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Introduction: Lack of highly expressed tumor target and ligands limits application of nano-medicine against triple-negative breast 
cancer (TNBC). Previous study reported that placenta-derived oncofetal chondroitin sulfate glycosaminoglycan chain (CSA) expressed 
on 90% of stage I–III invasive ductal breast carcinomas. Our study found the CSA anchor protein VAR2CSA derived small peptide 
plCSA had strong binding activity with TNBC cell lines and tumor tissue. Here, we combined the AIEgens TBZ-DPNA and therapy 
drug paclitaxel (PTX) to fabricate near-infrared fluorescence-guided nanodrug (plCSA-NP) to investigate its targeting and anti-tumor 
effect on TNBC.
Methods: We synthesized and purified TBZ-DPNA with one step, measured optical properties and photoluminescence (PL) spectra. 
We prepared nanodrug plCSA-NP by encapsulating TBZ-DPNA and PTX and conjugating them with peptide plCSA. We evaluated 
plCSA-NP targeting activity by examining AIEdots fluorescence signal on TNBC cell lines and subcutaneous and lung metastatic 
mouse model. We assessed PTX delivery effect by cytotoxicity assay on TNBC line and tumor growth of subcutaneous and lung 
metastatic mouse models.
Results: PL spectra and TEM imaging results showed plCSA-NP had maximum emission feature at 718 nm and nearly mono-
dispersed nanosphere with an average diameter of 70 nm. In vitro studies showed plCSA-NPs had high affinity and cytotoxicity with 
TNBC cell lines. In vivo subcutaneous and lung metastasis mouse studies showed plCSA-NPs accumulated on TNBC tumor tissue, 
and significantly prevented TNBC subcutaneous and lung metastasis tumor growth.
Conclusion: In conclusion, we provide solid evidence for chondroitin sulfate targeting peptide plCSA guided nanodrug, exhibit good 
targeting efficiency and therapeutic effect against TNBC primary and lung metastatic tumor growth.
Keywords: triple-negative breast cancer, lung metastasis, chemotherapy, aggregation-induced emission, drug delivery system, plCSA

Introduction
Breast cancer (BC) is one of the most common malignancies and a leading cause of cancer-related mortality in women 
worldwide.1–3 Among them, 15% to 20% of breast carcinomas are classified as triple-negative breast cancer (TNBC), due 
to lack of oestrogen receptors (ER), progesterone receptors (PR) and human epidermal growth factor receptor-2 
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(HER2).4,5 Compared with other subtypes, TNBC is associated with high recurrence rates, a high incidence of distant 
metastases, and poor overall survival.6 Although chemotherapy has shown promising results in the neoadjuvant and 
metastatic settings, only 20% of TNBC patients present a pathologically complete response after neoadjuvant 
chemotherapy.7–10 Most unsatisfactory long-term outcomes, including premature death, were due to early recurrence 
and metastatic disease.11 More importantly, chemotherapeutic drugs typically display poor pharmacokinetics (being 
rapidly cleared from the circulation), and inappropriate biodistribution due to their low molecular weight and high 
hydrophobicity (causing toxicity of various healthy tissues).12 To minimize these concerns, albumin-bound (nab)- 
paclitaxel, a typical albumin nanoparticle carrying the therapeutic drug paclitaxel (PTX), has resulted in an advantageous 
pharmacokinetic (PK) profile and high tumor accumulation.13 Currently, atezolizumab, a monoclonal antibody targeting 
PD-L1 combined with nab-paclitaxel, has demonstrated better results in early-stage TNBC and metastatic TNBC.14–18 

Unfortunately, these promising results will only benefit patients in the PD-L1-positive subgroup.
It is well known that the lack of molecular biomarkers limits the application of nanomedicine. A previous report 

showed that placental oncofetal chondroitin sulfate glycosaminoglycan chain (CSA), a placenta-exclusively expressed 
CSA (pl-CS), which binds the malarial anchor protein VAR2CSA to avoid malaria-infected erythrocyte host clearance, is 
expressed in 90% of stage I-III invasive ductal breast carcinomas.19–22 Recombinant VAR2CSA has strong binding 
activity with primary human breast cancer and metastatic BC cancer cells.23–25 According to the structure of 
VSAR2CSA, the minimal CSA binding region of VAS2CSA consists of the Duffy Binding Ligand-like (DBL) 2X 
domain with flanking interdomain (ID) regions. Further screening was performed on this region, and a small peptide that 
selectively binds to CSA was identified and then synthesized as placental CSA binding peptide (plCSA-BP, here 
abbreviated as plCSA).26–29 As a result, the peptide plCSA could be applied as a targeted ligand for developing an 
actively targeted nano-delivery system for TNBC.

Nanodrug delivery systems (NDDSs) provide efficient approaches for the treatment of TNBC to improve drug 
treatment efficacy.30 Recently, aggregation-induced emission (AIE) materials have emerged as attractive bioimaging 
tools due to their flexible controllability, negligible toxicity, and superior photostability.31–33 AIE luminogens (AIEgens) 
exhibit highly bright fluorescence in the near-infrared (NIR) (700–900 nm) region and have have great application in the 
real-time visualization of biological processes with high temporal/spatial resolution and deep penetration, which make 
them ideal candidates for in vivo long-term tracking of NDDSs in a noninvasive manner.34 Generally, the design of near- 
infrared AIEgens is focused on the donor–acceptor (D–A) structure, which contains alternate electron-donating and 
electron-withdrawing units because the adjustment of the push–pull effect involved in D–A structures has an advantage 
in making molecular emission colors tunable via the modification of the π-conjugated spacers. Previously, Dang et al 
reported a series of D–A type AIEgens employing triphenylamine derivatives as the donors, thiadiazolobenzotriazole as 
the acceptors, which not only displays high brightness in the near-infrared (NIR) emission region from 600 nm to 1000 
nm (photoluminescence quantum yield, PLQYs=11.35%), but also displays excellent photo-stability.35 These features 
endow thiadiazolobenzotriazole-cored AIEgens as ideal tracking agent for long-term visualization of drug delivery 
process in vivo.

In this study, we developed a chondroitin sulfate targeting nanodrug system (plCSA-NPs), which encapsulated 
thiadiazolobenzotriazole-cored NIR AIEgens (TBZ-DPNA) and therapeutic drug PTX, conjugated with plCSA as 
TNBC target peptide. We examined plCSA-NP binding activity and cytotoxicity on TNBC cell lines, and accessed anti- 
tumor effect on subcutaneous and lung metastatic tumor model.

Materials and Methods
Synthesis of Compound 4-(4-(Naphthalen-1-Yl(Phenyl) Amino) Phenyl)-Yl-8-Bromo- 
6-(2-Ethylhexyl)- [1,2,5] Thiadiazolo [3,4- F] Benzotriazole (TBZ-DPNA)
4.8-Dibromo-6-(2-ethylhexyl)- [1,2,5] thiadiazolo[3,4-f] benzotriazole was purchased from HWRK CHEM, and other 
chemicals were purchased from Sigma–Aldrich, J&K, TCI and used without further purification. Solvents and other 
common reagents were obtained from Sigma–Aldrich.
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A solution of (4-(naphthalen-1-yl(phenyl) amino) phenyl) boronic acid(2) (339 mg, 1 mmol) in mixed solvent 
(20 mL, toluene: ethanol: water=18: 1: 1), 4.8-dibromo-6-(2-ethylhexyl)- [1,2,5] thiadiazolo[3.4-f]benzotriazole(3) 
(449 mg, 1.00 mmol), potassium carbonate (412 mg, 2.90 mmol) and tetrakis (triphenylphosphine) palladium(0) 
(116 mg, 0.2 mmol) was combined. The mixture was heated to 120 °C under a nitrogen atmosphere. After 8 h, the pale- 
yellow solution became purple-blue, and was removed from the heat. After cooling to room temperature, the solution was 
evaporated and purified by silica gel chromatography with petroleum ether/dichloromethane to yield TBZ-DPNA as 
a dark blue solid (460 mg, 70%).

Preparation of Nanodrug plCSA-NPs
A mixed solution of TBZ-DPNA (5 mg), DSPE-mPEG (10 mg), DSPE-PEG-COOH (10 mg), and PTX (5 mg) in THF 
(0.5 mL) was added rapidly to 5 mL phosphate-buffered saline (PBS) under ultrasonic conditions, and excess THF was then 
removed with nitrogen, for 5 minutes. Placental CSA-binding peptide (plCSA, EDVKDINFDTKEKFLAGCLIVSFHEGKC) 
and scrambled peptide (SCR, EVDNDKKLGLVFEKDKIFTEFACISHCG) were purchased from China Peptides Co., Ltd. 
(Shanghai, China). The peptides were conjugated to DSPE-PEG-COOH using EDC and NHS to activate the reaction with 
NH2 from the peptide. Excess peptides and other impurities, such as EDC and NHS, were removed by triple filtration using 
AmiconUltra-4 centrifugal filters (MW10kD, Millipore, MA, USA) to obtain the final plCSA-conjugated nanoparticles 
(plCSA-NPs) and SCR-conjugated nanoparticles (SCR-NPs).

Characterization of plCSA-NPs
UV-vis absorption spectra were taken on a PerkinElmer Lambda 25 UV-Vis absorption spectrophotometer. 
Photoluminescence (PL) spectra were recorded with an Edinburgh F900 fluorescent spectrometer. Transmission electron 
microscope (TEM) images were taken on JEM 100CXII (JEOL). The TEM samples were prepared by placing a drop of 
plCSA-NPs solution onto a 300-mesh copper grid and then drying the sample at room temperature overnight. The particle 
sizes and zeta potential of particles were characterized on a Nano-Zetasizer (Nano ZS, Malvern, Malvern Instruments, 
USA) at 25 °C.

Cell Culture
The TNBC cell lines MDA-MB-231 and HCC1937, and the human mammary epithelial cell line MCF-10A were 
purchased from the American Type Culture Collection (ATCC). Cells were grown in DMEM (MDA-MB-231, 
HCC1937) supplemented with 10% FBS. MCF-10A cells were maintained in MEBM (Lonza) supplemented with 
100 ng/mL cholera toxin (Sigma) and MEGM Single Quot (Lonza) supplemented with GA-1000 (gentamycin- 
amphotericin B mixture). All cell lines were maintained at 37 °C in a humidified atmosphere of 5% CO2 before 
experiments.

Ethics Approval for Human Breast Cancer Tissue
Human breast cancer tissues involved this study were obtained from Peking University Shenzhen Hospital. The 
collection and use of human specimens were approved by the Institutional Review Board of Peking University 
Shenzhen Hospital and informed patient consent was given. All procedures in studies involving human participants 
were performed in accordance with the ethical standards of the institutional research committee and with the 1964 
Declaration of Helsinki and its later amendments or comparable ethical standards. The collected breast cancer tissue was 
fixed in 4% paraformaldehyde (PFA) overnight for staining and molecular marker analysis.

Cellular Uptake and Cytotoxicity Assay
TNBC cell lines (MDA-MB-231, HCC1937) and human mammary epithelial cell lines (MCF-10A) were grown to 60% 
confluence in 12-well plates; these cell lines were treated with free NPs, SCR-NPs, or plCSA-NPs for 30 min. The cells 
were washed with PBS and fixed with 4% paraformaldehyde. After staining with DAPI, the cells were visualized under 
a fluorescence microscope (OLYMPUS IX71, Tokyo, Japan).
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For cellular binding activity, MDA-MB-231, HCC1937 and MCF-10A cells were treated with 50 nM free NPs, SCR- 
NPs, or plCSA-NPs for 30 min. The cells were digested with trypsin and resuspended in PBS. All cell suspensions were 
analyzed with flow cytometer (BD, FACSAriaIII, USA).

MTT assay was performed to monitor the cytotoxicity of plCSA-NPs in vitro. MDA-MB-231 were seeded in 96-well 
plates (5×103 cells/well) for 24 h, starved with 0.04% FBS medium for another 12 h, and then treated with free PTX and 
NPs, SCR-NPs and plCSA-NPs with same amount of PTX concentration (from 5 nM to 50 nM) for 48 h. Cell viability 
was determined using the methylthiazole tetrazolium (MTT) method.

In vivo Imaging on Subcutaneous and Metastatic TNBC Models
Animal welfare and experimental procedures were approved by the Committee on the Use of Live Animals for Teaching 
and Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, and carried out in strict 
accordance with the related regulations. All applicable institutional guidelines for the care and use of animals were 
followed.

For subcutaneous tumor mouse model, 4- to 6-week-old female nude BALB/c mice were purchased from Beijing 
Vital River Laboratory Animal Technology Co., Ltd. (Beijing, China) and MDA-MB-231-labelled luciferase cells 
(1×106 cells in 100 μL Matrigel/mouse) were injected into the left axilla. After growth for one week, mice were 
randomly divided into three groups and tail veins were injected with 100μL of 1 mg/mL free NPs, SCR-NPs or 
plCSA-NPs.

The nanoparticle location on mice was measured with an IVIS spectrum instrument (Perkin Elmer) after treatment for 
24 h with excitation (530 nm)/emission (780 nm). Mouse organs and tumor were collected to examine AIEgen with an 
IVIS spectrum instrument. For further study, tumor tissue was fixed with 4% PFA and sectioned to examine AIEgen with 
confocal laser scanning microscopy (TCS SP5, Leica, Hamburg, Germany).

Lung metastasis mouse model was established by tail vein injection of MDA-MB-231 cells labelled with luciferase 
and TOMATO (1×106 cells in 100 μL PBS/mouse). For one week of growth, mice were randomly treated with 100μL of 
1 mg/mL free NPs, SCR-NPs, or plCSA-NPs for 24 h and imaged with the IVIS spectrum. From the sacrificed mice 
major tissues were collected to examine AIEdots accumulation. Lung tissue was fixed with 4% PFA and sectioned to 
measure colocalization with AIEdots and tumor cells (TOMATO).

In vivo Therapeutic Effect on Subcutaneous and Lung Metastatic TNBC Models
Subcutaneous and lung metastatic mouse model established as described in the last section. Following tumor growth 
for one week, mice were randomly divided into five groups (each group had 5–7 mice) and received saline, PTX, NPs, 
SCR-NPs and plCSA-NP treatments once every three days. Subcutaneous tumor length and width were measured with 
vernier calipers per week until day 30, and calculated tumor volume according to (length) × (width) 2×0.5. Tumor 
growth was also determined with luciferin imaging with IVIS spectrum. Tumors were collected and measured for 
weight, then fixed for staining examination. Lung metastatic tumor was also monitored with the IVIS spectrum and 
lungs were excised and fixed for further examination.

Tumor Staining
The excised subcutaneous tumor was placed in paraffin. After sectioning, staining against CD31 (Abcam, ab15580) was 
performed with an immunohistochemistry kit (Key-GEN, Nanjing, China). For the TUNEL assay, the fragEL DNA 
Fragmentation Detection Kit (Calbiochem, Germany) was used to detect apoptotic cells in tumor tissue. The number of 
stained positive cells was calculated with 8–10 vision and quantified as the mean cell number. Lung tissues from 
metastatic model were stained with DAPI to examine tumor cell marker TOMATO location under fluorescence 
microscope.
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Serum Biochemistry Assay and HE Staining
Blood samples were collected from mice in therapeutic subcutaneous and lung metastatic mouse models and the ALT, 
AST, ALP and GCT activity was detected using an automated hematology analyzer. Liver and kidney organs from these 
two mouse models were embedded in paraffin and examined by hematoxylin and eosin (H&E) staining.

Flow Cytometry for Mixed Lymphocytes with TNBC
Mouse blood samples were collected in tubes, and lymphocytes were isolated with lymphoprep gradient. Lymphocytes 
were mixed with MDA-MB-231 in a 1:1 ratio and incubated with 50 nM FITC-plCSA and PE-CD45 antibody for 30 min 
at 4 °C. Following three wash steps in PBS with 2% FBS, the cell mixture was examined with an FC500 flow cytometer 
(Beckman Coulter), and the cell percentages of FITC- or PE-positive cells were analyzed. After that, the mixture of 
MDA-MB-231 cells with lymphocytes was flipped on glass slides and stained with DAPI for nuclei, and plCSA-binding 
breast cancer cells and CD45-binding lymphocytes were observed by microscopy (Olympus BX53, Japan).

Statistics
All the results are presented as the mean±SD of at least three independent experiments. Statistical analyses were 
performed with one-way ANOVA (GraphPad Prism 8.0) for multiple groups. The threshold of p < 0.05 was defined 
as statistically significant.

Results
Rational Design and Optical Properties of TBZ-BPNA
Typically, the integration of strong electron donor–acceptor (D–A) interactions into conjugated structured chromophores 
could remarkably facilitate intramolecular charge transfer (ICT) and conjugation length. In this study, the molecule was 
easily synthesized and purified by a one-step Suzuki reaction with a high yield (Figure 1A). Chemical structure was 
characterized and confirmed by NMR and high-resolution mass spectrometry (HRMS) (Figures S1 and S2). In this 
structure, the thiadiazolo-benzotriazole moiety (TBZ, red) acts as the acceptor, and N, N-diphenylnaphthalen-1-amine 
(DPNA, blue) acts as the donor to form a strong D–A interaction. To investigate the optical properties of TBZ-DPNA, 
UV–vis and photoluminescence (PL) spectra in tetrahydrofuran (THF) were recorded, as shown in Figure 1B, which 
exhibited absorption maxima at 330 nm and 584 nm, respectively, and maximum emission feature was located at 718 nm. 
Furthermore, the AIE properties of TBZ-DPNA were also confirmed by studying its PL spectra in water/DMSO mixtures 
with different water volume fractions, as shown in Figure 1C. When the water fraction was lower than 60%, the emission 
of TBZ-DPNA was rapidly quenched due to the twisted intramolecular charge transfer (TICT) effect. The water fraction 
exceeded 60% and the PL intensity was enhanced because the energy consumption of the excited state was reduced by 
restrained intramolecular motions.

In vitro Targeting and Cytotoxicity Activity Analysis for Nanodrug plCSA-NPs
First, we synthesized peptides plCSA and SCR to access targeting activity on TNBC cell lines and TNBC tumor tissue. Flow 
cytometry and binding assay showed plCSA specifically combined with TNBC tumor and MDA-MB-231 and HCC-1937 
cells (Figures S3 and S4). Next, nanoparticles (NPs) were synthesized with PLGA, soybean lecithin, and DSPE-PEG-COOH 
using a single-step sonication method, which loaded TBZ-BPNA and therapy drug PTX. SCR and plCSA then conjugated 
with NPs through the amino terminus of the peptide to carboxyl groups on the surfaces of nanoparticles to produce SCR-NPs 
and plCSA-NPs (Figure S5). Photophysical properties of plCSA-NPs, as shown in Figure 2A, displayed absorption at 589 nm 
and maximum emission peak at 747 nm with strong fluorescence intensities mainly located in the NIR region. The 
morphology and size measurement of plCSA-NPs showed a nearly monodispersed nanosphere morphology with an average 
diameter of 70 nm, as measured with dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging 
(Figure 2B and C).

To evaluate the targeting activity of plCSA-NPs on TNBC cell lines, MDA-MB-231, HCC1937 and the human 
normal mammary epithelial cell line MCF10A were incubated with 50 nM NPs, SCR-NPs or plCSA-NPs for 4 h. Both 
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MDA-MB-231 and HCC1937 showed increased fluorescence signals on plCSA-NP-treated group (Figure 2D). 
Consistently, plCSA-NP treatment led to aggregated AIEdots accumulation on TNBC cells, most of which located on 
lysosomes (Figure S6). In contrast, little AIEdots was observed on MCF10A, indicated plCSA-NPs did not interact with 
normal human epothelial cell of mammay (Figure 2D). The cytotoxicity of plCSA-NPs was performed on MDA-MB-231 
cells with PTX and same concentration of NPs, SCR-NPs and plCSA-NPs. plCSA-NPs showed significant cell toxicity, 
while approximately 50% of cells were dead when cultured with plCSA-NPs on 50 nM PTX. However, PTX, NPs and 
SCR-NPs on this concentration had little effect on cell viability (Figure 2E). Overall, these data provided solid data for 
plCSA-NP’s targeting and cytotoxicity activity to TNBC cell lines.

Biodistribution for plCSA-NPs in Subcutaneous Mouse Model
A mouse subcutaneous tumor model was established with female nude mice injected with MDA-MB-231 cells into the left 
axilla. When the tumor grew for one week, nanoparticles were administered by intravenous injection. The fluorescence of 
whole animal imaging was used to investigate the tumor targeting and nanoparticle distribution (Figure 3A); NP and SCR- 
NP treatments were used as controls. As indicated, the fluorescence signal from plCSA-NPs accumulated on tumor site and 
signal intensity gradually increased; signal peak occurred at 8 h, and until 24 h showed no attenuation compared to the NPs 
and SCR-NPs (Figure 3B). At 24 h post-injection, ex vivo tumor and organs were dissected and examined using fluorescence 
signal accumulation (Figure 3C). As indicated in Figure 3D, plCSA-NP promoted AIEdots aggregation on tumor compared 
to NPs and SCR-NPs, which was further confirmed by AIEdots deposition in tumor tissue (Figure 3E). These data suggested 
that plCSA-NPs positively targeted TNBC subcutaneous tumors.

Figure 1 Design synthesis and optical properties of TBZ-BPNA. (A) Synthetic route of TBZ-BPNA. (B) Absorption and emission spectra of TBZ-BPNA in THF solution. 
(C) Plot of PL intensity of TBZ-BPNA at maximum emission wavelength vs the water fraction in the water/DMSO mixtures.
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Figure 2 Cellular uptake and cytotoxicity assay for plCSA-NPs. (A) Absorption and PL spectrum of plCSA -NPs in water. (Ex=589 nm) (B and C) Size measurement of 
plCSA-NPs, scale bars=50nm. (D) Representative flow cytometry histograms of fluorescence curves for MDA-MB-231, HCC1937 and MCF10A after exposed 50nM NPs, 
SCR-NPs or plCSA-NPs. The aggregated AIEdots of plCSA-NPs also observed on cellular cell, scale bars=20μm. (E) Proliferation curve of MDA-MB-231 exposed to PTX, 
NPs, SCR-NPs or plCSA-NPs with PTX concentration from 5nM to 50nM for 24h. **** indicates p ≤ 0.0001 by one-way ANOVA with post hoc Tukey.
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plCSA-NPs Inhibited TNBC Subcutaneous Tumor Growth
The CCK-8 test was used to evaluate the therapeutic effect of plCSA-NPs on tumor growth in vitro. As the concentration 
of plCSA-NPs added to TNBC cell lines, the cell proliferation was inhibited. The xenograft mouse model was established 
as described in Figure 3A. After tumor growth for one week, plCSA-NPs was administered to tumor-bearing mice by 
intravenous injection for one to three days. After treatment for 30 days, the tumor volume and imaging data showed 
decreased tumor growth in plCSA-NP-treated groups (Figure 4A), which was further confirmed by the smaller size and 
lower weight of tumor (Figure 4B). Accordingly, increased apoptosis in tumor cells and decline in vessel formation were 
observed in plCSA-NP-treated tumor (Figure 4C). In addition, the mouse body weights and H&E staining results showed 

Figure 3 Biodistribution of plCSA-NPs in subcutaneous mouse model. (A) The scheme illustrates the process plCSA-NPs on TNBC subcutaneous tumor model. (B) 
Representative fluorescence images of nude mice bearing luciferase-MDA-MB-231 subcutaneous tumors intravenously injected with NPs, SCR-NPs or plCSA-NPs with IVIS 
spectrum imaging system. Circles point out the region of interest (ROI) where fluorescence intensity is measured. The relative mean fluorescence signal intensity of AIE in 
subcutaneous MDA-MB-231 tumors in mice 0, 8, and 24 h post-intravenous injection of 100 μL 1mg/mL NPs, SCR-NPs or plCSA-NPs (n=4). (C and D) AIEdots distribution 
on the main organs (heart, liver, spleen and kidney) and tumor tissues. (E) The representative image for AIEdots accumulation on tumor tissue, scale bars=100μm. Statistical 
significance calculated methods using the one-way ANOVA. **p <0.01, ***p <0.001 versus NPs group, #p ≤0.05 and ###p ≤0.001 versus SCR group.
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Figure 4 Inhibitory effects of plCSA-NPs against subcutaneous TNBC tumor. (A) The tumor image of subcutaneous tumor model after intravenously injected saline, free 
PTX, NPs, SCR-NPs, or plCSA-NPs for 30 days (5 mg/kg PTX equivalent) (each group with 5 mice). (B) Caliper measurements of tumor sizes and calculated tumor volume 
in mice after the intravenous injection of nanoparticle every three days (data represent the mean±SD). (C) Tumor volume and tumor weight were presented after mice 
sacrificed. (D) Tunnel assay and CD31 staining performed on tumor tissue section and presented as representative image, scale bars=50μm. The apoptosis cell numbers and 
CD31 staining areas were calculated from 8–10 version for each mouse tissue. **p≤0.01, ***p ≤0.001, ****p ≤0.0001, #p ≤0.05, ##p ≤0.01, ###p ≤0.001 were calculated with 
the one-way ANOVA.

International Journal of Nanomedicine 2022:17                                                                                   https://doi.org/10.2147/IJN.S380358                                                                                                                                                                                                                       

DovePress                                                                                                                       
5555

Dovepress                                                                                                                                                           Huang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


no obvious organ damage from nanoparticle treatment (Figure S7). Therefore, we concluded that plCSA-NPs inhibited 
TNBC tumor growth.

plCSA-NPs Targeting Activity on TNBC Tumor in the Lung
To explore the role of plCSA-NPs on TNBC metastasis, a lung metastatic model was established with tail vein injection 
of MDA-MB-231 cell-labelled luciferase and TOMATO (Figure 5A). When grown for one week, tumor could be 
observed on the mouse lung site, then plCSA-NPs were administered to mice via tail vein injection. We examined 
fluorescence signal at 4 h, 8 h and 24 h (Figure 5B); similar to subcutaneous tumor, plCSA-NPs significantly 
accumulated on lung tumor site compared to NPs and SCR-NPs groups (Figure 5C and D). Furthermore, we examined 
AIEdots and TOMATO signals (labelled for tumor cells) in lung tissue sections. A lot of AIEdots aggregated around 
tumor cells in plCSA-NP group, while few could be observed in NP and SCR-NP groups (Figure 5E). These results 
suggested that plCSA-NPs had the ability to target TNBC lung metastatic tumor.

plCSA-NPs Suppressed TNBC Tumor Growth in the Lung
Inspired by the results of plCSA-NPs on TNBC metastatic tumor, we investigated the therapeutic activity of plCSA-NPs 
on TNBC metastasis. As mentioned in the last section, lung metastatic mouse model was established with tail vein 
injection of MDA-MB-231-TOMATO cells into 4-week-old nude female mice. After growth for 7 days, plCSA-NPs 
were treated via the tail vein every one to three days for 30 days. Tumor growth showed PTX alone; NP or SCR-NP 
groups had similar growth curves to those of the saline group, suggest these treated group had little effect on metastatic 
tumor. By comparison, plCSA-NP group significantly suppressed metastatic tumor growth, but had no effect on mouse 
weight (Figure 6A-C). Tumor growth in lung tissue was further examined with TOMATO. The results showed that the 
saline, PTX, NP and SCR-NP groups had tremendous tumor burden in lung tissue, while the plCSA-NP group had much 
smaller tumor, as indicated by TOMATO (Figure 6D), suggesting that plCSA-NPs had anti-tumor effect on lung 
metastasis.

Toxicology Analysis for plCSA-NPs
To further investigate the potential toxicology of plCSA-NPs, each treated group from the lung metastatic mouse model 
was subjected to a serum biochemistry assay and histological examination of liver and kidney tissue sections. The liver 
function indicators, including alanine aminotransferase (ALT), aspartic acid transaminase (AST), alkaline phosphatase 
(ALP) and γ-globulin transferase (GGT), were all found to be normal (Figure 7A) and revealed no obvious hepatic 
disorders in plCSA-NP-treated mice. In addition, the histological examination of liver and kidney tissue sections 
(Figure 7B) displayed a similar architecture to that in the saline group, with intact hepatic cords, fewer inflammatory 
cells around the central vein, less hepatocyte necrosis, and fewer activated Kupffer cells. Further, we verified biocompat-
ibility of plCSA-NP by hemolysis test (Figure S8) and, combined with negligible influences of plCSA-NPs on mouse 
body weight (Figure 6C), it is reasonable to conclude that plCSA-NPs was a biocompatible nanodrug with no noticeable 
side effects in living mice.

Distinguishing Metastatic TNBC Cells from Peripheral Circulation
In the clinic, approximately two-thirds of TNBC patients treated with neoadjuvant chemotherapy will relapse and 
develop metastasis.36 Dissemination of TNBC cells through blood circulation is an important intermediate step that 
represents the switch from localized to systemic disease.37,38 Early detection and characterization of circulating tumor 
cells (CTCs) is therefore important as a general strategy to check and prevent the development of overt TNBC metastatic 
disease.39,40 Although our results show the great potential of plCSA-NPs to clean up metastatic TNBC tumor, we 
attempted to evaluate their effect on circulated TNBC. In this experiment, we collected lymphocyte cells from peripheral 
circulation, mixed MDA-MB-231 with ratio of 1:1, and performed flow cytometry with FITC-plCSA and PE-CD45 to 
distinguish TNBC and lymphocytes. We incubated cell mixture with FITC-SCR or FITC-plCSA with PE-CD45 together 
for 30 min and flow cytometry results showed plCSA 31% binding activity with MDA-MB-231 31%, compared to Ctrl 
and SCR groups 0.116% and 0.265% (Figure 8A). In contrast, the CD45 combined lymphocyte percentage was not 
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Figure 5 plCSA-NPs targeting activity on TNBC tumor in the lung. (A) The scheme illustratiing the process of nude mice lung metastasis model intravenously injected with 
100 μL 1mg/mL NPs, SCR-NPs or plCSA-NPs. Mice monitored tumor sites after 24 h using IVIS spectrum imaging system. (B) Representative AIEdots image on lung 
metastatic tumors after intravenously injected with NPs, SCR-NPs or plCSA-NPs. Circles point out the region of interest (ROI) where fluorescence intensity measured. The 
relative mean fluorescence signal intensity of AIE in mice 0, 8, and 24 h post-intravenous injection of 100 μL 1mg/mL NPs, SCR-NPs or plCSA-NPs (n=4). (C and D) AIEdots 
distribution on the main organs (heart, liver, spleen, kidney and lung). (E) AIEdots distribution (red) and tumor cell (TOMATO, green) location on lung tissue; scale 
bars=100μm for 4X and scale bars=25 μm for 40X.
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Figure 6 plCSA-NPs suppresses TNBC lung metastatic tumor growth. (A) The representative tumor image on lung metastasis mice model with intravenous injection of 
saline, free PTX, the NPs, SCR-NPs, or plCSA-NPs (5 mg/kg PTX equivalent) for 30 days. (B) Quantification of the IVIS signal from metastasis tumor cell at different time 
intervals from days 0 to 30 after injection. (C) Mouse weight of each group after treatment. (D) Lung tissues were sectioned after mice scarified and tumor growth was 
examined with TOMATO signal. The version is representative image from microscopy on 4X; scale bars=50 μm. **p ≤0.01 (with PTX group) and ##p ≤0.01 (with NPs group) 
were calculated with the one-way ANOVA.
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significantly changed in these three groups. These results were observed in the HCC1937 cell line; plCSA binding 
activity was approximately 32% with HCC1937 cells, while the SCR and Ctrl groups were only 9.27% and 5.44%, 
respectively (Figure S9). Following these results, FITC-plCSA-treated cell mixture examined under a microscope readily 
indicated tumor cells (FITC labelled) in background of normal CD45-positive lymphocytes (red) (Figure 8B). These 
results indicated that plCSA-NPs had the ability to clean up tumor cells in the circulation to block TNBC metastasis.

Discussion
Triple-negative breast cancer (TNBC) is more aggressive than other subtypes, has a poor prognosis and more potential to 
metastasize to other tissues, which dramatically reduces the overall survival rate of patients.41 Lack of well-defined 
molecular targets is a big obstacle to treating TNBC.42,43 Here, our results suggested a TNBC targeted nanodrug delivery 
system, plCSA-NPs, which achieved: (I) recognized TNBC tumor cells and captured circulated TNBC in peripheral 
circulation; (II) surveillance of primary and metastatic tumor growth in a non-invasive manner; (III) successfully 
delivered therapeutic drug PTX to subcutaneous and lung metastatic TNBC cells and inhibited tumor growth. Overall, 
our results provided a promising TNBC targeting nanodrug delivery system for TNBC treatment.

There are several reasons to choose oncofetal chondroitin sulfate for the TNBC therapeutic targeting. First, 
placenta CSPG is a distinct CSA subtype only expressed on placental syncytium44 and cancers tissue include breast 
tumor.20 Our synthesized peptide plCSA has high affinity with CSA(KD~15 nM)26 on tumor tissues.29,45 Primary 
results provided solid data that plCSA had little bind activity with human mammary epithelial cells, but high affinity 
with TNBC cells and tumor tissues (Figures S3 and S4). Second, oncofetal chondroitin sulfate on tumor surface 
undergoes constitutive internalization when bound by anchor protein VAR2CSA,23 which was further confirmed by 

Figure 7 Toxicities of plCSA-NPs on lung metastatic mouse. (A) Blood test parameters in terms of liver function of each treated group on lung metastasis mouse. The saline 
mice were used as the control. (B) HE staining for liver (upper panel) and kidney tissue (lower panel) for renal and hepatic toxicity; scale bars=50 μm.
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plCSA-NPs cellular uptake and cytotoxicity on MDA-MB-231 and HCC-1937 (Figure S6). Our study showed that 
plCSA-NPs’ anti-tumor effect on TNBC tumors and metastatic tumors in lungs is likely dependent on binding with 
oncofetal chondroitin sulfate on TNBC surface and then endocytosis of nanoparticles. Third, plCSA is small peptide 
with 28 amino acids, easily synthesized and conjugated on surface. plCSA-NPs will be more efficient than other 

Figure 8 plCSAs’ ability to distinguish TNBC cells from peripheral circulation. (A) The flow cytometry was performed to examine fluorescence of FITC-plCSA (y-axis) with 
PE-conjugated anti-CD45 antibody (x-axis). The image is the representative result for three times. (B) MDA-MB-231 cells were mixed with PBMCs in a 1:1 ratio and stained 
with FITC-plCSA (green), PE-CD45 antibody (red) and DAPI (blue). Scale bars=10 μm.
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target systems like mAb in escaping systemic clearance.46 In addition, we suggested plCSA as a tool to enrich 
circulated TNBC from peripheral blood, to play a role on clean-up of tumor cells in the circulation or capture of 
tumor cells for diagnosis of molecular residual disease (MRD).47 Taken together, we believe that plCSA may be 
a more effective tumor cell target for nanoparticle delivery to TNBC tumors compared to other cell surface proteins.

Aggregation-induced emission (AIE) materials have great potential for non-invasive NIR fluorescence image-guided 
therapy for TNBC and TNBC metastasis.48,49 Here, our designed NIR AIEgens TBZ-DPNA, based on a donor−acceptor 
(D−A) architecture, access molecules with an intramolecular charge-transfer (ICT) excited state and deeply red-shifted 
absorption and emission bands.50,51 This probe excites near-infrared (NIR) dyes at wavelengths from 700 to 1000 nm and 
provides high-contrast images to trace TNBC subcutaneous and metastatic tumor growth. More importantly, AIEgens 
involving photodynamic therapy (PDT) has emerged as a novel, non-invasive and safe treatment, causing minimal 
damage and with few side effects to widely investigate in TNBC therapy.52,53 This part was not supported by the current 
study and we have planned for the next study to optimize particles and investigate PDT on TNBC tumors.

Conclusion
In summary, our study suggests a promising TNBC targeting nanodrug delivery system, which achieved good targeting 
efficiency and therapeutic effects against TNBC subcutaneous and lung metastatic tumor growth.
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