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Abstract: Advanced stage non-small cell lung cancer and head and neck squamous cell car-

cinoma are both treated with DNA damaging agents including platinum-based compounds and 

radiation therapy. However, at least one quarter of all tumors are resistant or refractory to these 

genotoxic agents. Yet the agents are extremely toxic, leading to undesirable side effects with 

potentially no benefit. Alternative therapies exist, but currently there are no tools to predict 

whether the first-line genotoxic agents will work in any given patient. To maximize therapeutic 

success and limit unnecessary toxicity, emerging clinical trials aim to inform personalized treat-

ments tailored to the biology of individual tumors. Worldwide, significant resources have been 

invested in identifying biomarkers for guiding the treatment of lung and head and neck cancer. 

DNA repair proteins of the nucleotide excision repair pathway (ERCC1) and of the base excision 

repair pathway (XRCC1), which are instrumental in clearing DNA damage caused by platinum 

drugs and radiation, have been extensively studied as potential biomarkers of clinical outcomes 

in lung and head and neck cancers. The results are complex and contradictory. Here we sum-

marize the current status of single nucleotide polymorphisms, mRNA, and protein expression 

of ERCC1 and XRCC1 in relation to cancer risk and patient outcomes.

Keywords: nucleotide excision repair, base excision repair, DNA damage, DNA repair, che-

motherapy, NSCLC, HNSCC, single nucleotide polymorphism

Introduction
Lung cancer is the second most common cancer in the USA and is the leading cause 

of cancer-related death.1 Based on the predicted response to treatment and known 

risk factors, lung cancers are categorized in two groups: small cell and non-small 

cell lung cancers (NSCLC). NSCLC are more frequent, and smoking is a risk factor. 

Histologically, NSCLC are composed mainly of adenocarcinoma and, to a lesser 

degree, of squamous cell carcinoma (SCC) and large cell carcinoma. Treatment 

varies based on clinical stage. Early stage NSCLC is treated with surgery, while 

loco-regionally advanced and metastatic cancers are treated with multidrug systemic 

chemotherapy, which often includes a platinum compound.2

Head and neck cancers are similar to NSCLC in many respects, although they are less 

common, representing the eighth most frequent type of cancer in the USA.1 Smoking 

is a recognized risk factor for head and neck cancers, like for NSCLC. Pathologically, 

cancers of the aerodigestive tract are mostly head and neck squamous cell carcinoma 

(HNSCC). As for NSCLC, early stage HNSCC is successfully treated with surgery, 

while treatment of loco-regionally advanced tumors includes systemic therapy.2–4 

Frequently, concomitant radiotherapy and chemotherapy with a platinum-based DNA 
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damaging agent (cisplatin or carboplatin) is used, either as 

primary treatment or as adjuvant post-operative therapy. 

Alternative systemic treatments that do not rely upon DNA 

damage, such as taxanes, base analogs, and anti-metabolites 

can also be used.4 However, currently we do not have the tools 

to predict which patients will respond best to the various 

possible therapies.

To maximize treatment success of NSCLC and HNSCC, 

and to reduce unnecessary toxicity, there is great demand for 

identifying biomarkers that predict clinical outcomes pro-

spectively. The goal is to measure validated biomarker(s) in 

individual tumors to probe the biology of each tumor and pre-

dict whether it is likely to be vulnerable to genotoxic agents 

such radiation and platinum drugs. This would enable iden-

tification of patients likely to be resistant to these modalities, 

allowing use of alternative therapies, preventing unnecessary 

toxic side-effects, and improving clinical outcomes.

Choosing a biomarker
Biomarkers in DNA repair pathways
DNA repair proteins are obvious candidate biomarkers for 

predicting how tumors will respond to genotoxic stress. The 

prediction is that overexpression of DNA repair proteins in 

tumors could mediate resistance to genotoxic therapies and 

therefore poor outcomes. In turn, persons with inherited 

defects in DNA repair mechanisms are frequently exqui-

sitely hypersensitive to radiation and/or genotoxic agents. 

This is true of patients with ataxia telangiectasia (AT), 

ataxia telangiectasia-like disorder, severe combined immu-

nodeficiency, Ligase IV syndrome, Rothmund–Thompson 

syndrome, Seckel syndrome, Werner syndrome, Nijmegen 

breakage syndrome, all due to defective repair of double-

strand breaks (DSBs)5 or stalled replication forks.6 It is also 

true of patients with Fanconi anemia caused by defective 

repair of DNA interstrand crosslinks (ICLs) and patients with 

xeroderma pigmentosum due to a defect in nucleotide exci-

sion repair (NER) of helix-distorting DNA adducts.7,8 Since 

NSCLC and HNSCC are treated with cisplatin and radiation 

therapy, it is logical to predict that patients with reduced DSB 

repair, single-strand break (SSB) repair, ICL repair, or NER 

due to polymorphisms affecting the expression or function 

of DNA repair proteins might be most responsive to DNA 

damaging agents.

eRCC1-XPF repair endonuclease
ERCC1 is an attractive candidate biomarker. ERCC1 partners 

with XPF to form a bi-partite nuclease that is essential for NER 

and ICL repair, and participates in DSB repair (Figure 1).9–12 

Platinum-based chemotherapy drugs react with DNA to 

induce adducts that affect one strand of DNA (monoadducts 

and intrastrand crosslinks), which are repaired by NER, as 

well as adducts that affect both strands (ICLs), which are 

repaired by a distinct DNA repair mechanism: ICL repair.13–15 

Because ERCC1-XPF is unique in being required for both 

NER and ICL repair pathways, it is the only enzyme required 

for removal of all types of DNA lesions caused by cisplatin 

and carboplatin. In addition, it facilitates the repair of DNA 

lesions caused by radiation therapy (bulky oxidative lesions 

and DSBs).10 Hence, it has been proposed that decreased 

expression of ERCC1-XPF might mediate increased suscep-

tibility to chemoradiation and improved clinical outcome. 

It is therefore not surprising that ERCC1 has been exten-

sively evaluated as a biomarker in NSCLC and HNSCC, 

with over 90 peer-reviewed reports published on the subject. 
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Figure 1 ERCC1 and its obligate binding partner XPF are involved in multiple DNA 
repair pathways. eRCC1-XPF heterodimer is an endonuclease that cuts one strand 
of DNA at a double-strand:single-strand junction. it is critical for nucleotide excision 
repair (NeR) of bulky chemical DNA adducts like cisplatin intrastrand crosslinks, 
the repair of double-strand breaks that cannot be directly ligated back together like 
those induced by ionizing radiation, and the repair of interstrand crosslinks (iCLs). 
in NeR (represented on the left), adducts that cause distortion of the DNA double 
helix are detected by XPC-hHR23B, in some cases with the assistance of XPe-DDB1 
(Step 1). These complexes recruit of TFiiH, which unwinds the DNA around the 
adduct and XPA and RPA, which stabilize the open complex (Step 2). XPA recruits 
eRCC1-XPF to cut the damaged strand 5′ to the adduct (Step 3), while TFiiH recruits 
a second endonuclease XPG to cut 3′ of the lesion (Step 4). The damaged base is 
removed as part of a single-stranded oligonucleotide. The replication machinery 
uses the 3′-OH created by ERCC1-XPF incision to prime DNA synthesis to fill the 
gap (Step 5). After ligation, the integrity of the DNA is fully restored. in double-
strand breaks (DSB) repair (represented in the middle), two broken ends can be 
spliced together if they have long patches of sequence homology via homologous 
recombination (labeled HR) or if they have small patches of homology, known as 
microhomology, very close to the broken ends via alternative end-joining. in both 
cases, eRCC1-XPF is needed to remove 3′ single-stranded flaps of non-homologous 
sequence at the ends of the breaks (labeled DNA cleavage) to allow sealing of the 
spliced ends by a DNA ligase. iCLs (represented on the right) are predominantly 
repaired during S phase of the cell cycle. iCLs are an absolute block to replication 
and when encountered by the replication machinery lead to the collapse of the 
replication fork and creation of a DSB. This DSB cannot be repaired until eRCC1-
XPF cuts near the iCL to release it from one strand (DNA cleavage), allowing bypass 
of the adduct by a translesion polymerase such as ReV1/Polζ.
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However, it is important to emphasize that the expression 

level of ERCC1-XPF has not been established as rate limit-

ing for NER, ICL, or DSB repair, therefore the influence of 

ERCC1-XPF protein levels on the DNA repair capacity of 

cells or tumors is not known.

XRCC1 scaffold protein
XRCC1 is an equally promising candidate biomarker involved 

in the repair of oxidative DNA damage and single-strand 

breaks (SSBs) (Figure 2), two types of DNA damage abun-

dantly produced by ionizing radiation. XRCC1 does not have 

enzymatic activity, but it is a critical scaffold protein for base 

excision repair (BER) and SSB repair (reviewed in Kennedy 

and D’Andrea,8 Hoeijmakers,16 Ladiges,17 and Almeida and 

Sobol).18 XRCC1 interacts strongly with PARP1, which 

recognizes SSBs, and LIGIII that seals SSBs and BER 

intermediates.17,19 Cells lacking XRCC1 are hypersensitive 

to ionizing radiation, oxidative stress and alkylating agents 

(reviewed by Caldecott).19 It is therefore plausible that 

reduced expression of XRCC1 in cancer patients may lead 

to increased susceptibility to chemoradiation and improved 

patient survival. However, like ERCC1-XPF, XRCC1 has 

not been established as rate limiting for DNA repair. Thus, 

the impact of low expression of XRCC1 on a cell’s capacity 

for BER and SSB is not known.

Methods to assess biomarkers  
and clinical endpoints
Available methods to interrogate  
DNA repair
Directly measuring NER, DSB repair, ICL repair, or BER 

would be the ideal method for predicting an individual’s 

DNA repair capacity. However measuring DNA repair 

requires viable, and for some pathways, replicating cells. 

Thus, currently it is not possible to rapidly measure DNA 

repair in clinical samples because it first requires establishing 

a cell line from peripheral blood mononuclear cells, dermal 

fibroblasts, or tumors. Hence measuring DNA repair pro-

tein expression is used as a surrogate. Multiple techniques 

are available to measure ERCC1 and XRCC1 expression 

including immunohistochemistry or immunofluorescence 

of fixed tissue sections, quantification of mRNA expres-

sion by qRT-PCR, or quantification of protein expression 

by immunoblot if frozen specimens are available. It must 

be strongly emphasized, however, that it is not established 

that ERCC1 is rate limiting for NER or ICL repair, or that 

XRCC1 is rate limiting for BER or SSB repair. ERCC1 and 

XRCC1 can also be investigated by sequencing DNA to detect 

functional single nucleotide polymorphisms (SNP) affecting 

protein function or expression level.

Measuring protein expression
Immunohistochemistry (IHC) and immunofluorescence are 

semi-quantitative methods that permit estimation of protein 

expression level in clinical samples. The intensity of the 

histochemical reaction or fluorescent signal varies with the 

expression level of the protein of interest and can be scored 

as positive versus negative or on a graded scale. These meth-

ods are advantageous since they employ paraffin embedded 

tissue specimens, which are readily available. However, 

several caveats must be considered while interpreting data 

from immunohistochemical methods. Protein expression 

within a given tumor may vary from one area to another.20,21 

Therefore expression measured on a biopsy specimen or in a 

tissue core in an array, which represent only a small fraction 

of a tumor, may not reflect overall expression. In one patient 

cohort, however, it was established that ERCC1 expression 

in biopsies correlated with expression measured in tumor 

sections.22 Another important technical consideration is the 
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Figure 2 XRCC1 is instrumental in base excision repair (BeR) of small oxidative 
lesions and a related mechanism for the repair of single-strand breaks (SSB-R), 
both caused by ionizing radiation. Oxidative damage and alkylation leads to small 
alterations of bases that are principally repaired through BeR pathway. Damaged 
bases are recognized and excised by glycosylases, such as OGG1, which removes 
the abundant oxidative lesion 8-oxodeoxyguanosine. excision of the damaged base 
leaves an abasic (AP) site. The DNA backbone adjacent to the AP site is incised by 
APe1 endonuclease to create a single-strand break (SSB). XRCC1 has no enzymatic 
activity, but is critical as a scaffolding protein in BeR. it is recruited to the site of 
damage by the glycosylase or by PARP1, which binds the newly created SSB. XRCC1 
forms a tight complex with LiG3, the ligase that seals the SSB repair intermediate 
to complete BeR. Primary SSBs, a common consequence of ionizing radiation, are 
directly recognized by PARP1, which recruits XRCC1-LiG3 to repair the broken 
strand. PNKP removes 3′ phosphate groups that block DNA ligation by LiG3. Polβ 
may be required to replace missing nucleotides at the site of the break.
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fact that tissue collection method, handling, storage, fixation, 

processing, and analysis influence the biomarker readout, and 

causes inter-study variability.23 This has led to the publication 

of guidelines for evaluation of biomarkers, in an attempt to 

unify methods of biomarker analysis.24

Equally important, immunodetection methods are by 

definition indirect measures of protein expression, dependent 

upon the sensitivity and specificity of the antibody used. The 

specificity of the commercially available antibodies is rarely 

rigorously tested. ERCC1 protein expression was erroneously 

quantified in virtually all oncology studies prior to 2010 due 

to the implementation of an antibody raised against ERCC1 

that lacks specificity.25 Finally, methods for quantifying and 

scoring biomarker expression vary from study to study, and 

are somewhat subjective. For instance, biomarker positivity 

can be defined as the presence of any staining detected by 

a pathologist, calculated as an H-score based on the stain-

ing intensity and number of positive cells, or quantified by 

an automated system to minimize subjectivity. Thus, while 

immunohistochemical methods are potentially useful for 

quantifying biomarker protein expression, multiple factors 

can introduce intra- or inter-study variability.

Measuring mRNA expression
mRNA expression is often used as a surrogate marker for 

protein expression. Typically this is done by quantitative 

RT-PCR, using primers specific for the target biomarker. 

The advantages of quantifying mRNA are that the method 

is very sensitive, highly specific, and can be applied to fixed 

 specimens. However, quantitative methods to measure mRNA 

levels are not readily available outside of biomedical research 

facilities. Importantly, mRNA and protein expression do not 

always correlate.26,27 Translational regulation, post-translational 

modification and protein stability alter protein levels inde-

pendently of mRNA.28 So while mRNA levels can be a useful 

biomarker to predict clinical outcomes, mRNA levels do 

not necessarily reflect protein levels. Therefore, changes in 

mRNA levels should not be used to infer changes in biological 

activity in the absence of experimental evidence.

Genomic approaches
Base changes in a gene can lead to reduced expression of 

the encoded protein if they affect the promoter, 5′ or 3′ 
untranslated sequence, regulatory miRNA binding sites, 

splice sites, or the coding sequence if the change leads to 

protein misfolding or destabilization, or utilization of a less 

abundant tRNA during translation. Missense mutations in the 

coding sequence can also alter protein function by  affecting 

protein:protein interactions or catalytic activity. Single 

nucleotide polymorphisms (SNPs) are defined as single 

base changes that occur in more than 1% of the population. 

They occur every 360 bases in the human genome, and, thus, 

affect all genes (reviewed by Kim and Misra).29 The National 

Center for Biotechnology Information (www.ncbi.nlm.nih.

gov/projects/SNP reports 246 SNPs in ERCC1, and 550 

SNPs in XRCC1. In silico, in vitro, or epidemiological studies 

can be used to identify SNPs with the highest likelihood of 

being a useful biomarker. This includes SNPs with a known 

impact on mRNA level or protein expression, or activity. 

Fourteen SNPs in ERCC1 and eleven for XRCC1 have been 

investigated in NSCLC and/or HNSCC. The advantages of 

analyzing SNPs as biomarkers are that multiple SNPs can be 

evaluated in one sample using an array and DNA hybridiza-

tion method and require only DNA extracted from a simple 

blood draw.29,30 However, it is important to remember that the 

genotype of a tumor may differ from the germline genotype 

found in the rest of the body, as tumors are inherently genomi-

cally unstable and accumulate DNA mutations. Therefore 

SNPs identified in a patient’s blood sample may not reflect 

a patient’s tumor’s genotype.31 Furthermore, because SNPs 

are much more abundant than recombination events in the 

human genome, they are inherited in clusters, referred to as 

haplotypes. Thus, a SNP in ERCC1 or XRCC1 could be a 

useful biomarker for predicting outcomes in cancer without 

having any impact on DNA repair.

Clinical endpoints
In oncology, clinical outcomes for which it would be desirable 

to have biomarkers include: (1) risk of cancer, (2) prognosis in 

untreated patients, (3) tumor response to therapy, (4) severity 

of treatment-related toxicities, (5) progression-free survival, 

and (6) overall survival. DNA repair-related endpoints could 

logically contribute to any of these endpoints, in particular 

when genotoxic chemotherapeutics or radiation is the therapy 

of choice.

One of the most widely recognized risk factors for 

NSCLC and HNSCC is smoking. The pathogenesis of these 

tumors involves tobacco-related DNA damage. It is rational 

to hypothesize that persons with low expression of ERCC1 

or XRCC1 may have impaired ability to remove tobacco-

induced DNA damage and therefore are more likely to 

develop smoking-related cancers. The best way to test this 

hypothesis is with well-powered prospective risk analysis. 

But these types of studies are difficult to conduct because 

they necessitate large cohorts and long follow-up times. For 

instance, .520,000 patients would have to be followed for 
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10 years to find 116 lung cancer and 82 HNSCC.32 Thus, 

most published studies evaluating cancer risk associated with 

ERCC1 and XRCC1 are retrospective case-control studies, 

which have their inherent limitations.

Since DNA repair-related biomarkers could have value 

for multiple clinical endpoints, they could potentially have 

prognostic or predictive value. Prognostic biomarkers esti-

mate progression-free or overall survival in an untreated 

patient population. It gives information on the natural 

course of the disease.33 In contrast, predictive biomarkers 

estimate how likely a given treatment is expected to work 

(efficacy). Predictive value is determined in prospective 

randomized trial settings with treatment and control arms. 

Both prognostic and predictive biomarkers are useful but 

they require different study designs. Once identifying a bio-

marker of interest, validation is essential and ultimately the 

greatest barrier to implementation of the biomarker in clinic 

practice.34 Validation includes establishing that a biomarker 

of interest (expression, genotype) consistently predicts a 

particular clinical outcome (response rate, progression free 

survival, overall survival). Thus, validation requires multiple 

clinical studies conducted by multiple independent groups. 

With these considerations in mind, we now critically review 

the literature on ERCC1 and XRCC1 SNPs as biomarkers in 

NSCLC and HNSCC.

ERCC1 as biomarker for NSCLC 
and HNSCC
ERCC1 as a biomarker for cancer risk
Two SNPs, Asn118Asn and C8092A, have been described 

as potentially affecting ERCC1 expression. Asn118Asn 

involves a synonymous polymorphism at codon 118, where 

AAC is changed to AAT. While the amino acid sequence does 

not change, the variant (T) allele is associated with lower 

mRNA and protein levels in ovarian cancer cells.35,36 C8092 

is in the 3′-UTR of ERCC1. The 3′-UTR is implicated in 

translational repression of ERCC1 mRNA.28 However the 

impact of the polymorphism on ERCC1 protein expression 

has not been critically evaluated to date. In patients, the 

C8092A polymorphism correlates neither with mRNA,37 

nor with protein levels.38 Numerous other SNPs in ERCC1 

have been studied, but like C8092, their functional impact 

on ERCC1 expression or activity has not been clearly 

established.

Studies evaluating ERCC1 as a potential biomarker to 

predict the risk of developing NSCLC or HNSCC rest prin-

cipally on SNP analysis. There are ten studies examining 

ERCC1 SNPs in relation to NSCLC.32,39–47 In these studies, 

only 14 of  246 reported SNPs in ERCC1 were evaluated, with 

just six SNPs analyzed in greater than one study (Table 1). 

Most report retrospective case-controlled studies focused on 

Asn118, C8092, and IVS3. While case-control studies are 

important for identifying new biomarkers, they have inher-

ent biases that can limit the generalization of the results. 

For instance, if the biomarker is not robust, confounding 

factors in the cohort may lead to erroneous conclusions. In 

most of the retrospective studies, SNPs in ERCC1 were not 

significantly associated with susceptibility of developing 

NSCLC.32,39–42,46–48 However, there was not good concor-

dance between studies.42–45 To clarify the role of SNPs in 

ERCC1 as risk factor for NSCLC, meta-analyses were done. 

When patients from the diverse studies were combined into 

large data pools, none of the four SNPs in ERCC1 meeting 

study inclusion criteria reached statistical significance as a 

risk factor for NSCLC.48–50 Furthermore, mRNA levels in 

blood samples were not identified as a risk factor for lung 

cancer.51 In summary, our review of the literature suggests 

that neither SNPs in ERCC1 studied to date by more than 

one group, nor peripheral mRNA levels, constitute a risk 

factor for NSCLC.

Head and neck cancers are less common than lung 

cancer. Hence clinical studies to identify biomarkers that 

predict the risk of developing HNSCC are less frequent 

and smaller. We identified six studies evaluating whether 

polymorphisms in ERCC1 are a risk factor for HNSCC 

(Table 1).32,47,52–55 Only four SNPs were assessed more 

than once: (Asn118Asn), (C8092A), 119216 C . G, and 

4855 C . T. None showed statistically significant associa-

tion with risk of HNSCC, with the exception of one large 

case control study in which 4855 C . T appeared to be 

protective.54 One small retrospective case-controlled study 

suggested that low ERCC1 mRNA in peripheral blood 

might be a risk factor for HNSCC,56 but the findings could 

not be confirmed by others after multivariate analysis.37 

Therefore, we conclude that none of the SNPs in ERCC1 

tested thus far, nor peripheral ERCC1 mRNA levels are 

definitive risk factors for HNSCC. However, 4855 C . T 

deserves close attention in future studies. Further, we can-

not exclude the possibility that these or other ERCC1 SNPs 

may be useful biomarkers in selected subpopulations for 

predicting cancer risk.

ERCC1 SNPs as biomarkers for clinical 
outcome
Polymorphisms in ERCC1 could affect tumor sensitivity to 

treatment, and hence influence patient outcomes. Patients with a 
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Table 1 Association between SNPs in ERCC1 and cancer risk

Cancer rs SNPs Alternate names Reference n (case-control) Riska

NSCLC rs11615 Asn118 Asn C118T; 354 C . T; T19007C; 
 C19007T; 3525 C . T

Zhou et al39

Matullo et al32,#

Yin et al40

Hung et al41

Yu et al42

Deng et al43

Zienolddiny et al44

1752–1358
116–. 520,000
151–143
4460–5217
988–986
315–315
343–413

0
0
0
0
0
1
1

rs3212986 C8092A 14443 C . A Zhou et al39 1752–1358 0; 1 in heavy smokers
Zienolddiny et al44 343–413 0
Yu et al42 988–986 0
Hung et al41 4688–4546 0

rs3212948 19716 C . G iVS3 174G . C Shen et al46 122–122 0
Jones et al167 452–790 0
Zienolddiny et al44 343–413 0
Ma et al45 1010–1011 2

rs3212930 (-)433 T . C Ma et al45 1010–1011 0
Yu et al42 988–986 1

rs3212961 4855 C . T iVS5 + 33 C . A; 17677  
C . A

Shen et al46

Yu et al42

Zienolddiny et al44

122–122
1000–1000
343–413

0
0
0

rs3212955 Ma et al45 1010–1011 0
Jones et al167 452–790 0

rs3212981 Ma et al45 1010–1011 0
rs16979802 15310 C . G Zienolddiny et al44 343–413 1
rs3212951 Ma et al45 1010–1011 0
rs1007616 Ma et al45 1010–1011 2
rs1319052 Jones et al167 452–790 0
rs735482 Jones et al167 452–790 0
rs2298881 262 G . T Yu et al42 988–986 0; (1) in smokers
unnamed Ma et al45 1010–1011 0

HNSCC rs11615 Asn118 Asn 354 T . C; 19007  
T . C; 3525 C . T

Abbasi et al53 257–769 0
Canova et al54 1511–1457 0
Matullo et al32 82–. 520,000 0

rs3212986 C8092A 14443 C . A Abbasi et al53 257–769 0
Sugimura et al52 122–244 (1); 1 in smoker
Sturgis et al55 313–313 (2)

rs3212948 19716 C . G iVS3 + 74C . G Canova et al54 1511–1457 0
Jones et al167 175–790 0

rs3212961 4855 C . T iVS5 + 33C . A Abbasi et al53 257–769 0
Canova et al54 1511–1457 2

rs1319052 Jones et al167 175–790 0
rs735482 Jones et al167 175–790 0
rs3212955 Jones et al167 175–790 0

Notes: aRisk for variable allele, 0 = non significant, (1) = trend to increased, 1 = increased, (2) = trend to protective, 2 = protective; #retrospective analysis of prospective study.
Abbreviations: HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small cell lung cancers; rs, reference SNP; SNPs, single nucleotide polymorphisms.

polymorphic variant of ERCC1, which results in impaired 

NER and/or ICL repair capacity, may be exquisitely sensitive 

to chemotherapy with genotoxic agents or radiation. This could 

mean their tumors respond better to chemoradiation therapy 

and outcomes are improved. Alternatively, the host may be 

hypersensitive to genotoxic stress leading to exaggerated side 

effects of therapy and poor outcomes.

In NSCLC, we identified sixteen studies testing whether 

ERCC1 polymorphisms influence clinical outcome,38,57–71 

including five prospective studies (Table 2).58,62,69,70 The 

only two SNPs tested were Asn118 and C8092. The results 

are inconsistent, weakening the generalizability of the 

 conclusions. When more than 500 patients from multiple 

studies were pooled into a single meta-analysis, Asn118 Asn 
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Table 2 Association between SNPs in ERCC1 and clinical outcome

Cancer rs SNPs Alternate names Reference n Outcomea

NSCLC rs11615 Asn118 Asn C118T; 354 T . C;  
19007 T . C; 3525 C . T

Zhou et al63

Gandara et al (2005)b

Suk et al59

De Las Penas et al71,b

Tibaldi et al61

Takenaka et al73

Vinolas et al62,b

Park et al64

Ryu et al65

isla et al68

Su et al66

Kalikaki et al57

Okuda et al38

Yin et al67

Li et al70,b

Zhou et al69,b

128
526
214
135
65
122
94
178
109
62
230
119
90
257
115
130

0
0
0 (toxicity)
0
0
0
0
(1); 1 for stage iii
1
1
1
1
1
1
2
2

rs3212986 C8092A 14443 C . A Zhou et al63

Suk et al59

Park et al64

Okuda et al38

Takenaka et al73

Kalikaki et al57

Li et al70,b

128 1
1 (toxicity)
0
1
1
2
2

214
178
90
122
119
115

HNSCC rs3212986 C8092A 14443 C . A Quintela-Fandino et al74 103 -1
rs735482 Lys259Thr 1264 A . C Grau et al75,b 47 0

Carles et al76 108 1 (but only 4%  
of carrier)

Notes: aOutcome for variable allele, 0 = non significant, (1) = trend to worse, 1 = worse, (2) = trend to better, 2 = better; bprospective study.
Abbreviations: HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small cell lung cancers; rs, reference SNP; SNPs, single nucleotide polymorphisms.

was predictive of tumor response to chemotherapy.72 

As expected, the variant allele (C→T), which presumably 

causes lower ERCC1 expression, correlated with a higher 

response rate.72 However, this meta-analysis excluded one 

important report, a large phase Phase III study (n = 526) in 

which Asn118 did not predict clinical outcome, including 

response to treatment.58 These conflicting results, derived 

from equally large studies, suggest that this ERCC1 SNP 

is not a robust predictive biomarker in an unselected 

population. To our knowledge, C8092 has not been evaluated 

in a large prospective study or in a meta-analysis as a predic-

tor of clinical outcomes in NSCLC. In retrospective cohorts, 

C8092 showed mixed results as predictive biomarker. The 

general tendency was slightly weighed toward the vari-

ant allele (C→A) predicting worse outcomes.38,59,63,73 In 

summary, none of the SNPs in ERCC1 tested have been 

identified as strongly predictive biomarkers for outcomes 

in NSCLC, but C8092 emerges as a potentially promising 

candidate.

In HNSCC, we identified only three studies evaluating 

the predictive value of SNPs in ERCC1 (Table 2).74–76 Like 

NSCLC, in HNSCC, there was a trend towards an asso-

ciation between the variant allele of C8092 (C→A) with 

poor response to chemoradiation, and no correlation with 

 survival.74 A new SNP (rs735482) located in the 3′UTR of 

ERCC1 was evaluated for predictive value of clinical out-

come in two separate cohorts, but results were mixed.75,76 

Therefore, we conclude that there is currently no strong 

evidence that SNPs in ERCC1 can predict clinical outcome 

in HNSCC.

eRCC1 protein expression as a biomarker 
of patient outcomes in NSCLC
While SNPs are often used as a crude estimate of ERCC1 

expression or activity, immunodetection approaches permit 

a more direct quantification of ERCC1 protein level in 

tumor samples. We identified 17 studies addressing whether 

quantification of ERCC1 expression in NSCLC tumors by 

immunohistochemistry has prognostic or predictive value 

(Table 3).27,38,60,73,77–91 In a seminal retrospective analysis of 

a phase III trial, more than 780 patients with fully resected 

early stage NSCLC were randomized to observation versus 
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Table 3 Association between eRCC1 protein expression and 
clinical outcome

Cancer Reference n Outcomea

NSCLC Planchard et al90 188 0
Koh et al89 130 0
Zheng et al27 187 1
Kang et al88 82 1
Okuda et al38 55 (2)
Okuda et al91 90 2
Olaussen et al81 783 2
Azuma et al84 67 2
Fujii et al83 35 2
Lee et al87 130 2
Holm et al86 163 2; men P = 0.005,  

women P = 0.7
Azuma et al85 34 2
Lee et al82 50 2
Ota et al80 156 2
Reynolds et al79,b 69 2
Vilmar et al78,b 264 2
wang et al77 214 2
Taillade et al22 34 Biopsy vs tumor  

correlation
Gomez-Roca et al (2009) 49 Primary vs metastasis
Kang et al164 82 Primary vs metastasis
Papay et al (2009) 17 Change after  

chemotherapy
Besse et al (2010)c 761 Brain metastasis

HNSCC Fountzilas et al31 37 0
Koh et al89 80 0
Handra-Luca et al97 96 2
Jun et al98 45 2
Fountzilas et al31,b 26 2

Notes: aOutcome for low eRCC1 expression, 0 = non significant changes, 
(1) = trend to worse, 1 = worse, (2) = trend to better, 2 = better; bprospective 
study; cretrospective analysis of prospective study.
Abbreviations: HNSCC, head and neck squamous cell carcinoma; NSCLC, non-
small cell lung cancers.

multidrug chemotherapy.81 The results suggested that 

tumoral ERCC1 protein expression was a biomarker with 

a complex profile. High ERCC1 levels correlated with 

good prognosis for untreated cases. But patients with low 

ERCC1 levels did significantly better when treated with 

multidrug chemotherapy. These results are consistent with 

the prediction that decreased expression of ERCC1 could 

promote sensitivity to genotoxic chemotherapy. Most studies 

agree that low ERCC1 protein expression is a marker for 

better clinical outcome after genotoxic therapy in NSCLC. 

Thirteen of 17 studies reported that low ERCC1 correlated 

with better clinical outcome (total n = 1815),77–85,87,91,92 

or had a statistical trend towards better outcome (total 

n = 218).38 Two studies showed no correlation between 

ERCC1 level and outcome (n = 218),89,90 while two studies 

showed a significantly worse outcome (total n = 269)27,88 

in patients with tumors  expressing low levels of ERCC1. 

A recent meta-analysis evaluated NSCLC patients treated 

with platinum compounds.93 Low expression of ERCC1 in 

tumors quantified by immunohistochemistry was associ-

ated with a better clinical response to cisplatin, which 

translated into better survival.93 Despite some variability 

between individual studies, ERCC1 appears to emerge as a 

good candidate biomarker predictive of clinical outcome in 

NSCLC. An important point, however, is that in all 18 of the 

studies the monoclonal antibody, 8F1 was used to measure 

ERCC1 expression, and this antibody is not specific for 

ERCC1.25 Therefore, the claim that low ERCC1 expression 

correlates with better outcome is inaccurate. The more pre-

cise conclusion is that low 8F1 signal correlates with better 

outcome. More recent studies comparing 8F1 and another 

antibody specific for ERCC1 reveal that they have different 

predictive capacities with relation to clinical outcomes in 

cervical cancer.94

In HNSCC, only five studies (total n = 285) evaluated 

whether ERCC1 protein expression in tumors correlated 

with clinical outcome (Table 3).31,95–98 The 8F1 antibody was 

used in all of the studies. Low 8F1 signal was associated 

with better outcome in three studies (total n = 168),95,97,98 

while no significant association was found in the other two 

(n = 117).31,96

ERCC1 transcript levels as a biomarker 
in NSCLC and HNSCC
As a surrogate marker of ERCC1 expression, ERCC1 mRNA 

was measured in NSCLCs in cell lines,99 and in six 

retrospective68,100–104 and six prospective studies.105–110 The 

results were mixed, but most studies showed an association 

between low ERCC1 mRNA and better clinical outcome, 

either significantly (seven studies)100,102–105,108,109 or with a sta-

tistical trend (three studies).68,105,110 In a meta-analysis, both 

low tumoral mRNA and protein levels correlated with a better 

response rate to chemoradiation and overall patient survival.93 

While assays used to measure mRNA levels in tumors are 

not yet readily available for clinical use in all cancer centers, 

ERCC1 mRNA may prove to be a reasonable predictive bio-

marker of outcome in NSCLC patients treated with platinum-

based chemotherapy.93 Interestingly, ERCC1 mRNA and 

protein levels were found to be not correlated in NSCLC27 and 

inversely correlated in ovarian cancer.111 Furthermore, mRNA 

levels were not correlated with chemosensitivity in NSCLC 

cell lines99 nor with response to chemotherapy in HNSCC.31 

Thus, the relationship between ERCC1 mRNA and DNA repair 

capacity is not direct and remains to be clarified.
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XRCC1 as biomarker for NSCLC 
and HNSCC
XRCC1 as a biomarker for cancer risk
Similar studies have sought to establish whether XRCC1 is 

linked with cancer risk, prognosis, or treatment outcome. 

SNPs in XRCC1 have been extensively studied in NSCLC, 

although only 9 SNPs out of 550 possible have been evalu-

ated in published reports. The majority of trials focus on 

Arg194Trp, Arg280His, and Arg399Gln, three nonsynony-

mous SNPs in XRCC1 (reviewed by Schneider et al).112 

Four studies, including two large ones, also analyzed a 

SNP in the XRCC1 promoter (-77T→C).113–116 The vari-

ant allele -77T→C alters a binding site for the zinc finger 

transcription factor SP1, leading to reduced transcription 

of XRCC1.113 The variant allele at position 399 (Gln) 

correlates with lower DNA repair capacity and increased 

genomic instability in multiple studies.117–121 These func-

tional SNPs in XRCC1 are attractive candidate biomarkers 

in cancer.

XRCC1 SNPs as biomarkers for  
cancer risk
The assessment of SNPs in XRCC1 as risk factors for 

developing NSCLC has focused mainly on XRCC1 Arg194-

Trp, Arg280His and Arg399Gln, and to a lesser degree 

on -77T→C (Table 4).32,41,44,67,112–116,122–143 Studies failed 

to identify significant association between Arg194Trp, 

Arg280His, and Arg399Gln genotypes and NSCLC risk. 

However, -77T→C did emerge as a significant risk factor 

in two large studies.113,114 This is consistent with the notion 

that low XRCC1 expression leads to impaired BER and 

SSB repair, greater mutational load and therefore increased 

cancer risk. A well conducted meta-analysis pooling 

more than 10,000 patients for the analysis of Arg194Trp, 

Arg280His, and Arg399Gln, and more than 1,000 patients 

for the analysis of Pro206Pro and -77T→C found that, 

in NSCLC, -77T→C was associated with cancer risk 

(P , 0.0001), while none of the other four SNPs analyzed 

in XRCC1 showed association.50 Furthermore, this meta-

analysis reviewed a total of 241 associations in 16 genes, 

and XRCC1 -77T→C was one of the only two associations 

that maintained a significant association through the most 

stringent analysis. Thus, there is strong epidemiological 

and biological credibility supporting XRCC1–77T→C as 

a risk factor for NSCLC.

In HNSCC, only five SNPs have been evaluated as can-

cer risk factors.32,54,144–154 Four of them have been evaluated 

more than once: Arg194Trp, Arg280His, Arg399Gln, and 

Pro206Pro (Table 4). The results were mixed for all four 

SNPs, but primarily showed no significant association with 

cancer risk, except for a tendency for the homozygous 

variant 399Gln-Gln to be protective in Caucasians in one 

large pooled study.154 Interestingly, when patients from indi-

vidual studies were pooled for a meta-analysis, Arg194Trp 

emerged as a significant risk factor for HNSCC, as well as 

for other solid cancers (skin, esophageal, and stomach).50 

It will be interesting to follow whether future studies can 

validate this SNP as a biomarker for risk stratification in 

HNSCC.

XRCC1 SNPs as biomarkers for clinical 
outcome 
Biologically, genetic polymorphisms in XRCC1 could 

potentially predict clinical outcome, because reduced XRCC1 

expression in animal models confers sensitivity to ionizing 

radiation. We identified eleven studies57,67,71,115,155–161 looking 

at XRCC1 SNPs (Arg194Trp, Arg280His, Arg399Gln, 

and -77T→C) including five prospective studies,71,155,157,159,160 

totaling more than 1700 patients (Table 5). Results were 

mixed for Arg194Trp: three studies showed no association 

(total n = 382),155–157 one showed a worse prognosis for the 

allelic variant (n = 229),158 and one showed a better progno-

sis (n = 82).159 Results for Arg399Gln were also mixed, with 

significantly worse overall survival or toxicity for the allelic 

variant in three studies (total n = 515),57,67,156 while a better 

prognosis was found in two studies (n = 238)71,160 and no asso-

ciation was found in other studies (total n = 559).155,157–159,161 

Finally, Arg280His showed no significant association with 

any outcome (2 studies; total n = 428). A meta-analysis 

and additional studies to examine -77T→C are needed to 

determine if SNPs in XRCC1 have any value for predict-

ing clinical outcomes in patients with NSCLC treated with 

chemoradiation.

In HNSCC, XRCC1 has not been extensively studied. 

We identified only four reports assessing the predictive 

value of SNPs in XRCC1, focusing predominantly on 

Arg399Gln,74,76,145,162 and to a lesser extent Arg194Trp145,162 

(Table 5). Results for Arg399Gln were mixed; two out of 

the four studies (total n = 293) showed a better outcome for 

the allelic variant.74,162 Interestingly, Arg194Trp, which was 

previously identified as a significant risk factor for HNSCC, 

did not influence treatment outcome.162 As with NSCLC, 

more studies and larger prospective studies are needed to 

evaluate whether SNPs in XRCC1 influence response to 

treatment in HNSCC.
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Table 4 Association between SNPs in XRCC1 and cancer risk

Cancer rs SNPs Alternate names Reference n (case-control) Riska

NSCLC rs1799782 Arg194Trp 194 C . T; 194  
R . w; 194 Arg . Trp;  
C26304T

Butkiewicz et al124 96–96 0

Hu et al114 710–710 0
Shen et al46 122–122 0
Matullo et al32 116–. 520,000 0
Hao et al113 1024–1118 0
Zienolddiny et al44 343–413 0
Yin et al131 247–253 0
Hung et al41,b 6463–6603 0
improta et al126 940–121 0
Tanaka et al130 50–50 0
Ratnasinghe et al128 108 0; 2 in drinkers
David-Beabes132 332–704 0; 2 in African- 

Americans
Schneider et al112 446–622 0; 2 in heavy smokers
Hung et al127,b 2188–2198 0; 2 in heavy smokers
Chen et al56 109–109 (1)
Pachouri et al133 103–122 (1)
De Ruyck et al116 110–110 2
Yin et al67 55–74 2

rs25489 Arg280His 280 G . A; 280  
R . H; 280 Arg . His

Butkiewicz et al124 96–96 0

Misra et al122,b 305–305 0
Vogel et al124 265–272 0
Schneider et al112 446–622 0
Shen et al46 122–122 0
Hao et al113 1024–1118 0
Zienolddiny et al44 343–413 0
Hung et al41 6463–6603 0
Yin et al67 55–74 0
Yin et al131 247–253 0; 2 in non-smokers
Hung et al127,b 2188–2198 0; 2 in heavy smokers
Ratnasinghe et al128 108 1
De Ruyck et al116 110–110 2

rs25487 Arg399Gln G28152A; 399  
G . A; 399 R . Q;  
399 Arg . Gln

Butkiewicz et al124 96–96 0

David-Beabes132 332–704 0
Ratnasinghe et al128 108 0
Chen et al56 109–109 0
ito et al135 178–449 0
Popanda et al137 463–460 0
Vogel et al134 265–272 0
Zhang et al139 1000–1000 0
Hu et al114 710–710 0
Hung et al127,b 2188–2198 0
Zienolddiny et al44 343–413 0
Hao et al113 1024–1118 0
Yin et al131 247–253 0
Lopez-Cima et al136 516–533 0
Hung et al41,b 6463–6603 0
improta et al126 940–121 0
Yin et al67 55–74 0
De Ruyck et al116 110–110 0; 1 in light smokers,  

2; in heavy smokers

(Continued)
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Table 4 (Continued)

Cancer rs SNPs Alternate names Reference n (case-control) Riska

Misra et al122,b 305–305 0; (2) in heavy 
smokers

Schneider et al112 446–622 0; 2 in heavy smokers
Ryk et al138 177–153 0; 2 in non-smokers
Park et al140,b 192–135 (1) for SCC
Zhou et al141 1091–1240 (1)
Sreeja et al142 171–211 1
Divine et al143 172–143 1 in Caucasian but 

not Hispanic
Shen et al46 122–122 (2)
Matullo et al32 116–. 520,000 2 (by stepwise 

regression)
Pachouri et al133 103–122 2

rs3213245 -(77) T . C De Ruyck et al116 110–110 0
Hsieh et al115 294–288 0
Hao et al113 1024–1118 1
Hu et al114 710–710 1

rs915927 Pro206Pro 206 A . G; 206  
pro = pro

Matullo et al32 116–. 520,000 0

Yin et al131 247–253 1
Yin et al67 55–74 1

rs17852150 Gln632Gln 632 G . A; 632  
Gln = Gln

Yin et al131 247–253 0

Yin et al67 55–74 0
rs2307191 Pro161Leu 161 Pro . Leu Tanaka et al130 50 0
rs2307177 Tyr576Ser 576 Tyr . Ser Tanaka et al130 50 0
n/a Arg59Cys Zienolddiny et al44 343–413 ND

HNSCC rs1799782 Arg194Trp 194 C . T;  
194 R . w;  
194 Arg . Trp;  
C26304T

Sturgis et al151 203–424 0; 2 for oral and  
pharyngeal cancer

Olshan et al148 182–202 0
Varzim et al168 88–178 0
Matullo et al32 82–. 520,000 0
Harth et al146 312–300 0
Applebaum et al144 722–815 0
Csejtei et al145 108–102 0
Kowalski et al149 92–124 (1)
Tae et al150 147–168 1

rs25489 Arg280His 280 G . A; 280  
R . H; 280 Arg . His

Tae et al150 147–168 0

Harth et al146 312–300 0
Applebaum et al144 722–815 0
Sturgis et al151 203–424 0
Cho et al152 334–283 2

rs25487 Arg399Gln G28152A; 399  
G . A; 399 R . Q;  
399 Arg . Gln

Varzim et al168 88–178 0

Cho et al152 334–283 0
Tae et al150 147–168 0
Huang et al154 555–792 0; 2 in Caucasian 
Harth et al146 312–300 0
Canova et al54 1478–1424 0
Applebaum et al144 722–815 0; (1) in p16 neg  

smokers

(Continued)
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Table 5 Association between SNPs in XRCC1 and clinical outcome

Cancer rs SNPs Alternate names Reference n Outcomea

NSCLC rs1799782 Arg194Trp 194 C . T; 194 R . w; 194  
Arg . Trp; C26304T

Petty et al155,b 49 0

wang et al156 139 0
Yuan et al157,b 199 0
Yoon et al158 229 1
Sun et al159,b 82 2

rs25489 Arg280His 280 G . A; 280 R . H; 280 Arg . His Yoon et al158 229 0
Yuan et al157,b 199 (2)

rs25487 Arg399Gln G28152 A; 399 G . A; 399 R . Q;  
399 Arg . Gln

Yoon et al158 229 0

Petty et al155,b 49 0
Sun et al159,b 82 0
Yuan et al157 199 0
Gurubhagavatula et al161,c 103 (1)
Kalikaki et al57 119 1
Yin et al67 257 1
wang et al156 139 1 (toxicity)
Giachino et al160,b 203 2 (toxicity)
De las Penas et al71,b 135 2

rs3213245 -(77) T . C Hsieh et al115 294 0
rs1799782 Arg194Trp 194 C . T; 194 R . w; C26304T Geisler et al162 190 0

Csejtei et al145 108 1
rs25487 Arg399Gln G28152A; 399 G . A; 399 R . Q Carles et al76 108 0

Csejtei et al145 108 0
Geisler et al162 190 2
Quintela-Fandino et al74 103 2

Notes: aOutcome for variable allele, 0 = non significant, (1) = trend to worse, 1 = worse, (2) = trend to better, 2 = better; bprospective study; cretrospective analysis of 
prospective study.
Abbreviations: NSCLC, non-small cell lung cancers; rs, reference SNP; SNPs, single nucleotide polymorphisms.

Table 4 (Continued)

Cancer rs SNPs Alternate names Reference n (case-control) Riska

Csejtei et al145 108–102 0

Kowalski et al149 92–124 0
Sturgis et al151 203–424 (1)
Olshan et al148 182–202 2
Gal et al153 279 2; for overall survival 

only
rs915927 Pro206Pro Matullo et al32 82–. 520,000 0

Canova et al54 1495–1436 0
rs762507 Canova et al54 1447–1397 0

Notes: aRisk for variable allele, 0 = non significant, (1) = trend to increased, 1 = increased, (2) = trend to protective, 2 = protective; ND = not done; bretrospective analysis 
of prospective study.
Abbreviations: HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small cell lung cancers; rs, reference SNP; SCC, squamous cell carcinoma; SNPs, single 
nucleotide polymorphisms.

XRCC1 expression as a biomarker  
of patient outcomes in cancer
There is very little data on XRCC1 expression in tumors, 

despite the fact that at least in NSCLC cell lines increased 

XRCC1 mRNA is significantly associated with cisplatin 

resistance.163 There are two studies (both using the same patient 

cohort) reporting XRCC1 expression in NSCLC, as measured 

by immunohistochemistry.88,164 XRCC1 protein expression 

did not correlate with either response to treatment or survival. 

Interestingly, more than half of the metastases had a stronger 

immunohistochemical signal than their matched primary 

tumor, suggesting that the level of XRCC1 may increase 

during cancer progression. This could have therapeutic 

implications if elevated expression of XRCC1 renders cells 

more resistant to treatment.

Only one study evaluated XRCC1 protein expression and 

clinical outcome in HNSCC.165 High XRCC1 expression was 

correlated with resistance to radiotherapy. There is also a 
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paucity of studies on the predictive value of either peripheral 

or tumor XRCC1 mRNA in cancer. In contrast to the protein 

data, XRCC1 mRNA appears to be lower in early stage lung 

cancer compared with more advanced cancer.166

Conclusion
In summary, for the past decade the biomedical community 

has evaluated DNA repair genes as potential biomarkers 

to predict cancer risk and prognosis of cancer patients 

treated with genotoxic agents. There has been considerable 

investment toward this endeavor, yet none of the candidate 

biomarkers, other than BRCA1 and BRCA2, have yet to be 

translated to clinic use. ERCC1 and XRCC1 are two good 

candidate biomarkers, with robust experimental evidence 

demonstrating that reduced expression or activity of either 

protein results in increased genomic instability and sensitivity 

to DNA damaging agents.7,9–11,19 To date, investigations as to 

whether ERCC1 and XRCC1 alter cancer risk or outcomes are 

primarily modest-sized retrospective case controlled studies, 

which have yielded conflicting results. The strongest associa-

tions to date are that a CC genotype at SNP -77 of XRCC1, 

which causes reduced XRCC1 mRNA, predicts increased risk 

of NSCLC. For ERCC1, there are numerous studies indicating 

that low mRNA or protein expression is associated with a bet-

ter prognosis in HNSCC and NSCLC, respectively. However, 

it is not established that ERCC1 expression is regulated at the 

transcriptional level. Furthermore, in the studies measuring 

protein level, a nonspecific antibody was used. Therefore 

these studies, while validating the utility of these biomarkers 

(ERCC1 mRNA levels or 8F1 immunohistochemical signal) 

for predicting clinical outcomes, do not directly demonstrate 

that DNA repair levels are altered in tumors.
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