.61 (28.88), 207.00–244.00 t=0.26, p=0.797

NREM light sleep (N1 and N2; %) 49.72 (8.02), 42.52–56.78 48.66 (4.70), 44.49–53.64 t=0.35, p=0.728

Slow-wave sleep (min) 104.96 (28.18), 81.50–124.81 108.72 (31.06), 84.25–140.75 t=0.29, p=0.775

Slow-wave sleep (%) 23.89 (6.06), 19.67–28.20 24.26 (7.57), 18.46–32.06 t=0.13, p=0.901

Rapid eye movement sleep (min) 116.10 (23.85), 90.75–129.88 123.00 (37.52), 94.00–156.75 t=0.52, p=0.612

Rapid eye movement sleep (%) 26.39 (4.69), 21.27–29.70 27.08 (7.70), 21.66–34.00 t=0.25, p=0.802

Circadian Misalignment Protocol (Daytime sleep)

Scheduled sleep opportunity with actigraphy and PSG (h) 16 8

PSG total sleep time/day (min) 386.46 (44.45), 357.63–417.50 368.82 (86.26), 273.50–451.00 t=0.65, p=0.526

NREM light sleep (N1 and N2; min) 190.83 (31.54), 163.50–212.25 178.05 (56.92), 112.00–218.00 t=0.70, p=0.495

NREM light sleep (N1 and N2; %) 49.68 (8.13), 42.34–55.52 47.75 (7.49), 46.37–53.34 t=0.60, p=0.554

Slow-wave sleep (min) 109.31 (27.50), 89.13–130.88 92.50 (30.80), 62.50–116.00 t=1.41, p=0.172

Slow-wave sleep (%) 28.16 (5.75), 25.00–31.60 25.51 (7.25), 20.39–29.98 t=1.00, p=0.328

Rapid eye movement sleep (min) 86.33 (28.47), 70.38–111.25 98.27 (29.24), 71.50–124.50 t=1.01, p=0.323

Rapid eye movement sleep (%) 22.16 (5.92), 18.85–26.35 26.74 (4.76), 25.59–30.12 t=2.06, p=0.051

Notes: Data presented as n (%) or mean (standard deviation), interquartile ranges. Each scheduled sleep opportunity episode was 8 hours. 
Abbreviations: NREM, non-rapid eye movement; PSG, polysomnography.

Nature and Science of Sleep 2022:14                                                                                               https://doi.org/10.2147/NSS.S373107                                                                                                                                                                                                                       

DovePress                                                                                                                       
1807

Dovepress                                                                                                                                                              Gao et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=373107.docx
https://www.dovepress.com/get_supplementary_file.php?f=373107.docx
https://www.dovepress.com
https://www.dovepress.com


F1 differed across algorithms (F=65.72, p<0.001; Supplemental Table 1; Figure 2C) and the difference appeared to 
depend on scheduled sleep time (Protocol × Algorithm interaction: F=4.96, p=0.003). Post-hoc analyses showed that 
Cole-Kripke yielded lower F1 than Actiware with different thresholds for both daytime and nighttime sleep (ps<0.05), F1 
of Cole-Kripke showed an improving trend for scoring daytime sleep, and F1 of Actiware showed an improving trend for 
scoring nighttime sleep. Consistently, the difference in F1 between Cole-Kripke and Actiware was more pronounced for 
nighttime sleep.

Scheduled Sleep vs 24-Hour Analysis Window
Overall specificity increased when using 24-h time windows as compared to that based on scheduled sleep episodes 
(F=49.18, p<0.001; Figure 4A). This effect was mainly driven by Actiware rather than Cole-Kripke (Analysis Window × 
Algorithm interaction: F=5.57, p=0.001), ie, Actiware had improved specificity for 24-hour analysis window than 
scheduled sleep episodes (ps<0.05), while no improvement was observed in Cole-Kripke (p>0.05). Additionally, the 
difference in specificity between 24-hour and scheduled sleep episodes was similar for daytime and nighttime sleep 
(Analysis Window × Protocol interaction: F=1.49, p=0.223; Analysis Window × Algorithm × Protocol three-way 
interaction: F=0.22, p=0.882). Though the change of specificity was different for different algorithms when using 24-h 
windows, Cole-Kripke still had the highest specificity and Actiware (high) had the lowest specificity for both nighttime 
and daytime sleep.

F1 score decreased when using data across 24 h as compared to that using data during scheduled sleep episodes 
(F=789.19, p<0.001). This decrease in F1 was observed in all algorithms (ps<0.05), but it was larger in Actiware than 
Cole-Kripke (Analysis Window × Algorithm interaction: F=44.74, p<0.001; Figure 4B). Protocol (daytime/nighttime 

Figure 2 (A) Sensitivity, (B) specificity, and (C) F1 score comparison of actigraphy-based sleep scoring algorithms for scheduled sleep episodes. Each circle represents the 
value from an individual study protocol of a participant. The horizontal lines represent the mean and 1 standard deviation above/below the mean. *Indicates p<0.05.
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sleep) had no significant influences on these changes in F1 score (Analysis Window × Protocol interaction: F=0.28, 
p=0.594; Analysis Window × Algorithm × Protocol three-way interaction: F=0.07, p=0.974).

Summary Sleep Parameters
Complementary to the epoch-by-epoch analyses, we examined whether TST scored by actigraphy algorithms agreed with 
TST measured by PSG. As shown in Table 2 and Figure 5, during the scheduled sleep episodes, Cole-Kripke agreed with 
PSG poorly (ICC = 0.29) for nighttime sleep and moderately (ICC = 0.57) for daytime sleep (Supplemental Figure 1A 
and B). Actiware (low) showed moderate agreement with PSG for nighttime sleep (ICC = 0.65) and poor agreement for 
daytime sleep (ICC = 0.49; Supplemental Figure 1C and D). Actiware (medium) scored nighttime sleep with moderate 
agreement (ICC = 0.72) and daytime sleep with poor agreement with PSG (ICC = 0.47; Supplemental Figure 1E and F). 
Actiware (high) showed moderate agreement with PSG for nighttime (ICC = 0.66) and poor agreement for daytime sleep 
(ICC = 0.38; Supplemental Figure 1G and H). In summary, Cole-Kripke underestimated TST for both nighttime and 
daytime sleep (Table 2). Actiware (medium) showed the least bias and highest agreement with PSG for nighttime sleep; 
Actiware (low) showed the least bias and Cole-Kripke showed highest agreement with PSG for daytime sleep.

Figure 3 Comparison of sensitivity of actigraphy-based sleep scoring algorithms in detecting sleep during (A) light sleep (ie, N1 and N2), (B) slow-wave sleep (N3), and (C) 
REM sleep stages. Each circle represents the value from an individual study protocol of a participant. The horizontal lines represent the mean and 1 standard deviation above/ 
below the mean. *p<0.05. *Indicates p<0.05. 
Abbreviation: REM, rapid eye movement.
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Next, during 24-hour time windows, all algorithms showed poor agreement with PSG for both nighttime and daytime 
sleep (ICCs <0.50; Table 2; Figure 6; Supplemental Figure 2), but Cole-Kripke yielded the least bias. All Actiware 
thresholds overestimated TST, with greater overestimation in higher thresholds.

As shown in Supplemental Table 6, all algorithms yielded poor agreement with PSG in scoring WASO for nighttime 
and daytime sleep (ICCs <0.50).

Discussion
Using simulated shift work data collected from the same individuals with both daytime and nighttime sleep, we 
compared the performance of Cole-Kripke algorithm and Actiware software in identifying sleep/wake epochs and 
achieved three objectives.

Figure 4 (A) Specificity and (B) F1 score comparison of actigraphy-based sleep scoring algorithms using data during scheduled sleep episodes and using 24-h data. Each 
circle represents the value from an individual study Protocol of a participant. The horizontal lines represent the mean and 1 standard deviation above/below the mean. 
*Indicates p<0.05.

https://doi.org/10.2147/NSS.S373107                                                                                                                                                                                                                                  

DovePress                                                                                                                                                        

Nature and Science of Sleep 2022:14 1810

Gao et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=373107.docx
https://www.dovepress.com/get_supplementary_file.php?f=373107.docx
https://www.dovepress.com
https://www.dovepress.com


Table 2 Agreement Between the Cole-Kripke Algorithm, Actiware, and PSG on Total Sleep Time (TST)

Scheduled Sleep Episodes 24-Hour Periods 16-h Non- 
Scheduled Sleep 

Periods

PSG TST Min/Night (Mean, SD, 
Interquartile Range)

Bias (Mean, SD) Absolute 
Difference (Mean, 
SD)

PSG-Actigraphy 
Agreement  
(ICC, 95% CI)

Bias (Mean, SD) Absolute Difference  
(Mean, SD)

PSG-Actigraphy 
Agreement  
(ICC, 95% CI)

Bias (Mean, SD)

Circadian Alignment Protocol; Nighttime Sleep

Cole- 
Kripke

444.25 (23.93), 434.50–463.13 −175.58 (75.18)*** 175.58 (75.18)*** 0.29 (−0.15, 0.64) −103.18 (106.71)*** 118.49 (88.45)*** 0.22 (−0.23, 0.59) 72.40 (39.28)***

Actiware 
(low)

444.25 (23.93), 434.50–463.13 −27.85 (23.32)*** 29.70 (20.77)*** 0.65 (0.31, 0.84) 232.08 (109.93)*** 233.42 (106.92)*** 0.18 (−0.27, 0.56) 259.93 (94.96)***

Actiware 
(medium)

444.25 (23.93), 434.50–463.13 −5.99 (17.75) 14.08 (12.03)*** 0.72 (0.42, 0.87) 332.99 (116.56)*** 332.99 (116.56)*** 0.16 (−0.28, 0.55) 338.98 (110.14)***

Actiware 
(high)

444.25 (23.93), 434.50–463.13 11.63 (17.08)** 14.70 (14.38)*** 0.66 (0.32, 0.84) 467.96 (120.45)*** 467.96 (120.45)*** 0.16 (−0.28, 0.54) 456.33 (118.05)***

Circadian Misalignment Protocol; Daytime Sleep

Cole- 
Kripke

378.38 (65.93), 334.50–423.69 −124.98 (65.72)*** 124.98 (65.72)*** 0.57 (0.23, 0.79) −50.21 (79.00)** 74.90 (54.93)*** 0.49 (0.12, 0.74) 74.77 (28.80)***

Actiware 
(low)

378.38 (65.93), 334.50–423.69 17.75 (57.29) 47.75 (35.09)*** 0.49 (0.11, 0.74) 286.13 (116.62)*** 286.13 (116.62)*** 0.13 (−0.29, 0.50) 268.38 (75.74)***

Actiware 
(medium)

378.38 (65.93), 334.50–423.69 43.06 (55.27)*** 55.08 (42.71)*** 0.47 (0.09, 0.73) 387.71 (128.86)*** 387.71 (128.86)*** 0.06 (−0.35, 0.44) 344.65 (92.71)***

Actiware 
(high)

378.38 (65.93), 334.50–423.69 64.38 (56.43)*** 65.33 (55.26)*** 0.38 (−0.2, 0.68) 522.25 (141.82)*** 522.25 (141.82)*** 0.01 (−0.39, 0.41) 457.88 (109.41)***

Notes: Bias was computed by subtracting PSG-measured TST from TST scored by the Cole-Kripke or Actiware algorithm. Positive values indicate that actigraphy-based algorithm overestimated TST; negative values indicate that 
actigraphy-based algorithm underestimated TST. **Indicates p<0.01, ***Indicates p<0.001. 
Abbreviations: ICC, intraclass correlation coefficient; PSG, polysomnography; TST, total sleep time.
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For objective 1 (nighttime vs daytime sleep), overall sensitivity for both algorithms was similar between daytime and 
nighttime except that sensitivity in detecting sleep epochs within REM sleep was higher for daytime sleep than that for 
nighttime sleep. The lower sensitivity during nighttime for REM sleep may be explained by greater activity counts across 
REM epochs during nighttime than those of daytime because actigraphy-based sleep scoring is mainly based on activity 
levels (ie, low levels for sleep). Different from sensitivity, specificity was lower for daytime sleep, which is consistent for 
both algorithms. This finding is consistent with previous studies. For example, using a within-subject design, Paquet 
found that specificity of Actiware (as compared to PSG) was lower for two daytime recovery sleep episodes than that 
during a nocturnal sleep episode;45 and another actigraphy study of a diverse sample of participants showed lower 
specificity of the Cole-Kripke algorithm during daytime sleep in night workers as compared to that during nighttime 
sleep in sleep-restricted individuals.46 We showed that the daytime-nighttime difference in specificity was caused by 
lower mean activity levels within wake bouts during daytime sleep that led to lower specificity despite longer duration of 
wake bouts during daytime sleep. Regarding TST, we found that Actiware (medium) showed the least bias for nighttime 
sleep and Actiware (low) showed the least bias for daytime sleep. Though the Cole-Kripke algorithm showed the highest 

Figure 5 Agreement in total sleep time during scheduled sleep episodes between PSG- and (A) Cole-Kripke algorithm, (B) Actiware with low threshold, (C) Actiware with 
medium threshold, and (D) Actiware with high threshold. The dashed lines represent perfect agreement. 
Abbreviation: TST, total sleep time.
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agreement with PSG for daytime sleep, it showed significant bias. In conjunction with previous studies showing the least 
bias of Actiware low threshold (compared to medium/high) in estimation of TST among patients with sleep disorders,7,10 

Actiware low-threshold (rather than medium/high) should be recommended for estimating TST when sleep may be 
disrupted.

Our objective 2 was to compare the Cole-Kripke algorithm with Actiware. The Cole-Kripke algorithm yielded lower 
sensitivity, higher specificity, and lower F1 scores than Actiware (all three thresholds). Our findings on Actiware (ie, high 
sensitivity and low specificity) were consistent with past observations.6 However, our findings on the Cole-Kripke 
algorithm were different from past observations of high sensitivity, low specificity, and accurate estimation of TST.13,15,19 

The differences may be caused by different accelerometer devices (eg, Motionlogger Actigraph,13 Motionlogger Micro 
Watch Actigraph,15 Mini Motionlogger Actigraph – Basic 32 C19 vs Actiwatch Spectrum in this study) with different 
configurations to obtain activity counts (eg, zero-crossing mode13,15,19 vs proportional integrated mode in this study), 
PSG scoring criteria (eg, standard criteria of Rechtschaffen and Kales13,19 vs AASM guidelines in this study), popula-
tions (eg, middle-aged adults,13 healthy young adults,15,19 vs healthy shift workers and non-shift workers in this study), 
and/or the study environment (eg, at home15 vs laboratory environment in this study).

Figure 6 Agreement in total sleep time during 24-hour periods between PSG- and (A) Cole-Kripke algorithm, (B) Actiware with low threshold, (C) Actiware with medium 
threshold, and (D) Actiware with high threshold. The dashed lines represent perfect agreement. 
Abbreviation: TST, total sleep time.
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Our objective 3 was to compare the algorithms’ performance between scheduled sleep episodes and 24-h time 
windows. For the Cole-Kripke algorithm, specificity was similar for scheduled sleep and 24-hour periods, but F1 was 
lower for 24-hour windows. For Actiware, specificity was higher but F1 was lower for 24-hour windows than scheduled 
sleep episodes. The improvement in specificity is likely due to the inclusion of more wake epochs with higher activity 
counts for 24-hour windows. Researchers and clinicians often employ different methods to assess sleep via actigraphy. 
For example, in some studies, actigraphy was collected continuously across multiple days and nights (eg, Gao et al 
2019),47 whereas in other studies, actigraphy was only collected during scheduled sleep episodes at night (eg, Alsaadi 
et al 2014;11 common among studies that only used actigraphy for one night).2 The proportion of sleep epochs across all 
available epochs would influence the estimation of specificity and accuracy of actigraphy-based algorithms, especially 
when participants were relatively sedentary. Therefore, limiting analyses to sleep episodes, for example via sleep diary, 
appears to improve the accuracy of sleep assessment.

Strengths of the current study include the diverse samples of non-shift workers and shift workers, within-subject 
design for both circadian alignment and misalignment protocols (nighttime and daytime sleep), and the comparison of 
algorithms using the same data sets. In a laboratory environment, we were also able to closely monitor sleep/wake using 
both video and PSG while minimizing potential confounders during simulated shift work (eg, differences in sleep 
environment). The compromise of both algorithms in focusing on only one performance measure (either sensitivity or 
specificity) while sacrificing the other calls for the development of new approaches that can balance and/or improve both 
measures. One of the limitations is that all participants were young and healthy. The performance of the algorithms 
should also be tested in older populations and clinical populations with sleep, circadian, or movement disorders and 
during sedentary periods. We combined non-shift workers and shift workers in our experiments as they were demo-
graphically similar, but future studies with sufficient sample sizes should investigate the populations separately. 
Moreover, in the current study, the scheduled sleep opportunities were regular across days and the duration of each 
sleep opportunity was 8 hours during daytime/nighttime while no spontaneous sleep was allowed outside of this window. 
Our findings based on 8-h scheduled sleep episodes in the laboratory may not be generalizable to short sleep episodes 
(eg, napping). For instance, Cole-Kripke’s re-scoring rules should be reconsidered for detection of short naps. Given that 
naps are linked to diseases (eg, dementia),48 algorithms and validation studies are needed on detecting naps via 
actiwatches to facilitate investigations of objective naps and diseases. Last, we only evaluated two actigraphy algorithms 
using activity counts collected with the Actiwatch Spectrum devices that automatically detect and exclude off-wrist 
periods.49 Future studies are needed to examine other actigraphy-scoring algorithms (eg, the Sadeh algorithm)50 or other 
sleep-monitoring devices (eg, other wristband accelerometers or non-wearables)51 especially those without on-wrist/in- 
use detection.

In conclusion, across Actiware and Cole-Kripke algorithms, sensitivity of sleep scoring was similar between daytime 
and nighttime sleep and specificity was lower for daytime sleep. Actiware outperformed the Cole-Kripke algorithm in 
sleep scoring of actigraphic recordings for both daytime and nighttime sleep episodes scheduled in laboratory. On 
average, Actiware with low-threshold yielded the least bias in estimating daytime TST and Actiware with medium- 
threshold yielded the least bias in estimating nighttime TST. Additionally, using sleep diary and limiting the actigraphy- 
based analyses to known periods in bed should improve sleep assessment.

Abbreviations
C-K, Cole-Kripke; ECG, electrocardiography; EEG, electroencephalography; EOG, electrooculography; EMG, electro-
myography; ICC, intraclass correlation coefficient; NREM, non-rapid eye movement; PPV, positive predictive value; 
PSG, polysomnography; REM, rapid eye movement; SWS, slow-wave sleep; TST, total sleep time.
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