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Abstract: FMS-like tyrosine kinase 3 (FLT3) is mutated in approximately 30% of acute myeloid leukemia (AML) patients. The 
presence of FLT3-ITD (internal tandem duplication, 20–25%) mutation and, to a lesser extent, FLT3-TKD (tyrosine kinase domain, 5– 
10%) mutation is associated with poorer diagnosis and therapy response since the leukemic cells become hyperproliferative and 
resistant to apoptosis after continuous activation of FLT3 signaling. Targeting FLT3 has been the focus of many pre-clinical and 
clinical studies. Hence, many small-molecule FLT3 inhibitors (FLT3is) have been developed, some of which are approved such as 
midostaurin and gilteritinib to be used in different clinical settings, either in combination with chemotherapy or alone. However, many 
questions regarding the best treatment strategy remain to be answered. On the other hand, various FLT3-dependent and -independent 
resistance mechanisms could be evolved during FLT3i therapy which limit their clinical impact. Therefore, identifying molecular 
mechanisms of resistance and developing novel strategies to overcome this obstacle is a current interest in the field. In this review, 
recent studies of approved FLT3i and knowledge about major resistance mechanisms of clinically approved FLT3i’s will be discussed 
together with novel treatment approaches such as designing novel FLT3i and dual FLT3i and combination strategies including 
approved FLT3i plus small-molecule agents targeting altered molecules in the resistant cells to abrogate resistance. Moreover, how 
to choose an appropriate FLT3i for the patients will be summarized based on what is currently known from available clinical data. In 
addition, strategies beyond FLT3i’s including immunotherapeutics, small-molecule FLT3 degraders, and flavonoids will be summar-
ized to highlight potential alternatives in FLT3-mutated AML therapy. 
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Introduction
Acute myeloid leukemia (AML) is an aggressive disease characterized by the accumulation of abnormal hematopoietic 
precursors, which are overproliferative with blocked differentiation and suppressed apoptosis in the bone marrow and 
peripheral blood.1 Although AML is genotypically and phenotypically heterogeneous, various chromosomal abnormal-
ities and gene mutations have been identified, which are crucial to determine AML classification, risk groups, and 
treatment strategies.2

FMS-like tyrosine kinase 3 (FLT3) gene encodes for a receptor tyrosine kinase (RTK), which is mainly expressed on 
immature hematopoietic progenitors and hematopoietic stem cells (HSCs). Its expression is reduced when the cells 
complete the differentiation process.3 FLT3 signaling is initiated when FLT3 ligand (FLT3 L) binds to FLT3, inducing 
FLT3 dimerization and activation via autophosphorylation at tyrosine residues. PI3K/AKT, MAPK, and JAK2/STAT5 are 
the activated downstream signaling pathways, which lead to cell proliferation and suppression of apoptosis.4

Activating mutations in FLT3 account for 30% of all AML cases, which are FLT3 internal tandem duplication 
(ITD) and FLT3 tyrosine kinase domain (TKD) mutations. FLT3-ITD is observed in 20–25% of newly diagnosed 
AML cases while FLT3-TKD mutations represent 5–10% of all cases.5 FLT3 receptor is continuously activated as 
a result of these mutations irrespective of the presence of FLT3 L, leading to increased cell proliferation and decreased 
cell apoptosis.1,5 In addition to PI3K/AKT and MAPK signaling pathways, STAT5 pathway is found to be 
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continuously activated in the presence of FLT3-ITD.6 Clinical impacts of FLT3-ITD mutations are associated with 
higher relapse rate, decreased overall survival (OS) rate, poorer treatment response and shorter disease-free survival 
(DFS) compared to patients with wild-type FLT3 (WT-FLT3) while adverse clinical outcomes of FLT3-TKD muta-
tions are controversial.7

Identifying the roles of FLT3 mutations in disease pathogenesis and clinical outcomes has made it a therapeutic 
target, resulting in the development of FLT3i with different specificity and potency.8 Although some of these 
inhibitors, midostaurin and gilteritinib, have been clinically used in combination therapies or alone, respectively, 
for FLT3-mutated AML, responses are short-lived and patients relapse due to the emergence of resistance.9 

Therefore, enlightening primary or secondary resistance mechanisms and designing novel modalities to overcome 
resistance are urgently needed to maximize the benefits of FLT3i. In addition to FLT3i, novel targeted therapies are 
currently at the stage of pre-clinical and early clinical investigation, which include novel FLT3i, dual FLT3i, FLT3 
targeted CAR T cell therapy and FLT3-specific antibodies.10 Additionally, novel immunotargets have been identified 
with therapeutic potential. Moreover, there are studies investigating the effects of small-molecule FLT3 degraders 
such as HSP90 and proteasome inhibitors on FLT3 positive AML. Activities of flavonoids or their synthetic analogs 
on FLT3 positive AML could lead to the discovery or development of novel FLT3i or to their implementation as 
integrative medicine or nutraceuticals into FLT3 AML therapy.11 It seems to be the most rational strategy to combine 
approved FLT3i with the modulators of altered intracellular targets, resulting in the discovery of novel targets and 
therapeutics.

In this review, we aim to expand on the body of the literature in the management of FLT3 AML and provide an 
update on newly reported knowledge by specifically focusing on targeted FLT3 therapies including clinically approved 
FLT3is, novel FLT3i, combination approaches, immunotherapeutics, small-molecule FLT3 degraders and flavonoids. 
Additionally, mechanisms observed in clinical or experimental resistance to approved FLT3is will be discussed together 
with potential solutions to reverse the resistant phenotype.

FLT3 Structure
The FLT3 gene, encoding FMS-like tyrosine kinase 3 transmembrane receptor, is located on chromosome 13q12, 
containing 24 exons and 993 amino acid residues.5,12,13 FLT3, also known as fetal liver kinase 2 or human stem cell 
kinase-1, belongs to the type III RTK family, which also includes FMS, KIT, and PDGFR kinases that share strong 
sequence similarities.13 FLT3 receptor is mainly expressed on HSCs, multipotent progenitors, common myeloid and 
lymphoid progenitor cells, and mature dendritic cells.5,14 The expression of FLT3 is lost or reduced once the cells 
differentiate into mature lymphoid or myeloid cells.15–17

After translation of the receptor as a 110 KDa protein, it is sent to the endoplasmic reticulum (ER) to be transformed 
into 130 KDa N-glycosylated immature protein that is rich in mannose. Subsequently, it is further processed in the Golgi 
apparatus (GA) to become a mature 160 KDa protein which will be then directed to the cell surface.18,19 The final form 
of FLT3 consists of 4 different domains: an extracellular domain containing 5 immunoglobulin-like subdomains, 
a transmembrane domain, an intracellular juxtamembrane (JM) domain, and an intracellular C-terminal domain, 
comprising 2 tyrosine kinase subdomains; tyrosine kinase domain 1 and 2 (TKD1 and TKD2) connected by an activation 
loop (A-loop) (Figure 1).5

FLT3 L is an extracellular ligand produced by a wide range of cells including lymphocytes, HSCs, and bone marrow 
stromal cells.1,14,20 FLT3 L is found as membrane-bound or in soluble form.20 The concentration of soluble FLT3 L is 
generally low, however, can increase exponentially due to aplasia causing only necessary activation of FLT3 via the 
negative-feedback mechanism.21 Binding of FLT3 L to the extracellular domain of FLT3 causes structural changes 
including dimerization of the monomeric receptor. The JM domain has an inhibitory function on the kinase domain. 
Upon binding, the JM domain changes conformation to make the kinase domain accessible for ATP binding, which 
eventually leads to autophosphorylation of several tyrosine residues and activation of the receptor.12,22,23 Activation of 
the receptor further activates the downstream signaling pathways such as PI3K and RAS cascades, resulting in 
hematopoietic cell maturation and proliferation.23 Thus, the function of FLT3 L is to act as a growth factor to stimulate 
myelopoiesis.24
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FLT3 Mutations
FLT3 mutations are the most frequently identified mutations in AML patients.25 Of all cases in AML, FLT3-ITD and FLT3- 
TKD account for approximately 20–25% and 5–10%, respectively.5 The receptor, which stays in a monomeric form in WT- 
FLT3, becomes dimerized independent of the FLT3 L binding in mutated FLT3.5,26 Therefore, mutations in the receptor cause 
activation of the tyrosine kinase even in the absence of the ligand resulting in aberrant proliferation of the malignant cells.26

FLT3-ITD mutations are in frame gain-of-function mutations occurring in the JM domain which, in fact, is responsible 
for the inhibition of the receptor activation through the inhibition of the kinase domain; therefore, the mutation constitu-
tively activates the TKD action.27–29 Patients with FLT3-ITD mutations show increased relapse and decreased OS.27 FLT3- 
ITD occurs as a duplication of a fragment that varies in length and position. The length of the fragment is evidently 
negatively correlated with the OS rate.30,31 FLT3-TKD mutations are generally single amino acid mutations such as 
substitution, deletion, and insertion in the A-loop of the TKD, causing loss of auto-inhibition.21,32,33 The most common 
point mutations in FLT3-TKD are substitution of aspartic acid of TKD2 with tyrosine or histidine at residue 835 and 
substitution of asparagine or phenylalanine of TKD1 at residues of 676 and 691, respectively (Figure 1).32,33

FLT3 Signaling
In WT-FLT3, several signaling pathways are activated to regulate the proliferation, differentiation, and apoptosis of the 
HSC.20 Upon binding of FLT3 L, trans-autophosphorylation of tyrosine residues in FLT3 is followed by binding of 
adaptor proteins including SHP2, GRB2, and SRC family kinases, leading to activation of mainly PI3K/Akt/mTOR and 
RAS/MEK/ERK pathways.34–38 FLT3-ITD and FLT3-TKD activate similar pathways with WT-FLT3. However, FLT3- 
ITD also induces JAK/STAT signaling through STAT5A phosphorylation.39 FLT3-TKD shows increased activation of 
SHP1 and SHP2, of which SHP1 is a negative reGulatory phosphatase for the JAK signaling pathway.40,41 Therefore, 
only low levels of JAK2 and STAT3 activation are observed in FLT3-TKD.42 Moreover, FLT3-ITD mutations can 
decrease the expression of c/EBPalpha and PU.1 which are associated with the differentiation of myeloid cells.39 In 
contrast, FLT3-TKD mutations do not suppress the c/EBPalpha and PU.1.39,43 (Figure 2).

Figure 1 FLT3 structure and common FLT3 mutations.1,42 

Notes: Data from the references: ©2012 Grafone et al, Licensee PAGE Press, Italy. Grafone T, Palmisano M, Nicci C, Storti S. An overview on the role of FLT3-tyrosine 
kinase receptor in acute myeloid leukemia: biology and treatment. Oncol Rev. 2012;6(1):e8-e8 under Creative Commons CC BY-NC 3.0.1 ©2018 Staudt et al, Licensee 
MDPI, Basel, Switzerland. Staudt D, Murray HC, McLachlan T, et al, Targeting oncogenic signaling in mutant FLT3 acute myeloid leukemia: the path to least resistance. 
International Journal of Molecular Sciences. 2018;19(10):3198 under Creative Commons CC BY 4.0.42
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Leukemogenesis in FLT3 Positive AML
The two-hit model of leukemogenesis suggests that class I and class II mutations must occur together. Class I mutations 
activate the proliferative pathways and class II mutations impair hematopoietic differentiation in AML.44,45 Along with K/ 
NRAS, TP53, and c-KIT mutations, FLT3 mutations are classified as class I mutations. It is still controversial whether an 
FLT3 mutation is a passenger or driver mutation even though it seems to be an early event in disease development.46,47 

Isolated FLT3-ITD mutations, when injected into transgenic mice were not sufficient to induce leukemia, suggesting that 
FLT3 mutation is a passenger mutation.48 However, the high incidence rate of FLT3 mutations and emergence of additional 
mutations along with FLT3 leading to FLT3i resistance suggests that FLT3 mutations are driver mutations.49–51 75% of the 
FLT3-ITD positive patients still have FLT3-ITD mutation after relapse, suggesting that FLT3 mutation is a driver 
mutation52 and the FLT3 mutation induced shifting from the pre-leukemic state to leukemia.53 Several important genes 
including MYC, GAB2, and DNMT3A have been identified to cooperate with FLT3 in promoting leukemogenesis.

MYC family genes are regulated by upstream FLT3-ITD signaling and contribute to leukemogenesis. In an FLT3-ITD 
mouse model, simultaneous upregulation of MYC genes and downregulation of the MYC antagonists, the MXD genes 
was observed, which could explain the expansion of leukemic progenitors.54 c-MYC reportedly increased the expression 
and stability of SIRT1 deacetylase in FLT3-ITD AML, resulting in the maintenance of leukemic stem cells (LSC).55 

Telomerase reverse transcriptase (hTERT) upregulated in FLT3-ITD AML cells in a c-MYC dependent manner and 
inhibition of FLT3-ITD caused transcriptional repression of c-MYC.56 FLT3-ITD induced c-MYC, which increased the 
transcription of alternative nonhomologous end-joining (NHEJ) pathway, leading to genomic instability.57

Gab2, an amplifier protein in signaling pathways, is identified as an essential signaling molecule for leukemic 
transformation in FLT3-ITD AML. Bone marrow cells from Gab2-deficient and -proficient or -haploinsufficient mice 
were transfected with FLT3-ITD. FLT3-ITD infected cells survived when Gab2 is functional; however, FLT3-ITD 
infected cells could not transform in the absence of Gab2.58 In a recent study, Gab2 deficiency was shown to prevent 
FLT3-ITD AML development in an FLT3-ITD knock-in, DNMT3A haploinsufficient mouse model.59

Figure 2 FLT3-ITD signal transduction.1,9 

Notes: Data from the references: ©2012 Grafone et al, Licensee PAGE Press, Italy. Grafone T, Palmisano M, Nicci C, Storti S. An overview on the role of FLT3-tyrosine 
kinase receptor in acute myeloid leukemia: biology and treatment. Oncol Rev. 2012;6(1):e8-e8 under Creative Commons CC BY-NC 3.0.1 ©2017 Hospital et al, Licensee 
Dove Medical Press Limited. Hospital MA, Green AS, Maciel TT, et al, FLT3 inhibitors: clinical potential in acute myeloid leukemia. Onco Targets Ther. 2017;10:607-615 
under Creative Commons CC BY-NC 3.0.9
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FLT3-ITD knock-in and DNMT3A (a DNA methyltransferase) knock-out mice model had reduced disease onset and 
shortened survival as compared to either mutation alone, proving the role of DNMT3A mutations in driving leukemo-
genesis via enhancing self-renewal capacity of long-term-HSCs (LC-HSCs). The loss of a single allele of DNMT3A was 
sufficient to shorten survival and induce leukemia development.60

Prognostic and Clinical Impact of FLT3 Mutations
AML patients with an FLT3 mutation have poor prognosis compared to patients with WT-FLT3. The response rates of 
AML patients with or without an FLT3 mutation are similar; however, patients with an FLT3 mutation are more likely to 
experience relapse.61,62 Even when FLT3 mutation is not detected, the receptor can still be overexpressed, resulting in the 
survival and proliferation of the leukemic cell.13,24 Furthermore, chemotherapy can induce aplasia and stimulate FLT3 
L production which eventually leads to recovery and expansion of the AML cells.24

The association of the FLT3-TKD mutation with the prognosis of AML is still not clear, although FLT3-TKD mutation 
increases the kinase activity.2,32,33 On the other hand, FLT3-ITD mutation alone is an adverse prognostic marker. The presence 
of FLT3-ITD is associated with high leukemic burden, poor OS, and early relapse.21,63 The prognostic impact of FLT3-ITD 
depends on the mutant-to-WT allelic ratio (AR), mutation insertion site, the length of the ITD duplication, karyotype, and the 
co-existing mutations.2,64–66 While FLT3 mutations contribute to the uncontrolled proliferation of leukemic cells, other 
mutations such as DNMT3A, NPM1, and IDH1/2 cause impaired differentiation and self-renewal.5,67,68

One of the most common co-mutations in FLT3-ITD AML occurs in DNMT3A. The presence of a DNMT3A co- 
mutation was required to consider FLT3-ITD as an adverse prognostic indicator. There was no significant difference in OS 
between FLT3-ITD positive and FLT3-ITD negative patients in the absence of DNMT3A co-mutation. Patients with FLT3- 
ITD and DNMT3A mutation had shorter OS compared to patients with either FLT3 mutation or DNMT3A mutation. After 
post-induction therapy, the patients with DNMT3A and FLT3-ITD co-mutation showed the highest rate of relapse.69

The nucleophosmin 1 (NPM1) gene encodes a multi-functional protein and is mostly mutated in FLT3-ITD AML. 
NPM1 mutations could be useful to determine the prognosis, which is dependent on the presence or absence of FLT3- 
ITD and FLT3-ITD AR.70 Based on the risk stratification organized by the European LeukemiaNet (ELN) and the 
National Comprehensive Cancer Network (NCCN), the presence of WT-NPM1 and FLT3-ITD mutation is considered as 
adverse risk. High FLT3-ITD AR and co-existing NPM1 mutation are classified as intermediate risk while low FLT3-ITD 
AR and NPM1 mutation are categorized as favorable.65,71 The effects of age and gender on NPM1 and FLT3-ITD 
mutations were investigated in 1570 patients younger than 75 years old. Females had more FLT3-ITD and/or NPM1 
mutations compared to males. More males were double negative. FLT3-ITD caused poor survival in younger patients 
while NPM1 was related to good survival in older patients. FLT3-ITD/NPM1 double mutant patients’ survival was less 
related to age.72 In a study, patients having FLT3-ITD, DNMT3A and NPM1 triple mutations were significantly younger 
than patients having single or double mutations. Most of the triple-mutated patients were women having heavy disease 
burden and high white blood cell and bone marrow blast counts. Patients carrying triple gene mutations had the shortest 
OS followed by DNMT3A alone, FLT3-ITD/DNMT3A double mutation. The response to treatment was the best in 
patients with DNMT3A/NPM1 double mutation. Patients having triple mutation and FLT3-ITD alone showed no 
response to treatment. However, patients with either NPM1 mutation alone or FLT3-ITD alone had longer OS.73

Other co-mutations such as IDH1/2, CEBPA, and ASXL1 could affect the prognosis of AML patients. The prognostic 
analysis of isocitrate dehydrogenase (IDH1 and IDH2) mutations in newly diagnosed FLT3-ITD AML patients showed 
that double-mutated patients had higher white blood cell counts, increased peripheral and bone marrow blast percentages, 
a higher frequency of NPM1 mutations and a lower frequency of DNMT3A. There was no significant difference in OS 
between double-mutated and FLT3-ITD patients.74 In a recent study, CR did not differ in registered AML patients 
regardless of their molecular abnormalities including FLT3-ITD.75

AML Patients with additional Sex Comb-like 1 (ASXL1) and FLT3-ITD mutations had poor prognosis with a shorter 
OS, EFS,76 and RFS in Egyptian AML patients.77

The prognostic effect of CCAAT/enhancer binding protein A (CEBPA) involved in the proliferation and differentia-
tion of myeloid progenitor cells depends on whether patients carry double or single mutated CEBPA. Single mutated 
CEBPA was seen more commonly in FLT3-ITD mutated AML patients although relatively less percentages of double 
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mutated CEBPA were also observed.78 The effect of CEBPA mutation in patients with R/R FLT3-ITD-positive AML 
treated with quizartinib or SC was analyzed and CEBPA mutations were associated with high CRc rates and relatively 
long median OS, regardless of the treatment protocol.79

The prognostic significance of mutations in R/R FLT3-ITD AML was evaluated compared to the mutational status of 
newly diagnosed FLT3-ITD AML patients. The frequency of FLT3-ITD mutation increased while that of CEBPA biallelic 
(double) mutation decreased. NPM1, FLT3-ITD, and DNMT3A triple mutations were only found in the relapse group 
although their co-existence was detected in newly diagnosed, relapsed, and refractory patients. Refractory patients with NPM1 
and FLT3-ITD co-mutation experienced shorter OS than the patients with FLT3-ITD mutation alone or WT-NPM1.80

Single, double and triple mutations of FLT3-ITD, NPM1, and DNMT3A were more prevalent in females. The allelic 
ratio of FLT3-ITD was not found to be different among the sexes. FLT3-ITD mutated female population had significantly 
poor outcomes. FLT3-ITD patients younger than 60 years had poor OS compared to older patients. Considering the sex 
and age, the female and younger population had poor OS, while there was not any significant difference in OS between 
the young and old male patients.81

In a recently published study, 2017 ELN risk classification has been revisited based on the current understanding of 
the roles of molecular targets in AML. The updated version included AML with FLT3-ITD in the intermediate risk 
group, irrespective of the AR or co-presence of NPM1 mutation. The absence of FLT3-ITD with WT NPM1 and the 
presence of mutated NPM1 with FLT3-ITD are categorized as the intermediate risk group.82

In conclusion, deciphering the mutation spectrum of FLT3-ITD AML could lead to an in-depth understanding of the 
pathogenesis and refine the prognostic classification of the disease. It is also possible to follow up the treatment response 
of the patients based on the mutational analysis, which could help reorganizing the treatment in case of relapse.

Clinically Approved FLT3 Inhibitors in Therapy
FLT3 has become an attractive target in AML given the correlations between its mutated forms and disease develop-
ment, poor prognosis, high mortality rates, and insufficient therapy response.23 FLT3is have been the focus of small 
molecule drugs against FLT3 mutations some of which have been approved for clinical settings with favorable 
outcomes.30 FLT3 is are tyrosine kinase inhibitors (TKI) categorized as first- and next-generation inhibitors based on 
their specific ability to inhibit FLT3 and associated downstream signaling pathways.23,30 Apart from this broad 
classification, both first and next-generation inhibitors could be either type I or type II inhibitors in relation to their 
effectiveness against both FLT3-ITD and TKD mutations or only FLT3-ITD mutation, respectively.23,30,83 Type 
I inhibitors can bind to both active and inactive conformations of the FLT3 receptor since they bind to the FLT3 
gatekeeper domain or the ATP binding pocket. Type II inhibitors bind adjacent to ATP binding domain located in the 
hydrophobic region when the receptor is in its inactive conformation.83 In this review, we have specifically focused on 
the FLT3is approved for the clinical settings (Table 1) and we will summarize the clinical trials of these FLT3is involved 
in novel combination studies (Table 2).

Table 1 Summary of the Clinical Trials Leading to Approval of FLT3 Inhibitors

FLT3i Generation/ 
Type

Patient Group Study Clinical Approval

Midostaurin First/I Newly diagnosed FLT3-mutated AML in 

combination with chemotherapy

RATIFY trial 

(NCT00651261)

FDA approval, 2017

Sorafenib First/II R/R FLT3-ITD AML patients in combination 

with 5-azacitidine

Phase II (NCT01254890) 

Phase II (NCT02196857)

National Comprehensive Cancer 

Network (NCCN), 2019

Gilterinitib Next/I R/R FLT3-ITD AML patients ADMIRAL trial 

(NCT02421939)

FDA approval, 2018

Quizartinib Next/II R/R FLT3-ITD AML QuANTUM-R trial, Phase 

III (NCT02039726)

Only in Japan, 2019
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First-Generation FLT3 Inhibitors
The first-generation inhibitors show non-specific activity for FLT3 and inhibit other kinases such as KIT, PDGFR, 
VEGFR, RAS/RAF/MEK, and JAK kinases, hence having more off-target effects.23,30 Off-target activities could result in 

Table 2 Selected Clinical Trials of Approved FLT3i in Different Therapeutic Settings

Phase- Clinical Trial 
Number

Therapeutic Approach 
Including FLT3i

Patient Group Response Status

Phase III NCT02752035 Gilteritinib + Azacitidine Newly diagnosed AML with FLT3 
mutation and not eligible for 

induction chemotherapy

No significant OS with 
improved CR rates

Active, not 
recruiting

Phase II NCT01253070 Sorafenib + chemotherapy 
(daunorubicin hydrochloride and 

cytarabine)

AML patients (≥60 years of age) 
with FLT3-ITD or -TKD 

mutations and have not received 
chemotherapy

CR after induction therapy 
FLT3-ITD: 74% 
FLT3-TKD: 73% 

1-year OS 
FLT3-ITD: 62% 
FLT3-TKD: 71% 

1-year DFS 
FLT3-ITD: 52% 
FLT3-TKD:36% 

1-year EFS 
FLT3-ITD: 39% 
FLT3-TKD: 27%

Active, not 
recruiting

Phase I/II NCT01892371 Quizartinib + Azacitidine or 
Cytarabine

Refractory or relapsed MDS, 
CMML or AML patients with or 

without FLT3 mutation

CRc 
64% with azacitidine 

29% with low-dose cytarabine 
RFS 

5.8 with azacitidine and 6.2 
months with low-dose 

cytarabine 
OS 

12.8 with azacitidine and 4 
months with low-dose 

cytarabine

Active, not 
recruiting

Phase III NCT04174612 Midostaurin + Daunorubicin + 
Cytarabine

Newly diagnosed AML patients 
with FLT3 mutation between the 

age of 18 and 65

No results posted Recruiting

Phase III NCT03182244 Gilteritinib vs salvage 
chemotherapy

Patients with relapsed or 
refractory AML with FLT3 

mutation after first line therapy

No results posted Active, not 
recruiting

Phase I NCT05024552 Gilteritinib + Vyxeos (cytarabine/ 
daunorubicin liposomal complex)

Patients with relapsed or 
refractory AML with FLT3 

mutation

No results posted Recruiting

Phase II NCT03135054 Quizartinib + Omacetaxine 
Mepesuccinate 

(Homoharringtonine) Injection

Newly diagnosed or relapsed/ 
refractory AML patients with 

FLT3-ITD mutation

No results posted Active, not 
recruiting

Phase II NCT03170895 Sorafenib + Omacetaxine 
Mepesuccinate Injection

Newly diagnosed or relapsed/ 
refractory AML patients with 

FLT3-ITD mutation

CR/CRi rate 
for R/R patients: 72% 
LFS and OS: 5.6 and 

10.9 months

Completed

Phase II NCT03622541 Sorafenib Relapsed or refractory AML 
patients with FLT3-ITD mutation

No results posted Completed

(Continued)
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Table 2 (Continued). 

Phase- Clinical Trial 
Number

Therapeutic Approach 
Including FLT3i

Patient Group Response Status

Phase I/II NCT03730012 Gilteritinib + Atezolizumab (PD- 
L1 mAb)

Relapsed or refractory AML 
patients with FLT3 mutation

CRc 
Gilteritinib 120 mg + 

Atezolizumab 420 mg: 33.3% 
Gilteritinib 120 mg + 

Atezolizumab 840 mg:12.5% 
CR 

Gilteritinib 120 mg + 
Atezolizumab 420 mg:33.3% 

Gilteritinib 120 mg + 
Atezolizumab 840 mg: 0%

Completed

Phase I/II NCT04240002 Gilteritinib + Fludarabine + 
Cytarabine + G-CSF

Children and young adults with 
relapsed or refractory FLT3-ITD+ 

AML

No results posted Recruiting

Phase II NCT02927262 Gilteritinib Patients with FLT3-ITD or FLT3- 
TKD mutated AML

RFS up to 2 years - 24.02 
months 

EFS up to 2 years - 16.06 
months

Active, not 
recruiting

Phase I NCT00943943 G-CSF + Plerixafor (CXCR4 
inhibitor) + Sorafenib

Relapsed or refractory AML 
patients with FLT3 mutation

Response rate 36% Completed

Phase III NCT02421939 Gilteritinib Relapsed or refractory AML 
patients with FLT3 mutation

CR 
Gilteritinib: 21.1% 

Salvage Chemotherapy: 10.5% 
CR/CRh 

Gilteritinib: 34% 
Salvage Chemotherapy: 15.3% 

OS (months) 
Gilteritinib: 9.3 

Salvage Chemotherapy: 5.6 
EFS (months) 
Gilteritinib:2.8 

Salvage Chemotherapy: 0.7

Active, not 
recruiting

Phase II NCT02196857 Azacitidine + Sorafenib AML and high risk MDS patients 
with FLT3-ITD mutation

CR: 26% 
OS: 8.3 months 
RFS: 7.1 months

Completed

Phase III NCT04027309 Gilteritinib or midostaurin AML or MDS patients with excess 
of blasts-2 and FLT3 mutation

No results posted Recruiting

Phase II NCT02984995 Quizartinib Relapsed or refractory AML 
patients with FLT3-ITD mutation

CRc 
20mg/Day Quizartinib: 33.3% 
30mg/Day Quizartinib: 56.5% 

OS (weeks) 
20mg/Day Quizartinib: NA 
30mg/Day Quizartinib: 34.1 

EFS (weeks) 
20mg/Day Quizartinib: 0.1 
30mg/Day Quizartinib: 12.7 

LFS (weeks) 
20mg/Day Quizartinib: NA 
30mg/Day Quizartinib: 16.1

Completed

(Continued)
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Table 2 (Continued). 

Phase- Clinical Trial 
Number

Therapeutic Approach 
Including FLT3i

Patient Group Response Status

Phase I/II NCT05010122 Decitabine and Cedazuridine + 
Gilteritinib + Venetoclax

Newly diagnosed, relapsed or 
refractory AML or high risk MDS 

patients with FLT3 mutation

No results posted Recruiting

Phase I/II NCT04140487 Azacitidine + Gilteritinib + 
Venetoclax

Relapsed or refractory AML, 
CMML or MDS/MPN patients 

with FLT3 mutation

No results posted Recruiting

Phase I/II NCT03793478 Quizartinib + Intrathecal (IT) 
triple chemotherapy prophylaxis 
+ Fludarabine + Cytarabine + 

Etoposide

Relapsed or refractory AML 
patients (1 month to 25 years of 

age) with FLT3-ITD mutation

No results posted Recruiting

Phase III NCT02997202 Gilteritinib AML patients with FLT3-ITD 
mutation in CR1

No results posted Active, not 
recruiting

Phase II NCT03836209 Daunorubicin + Cytarabine + 
Gilteritinib or Midostaurin

AML patients with FLT3 mutation No results posted Recruiting

Phase III NCT02039726 Quizartinib AML patients with FLT3-ITD 
mutation

OS (months) 
Quizartinib: 6.2 

Salvage Chemotherapy: 4.7 
EFS (months) 
Quizartinib: 1.4 

Salvage Chemotherapy: 0.9 
months

Completed

Phase I/II NCT04687761 Quizartinib + Venetoclax + 
Azacitidine or Cytarabine

Newly diagnosed AML patients 
(≥60 years of age)

No results posted Recruiting

Phase I/II NCT03661307 Quizartinib + Decitabine + 
Venetoclax

Untreated or relapsed AML 
patients or high risk MDS

No results posted Recruiting

Phase I NCT04496999 Midostaurin + HDM201 (MDM2 
inhibitor)

Relapsed or refractory AML 
patients with FLT3 mutation and 

WT-TP53

No results posted Recruiting

Phase I/II NCT04385290 Midostaurin + Daunorubicin + 
Cytarabine+ Gemtuzumab 

Ozogamicin

Newly diagnosed AML patients No results posted Active, not 
recruiting

Phase I/II NCT01254890 Azacitidin + Sorafenib Refractory AML, CMML or MDS 
patients and relapsed AML 

patients

CR: 16% 
OS: 6.2 months 
EFS: 3.8 months

Completed

Phase III NCT00651261 Midostaurin + Cytarabine + 
Daunorubicin + Dexamethasone 

Acetate

Newly diagnosed AML patients 
with FLT3 mutation

OS (months) 
Midostaurin: 74.7 

Placebo: 25.6 
CR 

Midostaurin: 58.9% 
Placebo: 53.5% 
EFS (months) 

Midostaurin: 8.2 
Placebo: 3.0

Active, not 
recruiting

Abbreviations: CR, complete remission; CRc, composite complete remission; CR/CRh, complete remission and complete remission with partial hematological recovery; 
OS, overall survival; DFS, disease-free survival; EFS, event-free survival; RFS, relapse-free survival; LFS, leukemia-free survival; G-CSF, granulocyte colony-stimulating factor.
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decreased clinical efficacy in FLT3-mutated AML with high allelic burden while resulting in increased toxicity profile 
and clinical benefit for WT-FLT3 AML.84 First-generation inhibitors include midostaurin and sorafenib, which are also 
type I and type II inhibitors, respectively.23,30,83,84

Midostaurin is active against both FLT3-ITD and TKD mutations and showed limited and transient activity in early 
clinical phase trials when used alone. In a clinical setting including relapsed/refractory (R/R) FLT3-mutated AML 
patients, midostaurin induced a 50% reduction in peripheral and bone marrow blasts.85 Another milestone study 
investigated the effects of midostaurin in AML patients carrying WT-FLT3 or mutated FLT3. Reduction in peripheral 
and bone marrow blasts was 71% in patients with mutant FLT3 and 42% in patients with WT-FLT3.86 Overall, 
midostaurin could not induce a complete remission (CR) and its efficacy remained limited to blast reduction due to 
activation of alternative survival-promoting pathways, protection of the leukemic clones in stem-cell niche and limited 
concentration of free midostaurin in patient’s plasma.85,86

However, its combination with several cytotoxic anti-leukemic agents including cytarabine, doxorubicin, azacitidine, 
or daunorubicin resulted in promising outcomes in in vitro models of FLT3 positive AML leading to its investigation in 
the clinic for combination therapy.87,88 Newly diagnosed younger patients with FLT3 positive AML were treated with 
50 mg midostaurin/twice a day in combination with standard chemotherapy for 14 days, resulting in high CR and OS 
rates.47 The addition of midostaurin into standard care chemotherapy dramatically changed the course of the disease 
based on the results of RATIFY trial in which registered therapy-naive patients with FLT3 mutations (FLT3-ITD and 
FLT3-TKD) showed increased OS rates. The presence of either ITD or TKD and the ITD AR status was not distinctive 
factors on patients’ conditions. US Food and Drug Administration (FDA) approved midostaurin in 2017 to be used in 
combination with standard cytarabine and daunorubicin induction therapy and cytarabine consolidation therapy in newly 
diagnosed young (18–59 years) FLT3-mutated AML patients based on the findings of RATIFY trial.89 Further analysis 
from RATIFY trial investigated the suitability of midostaurin as a maintenance therapy while the patients were in the first 
CR after intensive cytarabine consolidation therapy and the analysis showed that the added effect of midostaurin during 
maintenance therapy was not conclusive even though overall relapses were reduced.90 The impact of midostaurin in 
patients having only FLT3-TKD mutations in RATIFY trial was significantly higher in terms of 5-year event-free survival 
(EFS) rate (45.2%) compared to the placebo arm (30.1%) while OS was similar.91

A recent study investigated the roles of midostaurin in patients’ survival who were initially treated with midostaurin 
plus intensive chemotherapy and then referred to allo-SCT in the first CR. Midostaurin therapy improved OS specifically 
in patients with high AR and only midostaurin therapy and allo-SCT in first CR were found as positive predictors for 
OS.92 The effect of midostaurin to prevent relapse in FLT3-ITD carrying patients (18–70 years old) subjected to allo-SCT 
showed that midostaurin plus standard chemotherapy could not improve relapse-free survival (RFS) (89%) significantly 
as compared to only chemotherapy arm (76%), concluding the addition of midostaurin as maintenance therapy following 
allo-SCT could be only beneficial for some patients with FLT3-ITD AML.93 Midostaurin with standard chemotherapy for 
older FLT3-ITD AML patients (18–70 years) was shown to be safely effective as induction therapy. Allo-SCT in the first 
CR after midostaurin plus chemotherapy was highly effective, irrespective of age. Maintenance with midostaurin could 
only be beneficial for some patients after high-dose consolidation chemotherapy or allo-SCT.94

Sorafenib is a first-generation, type II FLT3i whose safety and efficacy was established in newly diagnosed FLT3 mutant 
AML in combination with standard anthracycline/cytarabine induction therapy.95 The randomized SORAML trial in 2015 
showed that sorafenib improved EFS and RFS and did not cause a change in OS in registered AML patients regardless of 
the FLT3 status compared to the placebo group.96 However, these results were updated in 2017 with increased OS.97 In 
a recent study, 99 patients with newly diagnosed FLT3-ITD AML were registered for sorafenib+intensive chemotherapy or 
placebo and EFS was not different between the two groups. However, the sorafenib group had improved OS.98 Two 
separate clinical trials including R/R FLT3-mutated AML patients and untreated older patients not fit for intensive 
chemotherapy showed the efficacy and safety of sorafenib in combination with hypomethylating agent (HMA) 5--
azacitidine,99,100 which resulted in the inclusion of sorafenib+azacitidine for R/R FLT3-ITD AML patients’ treatment by 
the recommendation of NCCN.101 Sorafenib has been widely investigated in FLT3 mutant AML patients eligible for allo- 
SCT. Sorafenib increased OS as maintenance therapy after allo-SCT in FLT3 mutant AML patients.102 The SORMAIN 
study including 83 FLT3-ITD patients in CR after allo-SCT investigated the addition of sorafenib as maintenance therapy 
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compared to the placebo group, resulting in a higher probability of 24-month OS in the sorafenib group.103 FLT3-ITD AML 
patients who underwent allo-SCT were divided randomly into sorafenib maintenance (400 mg orally twice daily) or control 
arms, concluding that sorafenib maintenance therapy decreased relapse.104

Next-Generation FLT3 Inhibitors
Next-generation FLT3 inhibitors are more specific and potent for FLT3 with fewer off-target effects compared to first- 
generation inhibitors. They could also have the capacity to induce myeloid differentiation and show greater clinical 
activity as monotherapeutic agents.24

Gilteritinib is a next-generation, type I FLT3i with more potency against mutated FLT3 among other TKIs even 
though it shows some activity for other kinases such as AXL.105 In the dose-escalation/expansion trial, 20–450 mg 
gilteritinib in an FLT3-mutated R/R AML patient population was studied and it was shown that its plasma concentration 
is higher since it is less bound to plasma protein and it inhibits the phosphorylation of FLT3 more than 85% at very low 
concentrations (CHRYSALIS trial).106 A landmark Phase III study called ADMIRAL investigated the effects of 120 mg 
gilteritinib in R/R FLT3-mutated AML patients compared to salvage chemotherapy (SC). The percentage of gilteritinib- 
treated patients who achieved CR with full or partial hematologic recovery (34%) was higher compared to the 
chemotherapy given group (15.3%) and OS was 9.3 months vs 5.6 months, respectively. The OS outcomes of ITD or 
TKD mutated patients were similar (9.3 vs 8 months, respectively).107 The results of this study were proof for the FDA 
approval of gilteritinib monotherapy in 2018 for R/R FLT3-mutated AML patients in the US. The long-term effects and 
safety of gilteritinib were analyzed for the patients enrolled and survived in the ADMIRAL trial, showing that 49 patients 
in the gilteritinib arm were alive for more than 2 years. Twenty-six patients treated with gilteritinib were alive without 
relapse; 18 gilteritinib given patients underwent transplantation and 16 patients were treated with gilteritinib as post- 
HSCT maintenance therapy. Thus, continued and post-HSCT gilteritinib maintenance therapy resulted in sustained 
remission with a stable safety profile.108 There are several ongoing clinical trials investigating the potential of gilteritinib 
versus placebo as maintenance therapy after consolidation (NCT02927262) or after allo-HCT in patients with FLT3-ITD 
mutations (NCT02997202). The combination of venetoclax and gilteritinib resulted in high mCRc (modified CRc) and 
FLT3 molecular response rates regardless of prior FLT3 inhibitor exposure. However, there is a need to determine proper 
doses to overcome myelosuppression.109 A randomized Phase II trial of gilteritinib versus midostaurin in combination 
with induction and consolidation chemotherapy is also currently recruiting (NCT03836209). The phase III LACEWING 
trial (NCT02752035) was designed to compare gilteritinib plus azacitidine with azacitidine alone in newly diagnosed 
older (65–86 years old) FLT3-mutated AML patients who were ineligible for intensive induction chemotherapy. The 
results showed that the gilteritinib plus azacitidine combination was safe for registered patients. CR rates were improved 
although there were no significant OS differences.110 However, this trial has been terminated as a result of interim 
analysis by an independent group of reviewers, which was due to the lack of a statistically significant increase in OS.111

Quizartinib is a next-generation, type II FLT3i active against FLT3 and, to a lesser extent (around 10-fold less), KIT, 
CSF1R, PDGFR, and RET kinases.112 Two sequential phase II studies including R/R FLT3-mutated AML patients 
treated with quizartinib monotherapy resulted in significant bone marrow remissions; however, adverse cardiac signals 
raised concerns about its safety even when used in lower concentrations.113,114 Recently, quizartinib monotherapy and SC 
were compared in a phase III study (QUANTUM-R, NCT02039726) with R/R FLT3-mutated AML patients. Quizartinib 
increased OS (6.2 months) as compared to SC (4.7 months).115 32% of patients in quizartinib arm could proceed to an 
allo-SCT (11% of patients in SC). 62% of the patients on the quizartinib arm who received allo-SCT received post-SCT 
quizartinib maintenance. Quizartinib is not approved by FDA in the US due to cardiac toxicities and strong myeloid 
suppression based on the results of QUANTUM-R; however, it is approved in Japan as monotherapy in R/R FLT3-ITD 
AML. A post hoc analysis of the patients on the quizartinib arm and SC therapy arm who referred to allo-SCT in 
QuANTUM-R showed that continuation of quizartinib after HSCT was tolerable, with no new safety signals.116 Patients 
with R/R FLT3 AML were treated with quizartinib plus azacitidine or low-dose cytarabine (NCT01892371). CRc rates 
were 64% with azacitidine and 29% with low-dose cytarabine, RFS 5.8 and 6.2 months, and OS 12.8 and 4 months, 
respectively. 28% of the patients from the quizartinib plus azacitidine arm underwent an allo-SCT compared to only 6% 
of patients from the quizartinib plus low-dose cytarabine arm.117 There is an ongoing phase I/II trial (NCT04687761) 
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including the combination of low-dose cytarabine or azacitidine + venetoclax + quizartinib in newly diagnosed AML 
patients. Recently, the incorporation of quizartinib into 7+3 regime and continuation therapy of newly diagnosed FLT3- 
ITD AML patients aged up to 75 years old increased OS compared to those with SC.118

How to Choose an Approved FLT3i for the Patient
Clinical decisions on a specific FLT3i for a specific group of patients such as how to choose a proper concentration of 
FLT3i in combination approaches, and when to use FLT3i (as a frontline or maintenance therapy), before or allo-SCT 
should be carefully considered based on the presence of simultaneous myeloid neoplasm-related mutations, type of FLT3 
mutation, FLT3-ITD insertion size and position, the use of prior FLT3i, the toxicity profile of FLT3i, patients’ age and 
overall health condition and eligibility for allo-SCT.83

There are recent studies investigating the impact of concurrent mutations, FLT3-ITD AR, and insertion size on the 
therapeutic outcome of FLT3i. An analysis of RATIFY study related to the prognostic impact of FLT3-ITD insertion site 
and the presence of NPM1 mutation highlighted that the presence of NPM1 mutation was correlated with the presence of 
insertion site in only JM domain. Insertion site in only TKD1 was evaluated as a negative prognostic factor. Midostaurin 
was effective for the patients carrying insertion site in only JM domain following allo-SCT in the first CR.119 Subsequent 
analysis of the patients with only FLT3-TKD mutations in RATIFY trial showed that the co-existence of NPM1 
mutations or core binding factor (CBF)-rearrangements were considered as favorable prognostic factors in terms of 
midostaurin treatment.91 FLT3-ITD AR, ITD length, and the expression of hepatic leukemia factor (HLF) were checked 
to understand differential responses to FLT3i. High AR samples showed increased sensitivity compared to low AR 
samples while no association was found between ITD length and FLT3i response. RNA seq analysis displayed that there 
was a correlation between high AR and high HLF expression, which could determine FLT3i response.120 FLT3-ITD AR, 
FLT3-ITD length, or multiple FLT3-ITD mutations did not have any adverse effects on survival outcomes with 
gilteritinib; however, the presence of DNMT3A/NPM1 double mutations resulted in the most favorable outcomes in 
patients received gilteritinib.121

Prior FLT3i use or sequential FLT3i exposure could be a factor to decide which FLT3i therapy could be chosen. 
Sorafenib and midostaurin treated R/R FLT3-mutated AML patients involved in the CHRYSALIS and ADMIRAL trials 
were compared with those without prior FLT3i use after treated with gilteritinib. Similar high composite CR (CRc) rates 
were obtained irrespective of prior FLT3i use; however, remission duration was shorter in the prior FLT3i exposure 
group.122 The R/R FLT3-mutated patients previously treated with midostaurin plus intensive induction therapy showed 
58% CR rate after gilteritinib treatment. However, the presence of NRAS, KRAS, and PTPN11 MAPK pathway 
activating mutations (known to cause gilteritinib resistance) lowered CRc and OS rates as compared to the patients 
without these mutations.123 In a retrospective study, 239 FLT3-mutated AML patients were exposed to sequential FLT3i 
and CRc rates dropped progressively and CRc rates were higher in the patients treated with sequential FLT3i exposure 
compared to those of FLT3i-monotherapy.124

The older or unfit adults who are not eligible for intensive chemotherapy have benefited from the combinations of FLT3i 
with low-intensity chemotherapy. Sorafenib or midostaurin plus azacitidine was found to be safe and feasible for those 
patients.99 It was shown that naive FLT3-mutated patients had the greatest benefits from the combination of midostaurin and 
5-azacitidine.125 The recent study with the data from the previous clinical trial (NCT02993523) including the naive and 
ineligible patients (age ≥75 years and/or with comorbidities) treated with venetoclax plus azacitidine or placebo plus 
azacitidine groups analyzed the impact of FLT3 mutation on therapy outcomes. CRc rates were 67% and 36% and median 
OS was 12.5 and 8.6 months for FLT3-mutated patients in venetoclax plus azacitidine and azacitidine groups, respectively. 
Patients with FLT3 mutations and WT-FLT3 had similar outcomes when treated with venetoclax plus azacitidine.126 Low- 
dose cytarabine with or without quizartinib in older FLT3-mutated AML patients not fit for intensive chemotherapy had 
improved survival. Median OS was 13.7 months compared with 4.2 months with low-dose cytarabine alone.127 Based on the 
overall opinion from the mentioned studies, a new study analyzed the effects of triplet combination including HMA 
+venetoclax+FLT3i on older/unfit patients as frontline therapy, resulting in higher CR (67% vs 32% in triplet arm compared 
to doublet arm (HMA plus FLT3i).128 A phase II trial including 13 newly diagnosed patients (older than 60 years) or 12 R/R 
(older than 18 years) FLT3-mutated AML patients (without prior venetoclax exposure, some with prior FLT3i use and allo- 

https://doi.org/10.2147/OTT.S384293                                                                                                                                                                                                                                  

DovePress                                                                                                                                                            

OncoTargets and Therapy 2022:15 1460

Tecik and Adan                                                                                                                                                      Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


SCT), decitabine was combined with venetoclax and an FLT3i (10 patients with gilteritinib, 10 sorafenib, and 5 midostaurin). 
This study revealed that even FLT3-mutated patients with prior FLT3i treatment achieved durable remissions and underwent 
allo-SCT consolidation after low-intensity triplet therapy.129 In conclusion, the combination of low-intensity therapy (±low 
dose HMA or chemotherapy±venetoclax) with FLT3i could be the best option for the patients with FLT3-mutated AML who 
are not eligible for intensive chemotherapy even though the combination of FLT3i with intensive chemotherapy in fit/young 
patients could be the preferred option.130

All mentioned key FLT3i trials in this review highlighted the impact of FLT3i in the context of allo-SCT. The 
presence of an FLT3i arm could make it possible to proceed to an allo-SCT either as consolidation or maintenance 
therapy even for older/unfit patients. Among the aforementioned FLT3is, sorafenib seems to be the most promising one 
as post-allo-SCT maintenance therapy in FLT3-mutated patients.103,108,116

The safety profile should be carefully monitored to decide on the proper FLT3i alone or in combination protocols. 
Common adverse effects of midostaurin include QTc prolongation, skin rash, and myelosuppression, which are all manage-
able as compared to chemotherapy except for skin rash. However, its interaction with azole derivatives has been shown to 
cause serious side effects such as an unpredictable increase in plasma dose level and pulmonary toxicity, which should be 
kept in mind while evaluating the patients’ need for azoles. Gilteritinib has a good safety profile with mild to severe alanine 
transaminase (ALT) and aspartate transaminase (AST) levels, QTc prolongation, and myelosuppression, which could be 
manageable with temporary drug suspension and dose reductions. Quizartinib also caused mild myelosuppression, gastro-
intestinal side effects, and QTc prolongation, which could need drug suspension and dose reductions.107,115,131

Development of Resistance Toward FLT3 Inhibitors: Possible Mechanisms 
and Overcoming Strategies
Primary and secondary resistance against FLT3i in mono- and combination therapies remains a significant obstacle for 
successful and long-lived remission. Primary resistance (innate resistance) restricts the efficacy of FLT3i at initial 
administration, whilst secondary resistance (acquired resistance) emerges during continuous exposure to FLT3i during 
treatment cycles, resulting in R/R disease.132 While primary resistance is rarely observed in FLT3-mutated AML patients, 
the likelihood of secondary resistance development towards FLT3i seems a major contribution. Mechanisms involved in 
resistance could be heterogenous and grouped as FLT3-dependent and FLT3-independent resistance mechanisms, which 
are not required to be equally or mutually present.132,133

FLT3-Dependent Resistance Mechanisms
The presence or emergence of FLT3-TKD or FLT3-ITD-TKD (compound) mutations before or during FLT3i treatment 
causes the development of resistance against FLT3i therapy. The gatekeeper mutation, F691L, in the TKD is the common 
one that led to resistance against all clinically used FLT3is.132,133 Gilteritinib was shown not to be effective in patients 
carrying F691L mutation who enrolled in the ADMIRAL study.121 While the majority of FLT3 inhibitors are effective 
against FLT3-ITD, especially type II inhibitors are ineffective against TKD mutations. Therefore, secondary point 
mutations occurring in FLT3-ITD during treatment might play a role in gaining resistance, thus rendering their original 
effect. Quizartinib-treated FLT3-ITD AML patients developed resistance due to the emergence of mutations at D835 and 
Y842 residues as well as F691 in the TKD.51 FLT3-ITD AML patients developed resistance against midostaurin via 
having N676K mutation in TKD.134 Association of these mutations with resistance development could be explained by 
their effects on drug binding, stabilization of active receptor conformation, and receptor activity or activation of 
downstream signaling pathways.135 For instance, F691L mutation prevents the binding of the drug to the receptor by 
assumably affecting several bonds, since the motions of the inhibitor are in correlation with those of the Phe 691 
residue.136,137 An integrated computational approach investigated the possible mechanism of quizartinib resistance via 
F691 gatekeeper mutation by comparing the receptor–inhibitor interactions between FLT3 kinase domain (wild-type or 
F691L) and quizartinib or PLX3397 (its activity is not affected by F691L mutation). When quizartinib was bound to 
FLT3-FL691L, the conformational change of αC-helix and A-loop of the FLT3 protein could be induced, rendering 
functional receptor structure. Additionally, quizartinib dissociated more easily from FLT3-F691L than from FLT3-WT, 
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which made quizartinib stay shorter in the mutated receptor. In contrast, there was no significant difference between the 
dissociation processes of WT-FLT3 and FLT3-F691L from PLX3397.138 D835F and Y842H mutations in TKD were 
thought to make quizartinib and sorafenib ineffective.51,139 In a particular study, multiple simulations of WT- and mutant 
(D835F, Y842H) FLT3 in drug-bound, drug-free, inactive or active forms were investigated.137 These mutations might 
shift the equilibrium towards the active state of the receptor without affecting drug–receptor interactions directly based 
on the results of fully atomistic molecular dynamics (MD) simulations of FLT3.137 M664I, D835N, and Y842S mutants 
in FLT3-TKD were highly active with enhanced autophosphorylation capacity and quizartinib-bound inactive molecules 
had many conformational alterations resulting in ineffective inhibition.140 FLT3-N676K mutation resulted in increased 
surface expression in Ba/F3 cells transfected with FLT3 N676K mutant compared to D835Y and ITD, but it was similar 
to WT-FLT3.141 It was found that FLT3-N676K mutation induced the phosphorylation of FLT3, MAPK, and AKT 
strongly compared to FLT3-ITD mutation.141,142 Leukemic cells carrying the FLT3-N676K mutant in the absence of an 
ITD mutation were highly sensitive to FLT3 inhibitors such as quizartinib and sorafenib.142,143 Therefore, this particular 
mutation seems to have a leukemogenic potential based on in vitro cell lines and in vivo mice studies. On the other hand, 
the FLT3-ITD-N676K compound mutation was predicted to inhibit the auto-inhibitory function of FLT3 by reducing the 
stability of the JM domain, resulting in midostaurin resistance.134 A novel gatekeeper mutation, N701K was detected in 
gilteritinib-resistant FLT3-ITD cell lines by sterically interfering with the binding of gilteritinib.144

The modulation of FLT3-ITD localization is considered as one of the on-target mechanisms behind FLT3i resistance. 
WT-FLT3 is mainly localized to the cell membrane while FLT3-ITD localization is mainly restricted to ER/GA due to the 
impaired post-translational glycosylation of FLT3-ITD caused by its constitutive kinase activity.145 The intracellular 
localization of FLT3-ITD activates predominantly STAT5 signaling while the one localized to the cell membrane 
predominantly activates AKT and MEK.43 Therefore, FLT3-ITD localized to both ER and cell membrane cooperates 
in cellular transformation. The impairment of FLT3-ITD maturation via inhibiting N-glycosylation could be effective and 
synergistic with FLT3i. Tunicamycin, an N-glycosylation inhibitor, inhibited the proliferation and induced apoptosis of 
FLT3-ITD expressing human and murine cell lines via partly inhibiting FLT3-ITD activated AKT and ERK signaling and 
its combination with quizartinib showed synergistic effects.146 A recent study also revealed the importance of different 
localization of FLT3-ITD mutant variants associated with the FLT3i resistance, which could be overcome by combining 
the inhibitors of N-glycosylation with distinct downstream signaling pathways’ inhibitors.147 FLT3-ITD was found to be 
S-palmitoylated by the palmitoyl acyltransferase ZDHHC6, which could be responsible for its localization to ER. The 
disruption of S-palmitoylation localized FLT3-ITD to the plasma membrane and activated AKT and ERK in addition to 
STAT5 and induced the progression of leukemia in a mice model. Inhibition of FLT3-ITD palmitoylation synergized with 
gilteritinib, which impaired the growth of primary FLT3-ITD+ AML cells.148

Surface expression of FLT3 due to its lower turnover rate and increased half-life was detected in MOLM-13 FLT3- 
ITD AML cells with acquired midostaurin resistance.149 Majority of FLT3-mutated AML has both WT-FLT3 and mutant- 
FLT3 expression and this heterogenicity could be responsible for limited response to FLT3i. In a study, the effects of 
quizartinib and sorafenib were decreased in 32D cells co-expressing WT- and FLT3-ITD as compared to 32D cells with 
only FLT3-ITD expression,150 which is partially explained by the activation of WT-FLT3 by FLT3 ligand secreted by 
stromal cells.

FLT3-Independent Resistance Mechanisms
Additional mutations in the FLT3 receptor account for a small proportion of resistant cases. Studies elucidating FLT3- 
independent resistance mechanisms such as the impact of the tumor microenvironment, metabolism of FLT3i, and 
modulation of alternative intracellular signaling pathways have been paid attention.151

Bone marrow stromal cells with elevated CYP3A4 expression, a cytochrome P450 enzyme, impaired the activity of 
sorafenib, quizartinib, and gilteritinib in FLT3-ITD-positive AML by reducing the plasma concentrations of the 
inhibitors.152 Another resistance-causing mechanism in the bone marrow microenvironment is the release of fibroblast 
growth factor 2 (FGF2) from the stromal cells, which caused quizartinib resistance in patients.153 Pim kinase-2 
overexpression was detected in sorafenib-resistant FLT3-ITD AML patients compared to untreated samples at the time 
of diagnosis, which resulted in sequestration of anti-apoptotic BAD in the cytoplasm and suppression of apoptosis.154 
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AXL kinase expression and activation increased in midostaurin and quizartinib-resistant primary blasts from FLT3-ITD 
AML patients by constantly activating the RAS/MAPK and PI3K/AKT/mTOR pathways.155 In in vitro models of 
midostaurin and sorafenib resistance, cytokine CCL5 was found to be elevated, which also increased phosphorylated 
AKT and STAT5 levels.156 Also, midostaurin-resistant blast cells from the patient showed increased CCL5 transcript 
levels. Activating JAK mutations were identified in both in vitro models (cell lines) and patient samples of FLT3-ITD 
AML with midostaurin or sorafenib resistance. JAK1 V658F mutation specifically was found to activate CSF2RB-JAK- 
STAT5 pathway to eliminate the effects of FLT3i.157

In a recent study, it was shown that actin filaments, one of the cytoskeletal components, are remodeled in a RAC- 
1-dependent manner, causing the development of midostaurin resistance in FLT3-ITD AML cell lines and primary 
patient samples. Anti-apoptotic BCL-2 expression and activity increased as a result of RAC-1 activation.158 Early 
resistance and late resistance mechanisms were well defined in gilteritinib-resistant cell lines and patient samples by 
using whole-exome sequencing, CRISPR-Cas9, metabolomics, proteomics, and pharmacologic approaches.159 Early 
resistant cells were protected by the bone marrow microenvironment to evolve into late resistant cells with newly gained 
intrinsic alterations. Late resistant cells were derived from the subclones already carrying NRAS mutations. Aurora 
kinase B was activated in early resistant cells while both early and late resistance cells underwent metabolic reprogram-
ming. Activating mutations in RAS/MAPK pathway were also shown in gilteritinib-resistant FLT3-ITD AML patients 
using targeted-next generation sequencing (NGS).160 NGS data from bone marrow samples of FLT3-ITD AML patients 
collected after type I or type II FLT3i treatment (secondary resistance group) showed mutational differences at relapse.161 

Detected mutations against FLT3i were found in epigenetic modifiers such as DNMT3A and RAS/MAPK pathway in 
addition to FLT3-D835 mutation. The most common secondary mutation was in RAS/MAPK pathway against type 
I FLT3i while FLT3-D835 was the most emerged mutation against type II FLT3i.161 FLT3-ITD cell lines with acquired 
sorafenib resistance and primary patient samples from sorafenib-resistant FLT3-ITD AML showed activation of PI3K/ 
mTOR pathway.162 Clonal evaluation of midostaurin resistance in patients in RATIFY trial revealed different molecular 
profiles at the time of diagnosis and relapse. Midostaurin resistance emerged due to acquired mutations in signaling 
pathways such as MAPK while they became FLT3-ITD negative based on whole genome sequencing.163 Transcriptome 
analysis of the samples from patients with FLT3-ITD/D835 mutations in comparison to those with FLT3-ITD only 
revealed the overexpression of anti-apoptotic BCL2A1 in FLT3-ITD/D835 patient samples, which was associated with 
decreased quizartinib sensitivity. The combination of quizartinib with venetoclax specifically in FLT3-ITD/D835 cell 
lines showed that the presence of this compound mutation could be responsible for quizartinib and venetoclax 
resistance.164 MCL-1, an anti-apoptotic BCL-2 family member was shown to be upregulated in FLT3-ITD AML through 
STAT5 activation,165 and responsible for leukemia relapse, poor therapeutic outcomes, and venetoclax resistance.166–168 

Hence, several MCL-1 inhibitors such as VU661013, S63845, and MIK665 have been developed. MCL-1 inhibition 
together with BCL-2 inhibition could show synergistic effects and overcome venetoclax resistance.168,169 There are 
recruiting clinical trials using the combination of S64315 with venetoclax (NCT03672695) and the combination of 
a novel BCL-2 inhibitor S65487/VOB560 with an MCL-1 inhibitor MIK665 (NCT04702425) in R/R FLT3 AML. In 
FLT3-ITD AML models, multikinase inhibitor olverembatinib (HQP1351) induced apoptosis via MCL-1 downregulation 
which was enhanced in the presence of BCL-2 inhibitor lisaftoclax (APG-2575). The elevated expression of the TEK- 
family kinase, BMX, in gilteritinib-unresponsive patients was detected using single-cell RNA sequencing, which 
mediated gilteritinib resistance via upregulation of cell-cycle, DNA/RNA metabolic processes, and protein translation.170

Overall, these studies underlined the importance of differences in resistance profiles of type I and type II inhibitors to 
design an appropriate treatment strategy after identifying the genetic makeup of each patient.

Approaches to Overcome FLT3i Resistance
Common strategies to overcome FLT3i resistance could be discussed under two general groups, including the develop-
ment of novel FLT3is and dual-inhibitors and combinational approaches with the inhibitors of altered signaling 
molecules, anti-apoptotic molecules, epigenetic targets, or other molecular targets (Figure 3). Ongoing clinical trials of 
novel treatment strategies in FLT3 positive AML including novel FLT3is, dual FLT3 inhibitors, FLT3 antibody, CAR-T 
cell therapy or novel targeted therapies beyond FLT3is are summarized in Table 3.
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Designing Novel FLT3i
Secondary mutations against type II FLT3is tend to occur on FLT3 itself while FLT3-independent resistance commonly 
occurs against type I FLT3is based on the results from previously discussed pre-clinical and clinical studies. However, 
the F691L mutation is still responsible for resistance to all clinically approved FLT3is. Hence, the development of novel 
FLT3is could be a possible way to overcome such resistance.

FF-10101 is a newly designed type I FLT3i, which binds covalently to C695 residue on FLT3 in an irreversible manner. It 
binds to both active and inactive FLT3 and is active against various FLT3 mutations, including FLT3-ITD, D835, Y842, and 
even F691L mutations.171 FF-10101 is recently shown to reduce bone marrow stromal cell-mediated protection of FLT3-ITD 
AML observed in resistance against other FLT3is such as quizartinib.172 FF-10101 is currently evaluated in phase I/IIa studies 
to identify its pharmacokinetics, toxicity profile, and safety in R/R AML (NCT03194685). HM43239, a novel reversible 
small-molecule type I FLT3 inhibitor with activity against WT-FLT3, FLT3-ITD, FLT3-TKD, and also FLT3 ITD/TKD 
double mutations showed in vitro (WT-FLT3 and mutant FLT3 cell lines) and in vivo (FLT3 ITD/TKD double mutated 
xenograft mouse model) efficacy via inhibiting STAT5, ERK, SYN, JAK1/2, and TAK1 kinases, which resulted in a currently 
recruiting phase I/II clinical trial (NCT03850574) to evaluate its appropriate doses and safety in R/R FLT3 AML.173 MZH29, 
a novel FLT3i, showed inhibitory activity against WT, FLT3-ITD, FLT3-D835H/Y/V, and FLT3-K663Q mutants and FLT3- 
ITD/F691L double mutation.174 LT-171-861, a novel FLT3i, bound to FLT3 strongly and inhibited the growth of FLT3 mutant 
cell lines such as FLT3-D835Y, FLT3-ITD-N676D, FLT3-ITD-D835Y, FLT3-ITD-F691L, FLT3-ITD-Y842C and AML 
blasts from patients with FLT3-ITD. In vivo effects also led to tumor regression and prolonged survival.175

Figure 3 Selected FLT3i resistance mechanisms and strategies to overcome resistance.
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Rationalized design of dual inhibitors targeting both FLT3 and another target such as cyclin-dependent kinase 4/6 
(CDK4/6), JAK, Aurora A, tubulin, and PIM is thought to reverse resistance by simultaneously inhibiting two or more 
signaling pathways.176 CCT24571, a dual FLT3/Aurora A inhibitor showed cytotoxic and apoptotic effects on FLT3-ITD 
carrying MOLM-13 and MV4-11 AML cells and reversed D835Y resistance in vitro.177 Another FLT3/Aurora 
A inhibitor, CCT241736, inhibited tumor growth of FLT3-ITD and FLT3-ITD-TKD human tumor xenograft models 
and also showed efficacy in primary patient samples with quizartinib resistance.178 AMG925, a novel dual inhibitor of 
FLT3/CDK4-6 induced apoptosis in both WT and mutant FLT3 AML cell lines and primary blasts.179 KX2-391 is 
a recently identified dual FLT3/Tubulin inhibitor with promising resistance-reversion activity against FLT3-ITD and 
FLT3-ITD-D835/F691 mutation in in vitro cell lines, a murine model, and patient blasts.180 Inhibition of JAK2 and FLT3 
at the same time could be a possible strategy to eradicate resistant cells with FLT3 mutations. Momelotinib, a potential 
dual FLT3/JAK2 inhibitor, gave better responses against D835, D839, and Y842 mutations and growth factor-mediated 
resistance in mouse and human primary cells expressing FLT3-ITD.181 The dual JAK/FLT3 inhibitor pacritinib in 
combination with chemotherapy showed clinical activity in FLT3-ITD and FLT3-TKD AML patients.182 Dual targeting 
of FLT3 and PIM kinase by SEL24 showed anti-proliferative and apoptotic activities against MOLM-13, MV4-11 FLT3- 
ITD positive cells, and primary FLT3-ITD cells compared to FLT3 inhibitor or PIM kinase inhibitor alone. Its activity 
was not lowered by FTL3-ITD, certain FLT3-TKD, or FLT3-ITD-TKD mutations.183 A dose escalation trial for SEL24 
(NCT03008187) is recruiting in R/R FLT3 AML with no available treatment strategy.

Innate immune pathway activation via the interleukin-1 receptor-associated kinase 1 and 4 (IRAK1/4) complex 
contributed to adaptive quizartinib resistance in FLT3-mutant AML cells via restoring RAS/MAPK signaling along with 
NF-κB, which could be overcome by a small molecule-dual inhibitor, NCGC1481, targeting both FLT3 and IRAK1/4 

Table 3 Ongoing Clinical Trials of Novel Treatment Approaches in FLT3 Positive AML

Therapeutic Approach Patient Group Phase Clinical Trial 
Number

Azacitidine plus Venetoclax (BCL-2 inhibitor) Previously untreated AML patients who are unsuitable for 

treatment

Phase III NCT02993523

S64315 (MCL-1 inhibitor) + Venetoclax Relapsed or refractory AML patients Phase I NCT03672695

VOB560 (BCL-2 inhibitor) + MIK665 (MCL-1 
inhibitor)

Relapsed or refractory patients with NHL, MM and AML Phase I NCT04702425

FF-10101-01 (novel FLT3i) Patients with refractory or relapsed AML and who are not 

eligible for any treatment

Phase I/II NCT03194685

HM43239 (novel FLT3i) Refractory or relapsed AML patients Phase I/II NCT03850574

SEL24/MEN1703 (Dual FLT3/PIM kinase 
inhibitor)

Refractory or relapsed AML patients who cannot receive any 
approved treatment

Phase I/II NCT03008187

CG-806 (Luxeptinib) (Dual FLT3/BTK kinase 
inhibitor)

Patients with refractory or relapsed AML or high risk MDS and 
intolerant of chemotherapy or transplantation

Phase I NCT04477291

MAX-40279-01 (FGFR/FLT3 dual inhibitor) Relapsed or refractory AML patients Phase I NCT04187495

Ibrutinib (BTK inhibitor) with chemotherapy in 

the absence or presence of an FLT3i

Relapsed or refractory AML patients with FLT3 mutation Phase II/III NCT03642236

IMC-EB10 (anti-FLT3 antibody) Relapsed or refractory AML patients Phase I NCT00887926

FLYSYN (Fc-optimized FLT3 antibody) AML patients with minimal residual disease Phase I/II NCT02789254

AMG 553 (FLT3 CAR-T) Relapsed or refractory AML patients with FLT3 mutation Phase I NCT03904069

Abbreviations: NHL, non-Hodgkin lymphoma; MM, multiple myeloma; MDS, myelodysplastic syndrome.
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kinases.184 MRX-2843, a dual MERTK/FLT3 inhibitor, showed activity against quizartinib-resistant FLT3-ITD-D835 or 
F691 mutants and prolonged survival in xenograft models of quizartinib-resistant AML.185 A674563, a dual inhibitor 
targeting both FLT3-ITD and AKT was active against FLT3-D835Y mutant-expressing cells and could overcome FLT3 
ligand-induced drug resistance.186 CG-806, dual BTK (Bruton’s tyrosine kinase)/FLT3 inhibitor is being evaluated in 
a trial (NCT04477291) including R/R patients or ineligible patients for other treatments. FGFR/FLT3 dual inhibitor, 
MAX-040279, is under evaluation in a Phase I (NCT04187495) study for R/R FLT3 AML due to the role of FGF2/FGFR 
signaling in FLT3i resistance.

To sum up, there are many newly designed FLT3is or dual inhibitors to reduce drug resistance and increase responses. 
However, most novel FLT3is and dual-target inhibitors are only tested in pre-clinical studies at present or some of them 
are undergoing early-stage of phase studies.

Novel FLT3i Combinatorial Treatment Approaches
Apart from combinations of FLT3i with conventional chemotherapy as mentioned in critical trials, inhibiting altered 
signaling pathway molecules or other players could be synergistically effective in FLT3i-resistant FLT3-ITD AML.

MEK inhibitor trametinib combined with midostaurin had a synergistic effect to overcome midostaurin resistance in 
FLT3 mutated AML.187 The combination of venetoclax, a BCL-2 inhibitor, with midostaurin or gilteritinib showed 
synergism in MOLM-13 and MV4-11 FLT3-ITD AML cell lines.188 MOLM-13 xenograft treated with gilteritinib plus 
venetoclax had improved survival compared to gilteritinib alone. Simultaneous downregulation of MCL-1 by midos-
taurin or gilteritinib and inhibition of BCL-2 by venetoclax made BIM free, resulting in synergistic induction of apoptosis 
in FLT3-ITD AML cell lines and patient samples.189 Cotreatment with venetoclax and quizartinib had greater anti- 
leukemic activity in pre-clinical models of FLT3-ITD AML and a patient-derived FLT3-ITD AML xenograft model.190 

There is a recently completed Phase IB/Phase II trial investigating the side effects and appropriate dose of venetoclax in 
combination with quizartinib in R/R FLT3-ITD AML patients (NCT03735875). Triple combination including decitabine 
(DNA methyltransferase inhibitor) + venetoclax + quizartinib was shown to be highly active in R/R FLT3-ITD mutated 
AML patients, with CR rates of 69% and the median OS of 7.1 months, which is under clinical phase I/II study 
(NCT03661307).191 The combination of gilteritinib with venetoclax specifically in FLT3-ITD/D835 cell lines had 
synergistic effects in contrast to quizartinib plus venetoclax via downregulating MCL-1.164 Homoharringtonine, as 
a STAT inhibitor, was evaluated in vitro and in vivo in combination with sorafenib, quizartinib, and gilteritinib in FLT3- 
ITD AML. Sorafenib in combination with low-dose homoharringtonine induced synergism in an R/R FLT3-AML patient, 
which is evaluated in phase II trial (NCT03170895) in R/R FLT3-ITD AML.192 Homoharringtonine plus quizartinib 
triggered apoptosis via upregulating BIM and BAX and downregulating MCL-1 in FLT3-ITD AML cell lines and 
increased OS in mice model.193 The combination of homoharringtonine with gilteritinib also decreased MCL-1 by 
UBE2L6-mediated proteasomal degradation.194 There is a phase II trial (NCT03135054) evaluating if quizartinib plus 
omacetaxine mepesuccinate (homoharringtonine) results in durable CRc in patients with newly diagnosed or R/R AML 
carrying FLT3-ITD. Activating JAK mutation, JAK1 V658F, was related to midostaurin resistance and combination of 
JAK1/2 inhibitor, ruxolitinib, with midostaurin was able to sensitize FLT3-ITD AML resistant cells to midostaurin.157 

Inhibition of RAC-1 or BCL-2 using pharmacological inhibitors together with midostaurin overcame midostaurin 
resistance.158 BTK is identified as a novel target in FLT3-ITD AML patient blasts and cell lines. Inhibition of BTK 
by ibrutinib blocked the survival and proliferation of FLT3-ITD primary AML blasts and AML cell lines by inhibiting 
MAPK, AKT, and STAT5.195 Ibrutinib might specifically target FLT3-ITD in addition to BTK via decreasing FLT3-ITD 
autophosphorylation. c-MYC expression and STAT5 phosphorylation were also decreased in response to ibrutinib in 
FLT3-ITD AML cell lines and it showed synergistic or additive effects in combination with FLT3i.196,197 There is 
a phase II/III trial (NCT03642236) accepting registration to investigate the efficacy and safety of the combination of 
BTK inhibitor, ibrutinib with chemotherapy with/without FLT3 inhibitor in refractory/relapsed FLT3 mutant AML. The 
combination of MDM2, a negative regulator of the tumor suppressor p53, inhibitor milademetan with quizartinib showed 
synergistic apoptotic effects in FLT3-ITD positive and p53 WT AML cell lines and murine cell lines with FLT3-ITD 
+F691L and D835Y mutations via suppression of MCL-1 and upregulation of p53, PUMA and p21. In vivo mice model 
treated with this combination had prolonged survival.198 Milademetan (MDM2 inhibitor) plus quizartinib combination 
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study in FLT3-ITD mutant AML patients is recently completed (NCT03552029, results not shared yet). MDM2 inhibitor 
NVP-HDM201 and midostaurin combination showed synergistic effects in AML cells with high FLT3-ITD AR and WT 
TP53 and NPM1,199 which is under a phase I trial (NCT04496999). The combination of gilteritinib with 
a pharmaceutical inhibitor of the NFKB family inhibited the secretion of tumor-promoting cytokines from gilteritinib- 
treated leukemic blasts.200 Apoptosis induced in FLT3-ITD AML cell lines and primary patient samples treated with 
gilteritinib in combination with CUDC-907, a dual inhibitor of PI3K and histone deacetylases via FLT3 downregulation, 
inhibition of MAPK/ERK and JAK/STAT pathways, reduction of MCL-1 and c-MYC and induction of BIM.201 Protein 
arginine methyltransferase 1 (PRMT1) was upregulated and defined as an important target involved in the maintenance of 
FLT3-ITD+ AML. PRMT1 methylates FLT3-ITD at R972/973 residues which enhanced Y969 phosphorylation to recruit 
downstream SH2 domain-containing adaptor molecules. Thus, R972/973 methylation promoted STAT5 and AKT 
phosphorylation. Inhibition of PRMT1 using MS023 in combination with quizartinib enhanced the elimination of FLT3- 
ITD cells.202 Translation initiation factor eIF4a was inhibited with rohinitib (RHT) via downregulation of transcription 
factor heat shock factor 1 (HSF1) in FLT3-ITD AML cells, resulting in an anti-leukemic effect. Knockdown of HSF1 
sensitized FLT3-mutant AML cells with both ITD and TKD mutations to clinical FLT3i.203

Targeted FLT3 AML Therapeutics Beyond FLT3 Inhibitors
Even though there are small FLT3is with FDA approval such as midostaurin and gilteritinib, they have their own 
limitations for effective treatment such as drug resistance, toxicities, limited and short-lived responses. Therefore, there is 
still a need to search for novel treatment modalities for FLT3-ITD AML including immunotherapy, small-molecule FLT3 
degraders, and flavonoids.

FLT3 Antibodies
Monoclonal antibodies (mAb) with high specificity and affinity for FLT3 have been developed and their effects have 
been evaluated in pre-clinical and early clinical phase studies. IMC-EB10, a human anti-FLT3 antibody, targeted both 
WT-FLT3 and FLT3-ITD mutant in a ligand-dependent (via blocking the binding of FLT3 L to FLT3) and -independent 
manner and inhibited downstream signaling pathways such as MAPK and AKT in both cell lines and mice model.204 

IMC-NC7 is another human anti-FLT3 antibody sharing similar working mechanism with IMC-EB10.205 In this case, 
IMC-EB10 initiated antibody-dependent cell-mediated cell toxicity in FLT3 expressing cells and decreased engraftment 
of FLT3 expressing cells into non-obese diabetic/severe combined immunodeficient mice more effectively.205 Although 
a phase I study (NCT00887926) was initiated based on this result, it is recently terminated due to lack of efficacy in 26 
registered R/R AML patients. 4G8SDIEM is the first reported Fc-optimized antibody targeting FLT3 and induced cellular 
toxicity on both FLT3 expressing cell lines and AML blasts,206 which led to the current phase I/II clinical trial 
(NCT02789254) for AML patients with minimal residual disease (MRD). To target a wider population of AML patients, 
an immunoglobulin G-based bispecific antibody (7370) with an affinity for both FLT3 and CD3 has been developed 
recently.207 It was shown to have a long half-life and target FLT3 irrespective of mutation profile in AML blasts and it 
gave promising results in cynomolgus monkeys via inducing depletion of peripheral FLT3+ dendritic cells and bone 
marrow FLT3+ stem cells and progenitors. CLN-049, a CD4+ and CD8+ T cell activating bispecific antibody targeting 
FLT3 and CD3 is just developed.208 In mouse xenograft models established using human leukemic cell lines and patient- 
derived AML blasts, CLN-049 was highly active.

T-Cell Based Approaches
Autologous T cells could be modified and given back to the patient to target FLT3-ITD with increased specificity for 
cancer cell killing. The most common strategy is chimeric antigen receptor (CAR) T cell therapy for FLT3 positive AML.

CARs have an extracellular domain to recognize cancer-specific antigens and an intracellular signaling domain for 
T cell proliferation and activation to kill cancer cells.209 T cells from healthy donors were engineered to recognize FLT3 
with CD28 co-stimulatory signaling domain and CD3ζ activation domain.210 Its cytotoxicity was evaluated in FLT3 
expressing cell lines including FLT3-ITD positive MOLM-13 and MV4-11 cells and WT-FLT3 expressing cells EOL1. 
FLT3 CAR T cells killed the FLT3 expressing cells and secreted IFN-γ and IL-2. Similar results were also obtained using 

OncoTargets and Therapy 2022:15                                                                                                 https://doi.org/10.2147/OTT.S384293                                                                                                                                                                                                                       

DovePress                                                                                                                       
1467

Dovepress                                                                                                                                                      Tecik and Adan

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


FLT3 expressing AML blasts. In vivo xenograft mice models established via engraftment of MOLM-13 cells and FLT3 
positive AML patient blasts, FLT3 CAR T cells showed anti-leukemic activity with 100% survival rate compared to the 
controls.210 There is a phase I study evaluating the safety, tolerability, and efficacy of FLT3 CAR T cell therapy (AMG 
553) in FLT3 R/R AML (NCT03904069).211

FLT3 L CAR T cells were constructed using FLT3 L as an extracellular recognizing domain with 4–1BB and CD3ζ 
intracellular signaling domains.212 FLT3 L CAR T cells were co-cultured with FLT3 positive cell lines and patient blasts 
and showed cytotoxicity via secreting IFN-γ and TNF alpha. In vivo xenograft model treated with FLT3 L CAR T cells 
had prolonged survival. Newly designed FLT3 L CAR T cells with a combined ICOS and 4–1BB co-stimulatory domain 
and a CD3ζ activating domain were effective against WT-FLT3 carrying THP-1 cells.213 The combination of FLT3 CAR 
T cell therapy with FLT3i, midostaurin or quizartinib, showed promising results.214 These FLT3is increased surface 
expression of FLT3, then FLT3 CAR T cells recognized MOLM-13 and MV4-11 FLT3-ITD cells effectively and 
improved response rate in mice model. There is a pre-clinical study investigating the effect of allogeneic FLT3 CAR 
T cell therapy with a rituximab on-off switch mechanism to eliminate some challenges observed in autologous therapy 
such as limited or nonfunctional peripheral T cells in patients after treatment, which renders effective production of 
patient-based T cells for CAR T therapy.215 This approach resulted in promising results in vitro and in vivo, however, 
there was also the elimination of human HSC and progenitor cells leading to myelotoxicity. In this case, rituximab switch 
was useful to remove FLT3 CAR T cells after depleting AML blasts and allowing bone marrow to recover. The 
synergistic effect of dual-target FLT3 single-chain fragment variable (scFv)/NKG2D (Natural killer group 2 member 
D ligands) CAR T cells with gilteritinib associated with the lysis of R/R FLT3-ITD AML cell lines and mouse model. 
Gilteritinib increased the efficacy of bispecific CAR T cells via increasing the expression of NKG2DL.216

Novel Immunotargets in FLT3 AML
Higher expression of the IL3 receptor α-chain (CD123) and MIC-2 (CD99) in combination with the IL2 receptor α-chain 
(CD25) within the CD34+ cell population was detected in minor FLT3-ITD subclones at diagnosis and also in 83% of 
cases with FLT3-ITD relapse. The presence of the CD34/CD25/CD123/CD99+ population was significantly associated 
with ITD mutation in the FLT3 gene, which could be the LSCs.217,218 A higher FLT3-ITD load was observed within 
CD34/CD123/CD25/CD99+LSCs. Treatment with an anti-CD99 mAb was cytotoxic on LSCs in two patients, whereas 
there was no effect on CD34+cells from healthy donors.219 Anti-CD99 mAb showed more apoptotic effects on FLT3-ITD 
AML patient samples and cell lines compared to those expressing WT-FLT3 via upregulating both intrinsic and extrinsic 
pathways of apoptosis with a specific emphasis on the p53-mediated pathway. CD99 targeting also reduced glycolysis 
and mitochondrial respiration.220 Targeting CD33 with gemtuzumab ozogamicin (GO), a calicheamicin-conjugated mAb, 
in combination with induction chemotherapy in pediatric patients with high FLT3-ITD AR reduced relapse.221 An active 
clinical trial (NCT04385290) is investigating the safety and efficacy of midostaurin plus GO as frontline therapy in newly 
diagnosed FLT3 mutated patients. The role of programmed cell death 1 (PD-1) and PD-1 ligand (PD-L1) is not clear for 
AML; however, the high expression of PD-L1 could be responsible for worse prognosis in NPM1/FLT3 double mutant 
AML patients.222 A clinical study of atezolizumab, PD-L1 targeting mAb in combination with gilteritinib in R/R FLT3 
mutated AML is recently completed (NCT03730012). CSF2RB was phosphorylated directly by FLT3-ITD via direct 
interaction and its knockdown increased sensitivity against midostaurin via decreasing STAT5 phosphorylation, hence, 
targeting CSF2RB-FLT3-ITD interaction using small peptides could be a strategy to improve FLT3i’ efficacy.223

Small-Molecule FLT3 Degraders
The first report about the degradation of FLT3 was the inhibition of HSP90, a molecular chaperone, in FLT3-ITD 
expressing leukemia cells, which proved FLT3-ITD as a client kinase for HSP90.224 HSP90 inhibitor 17-AAG was 
cytotoxic to primary AML cells carrying FLT3 mutants, but not for WT-FLT3 via inhibiting JAK/STAT, MAPK, and 
PI3K/AKT pathways and 17-AGG dissociated FLT3-ITD from HSP90, hence inducing FLT3-ITD degradation.225 The 
patients with FLT3-ITD expression also had high HSP90 levels to stabilize FLT3-ITD. HSP90 inhibition had a stronger 
pro-apoptotic effect on FLT3-ITD AML cells compared to those with WT-FLT3.226 Inhibition of HSP90 in FLT3i 
resistant FLT3-D835Y and several FLT3-ITD/TKD mutants by HSP90 inhibitors geldanamycin 17-AAG or 17-DMAG 
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resulted in the degradation of mutant FLT3 in addition to FLT3-ITD and inhibition of STAT5 and ERK1/2.227 c-Cbl and 
Cbl-b are reported as E3 ubiquitin ligases for FLT3-ITD and are involved in the degradation process via the ubiquitin- 
proteasomal pathway induced by 17-AAG.228 A loss-of-function mutation in the E3 ligase domain of c-Cbl was found to 
eliminate its degradative function in a mice model established using HCS with FLT3-ITD mutation and c-Cbl mutation 
since mice developed AML.229 The combination of 17-AAG and midostaurin showed high activity against AML cells 
with FLT3 mutations through downregulating FLT-3, p-FLT-3, p-AKT, p-ERK1/2, and p-STAT5 and inducing 
apoptosis.230 Ba/F3 cells expressing FLT3-ITD+D835V cells were very sensitive to HSP90 inhibitors which resulted 
in degradation via autophagy. Quizartinib-resistant MV4-11 cells with FLT3-ITD+D835H and FLT3-ITD+D835V were 
also sensitive to HSP90 inhibitors.231 USP10 was identified as an FLT3-specific deubiquitinase to stabilize FLT3, hence 
its inhibition by small USP10 inhibitors gave promising results in cell lines, patient samples, and a mouse model of 
FLT3-ITD AML.232 A novel USP10, Wu-5, induced both WT-FLT3 and FLT3-ITD degradation and induced 
apoptosis.233 HSP70 could be a new therapeutic target that was shown to interact with FLT3-ITD, leading to its 
stabilization. The inhibition of HSP70 by QL47 induced degradation in both FLT3-ITD and drug-resistant mutants 
including F691L, N676D, and D835Y.234

Proteasome inhibitor, bortezomib triggered apoptosis specifically in FLT3-ITD AML cell lines and patient samples 
compared to WT-FLT3 AML cells by down-regulating PI3K/AKT, STAT5, and MAPK/ERK and the degradation of 
FLT3-ITD was related to autophagy. Bortezomib treatment overcame acquired quizartinib resistance in MOLM-14 FLT3- 
ITD-D835Y double mutant.235 Recently, proteaphagy, a degradation system activated after proteasome inhibition was 
identified in FLT3-ITD AML cells after bortezomib treatment via activation of autophagy, which suggested the inhibition 
of proteasome together with autophagy (using bafilomycin A) could be synergistic.236 In a mouse model of FLT3-ITD 
AML, arsenic trioxide (ATO) induced autophagic degradation of FLT3-ITD, which resulted in decreases in leukemic 
burden.237 Treatment with ATO resulted in the degradation of FLT3-ITD via partly decreasing its interaction with 
USP10, causing poly-ubiquitination and proteasomal degradation. ATO showed synergistic effects with sorafenib and 
quizartinib via inhibiting FLT3 autophosphorylation and downstream STAT5, AKT, and ERK signaling pathways.238

Polyphenols from green tea, (–)-epigallocatechin-3-gallate, (–)-epigallocatechin, and (–)-epicatechin-3-gallate, inhib-
ited the proliferation and suppressed the FLT3 expression in FLT3 mutated cells which eventually led to inhibition of the 
downstream pathways such as PI3K, MAPK, and STAT5.239 The reason behind the FLT3 suppression was the disruption 
of the interaction between of HSP90 and FLT3-ITD, resulting in degradation of FLT3-ITD. These flavonoids also 
induced apoptosis in FLT3 mutated cells synergistically in combination with midostaurin.239 PROTAC, proteolysis 
targeting chimera, are bifunctional small molecules designed to bind target protein and E3 ubiquitin ligase simulta-
neously, which induce target protein ubiquitylation and then degradation by the proteasome.240 Several PROTAC 
molecules were synthesized based on the binding model of dovitinib and FLT3 among which molecules 101 and 102 
showed anti-proliferative effects against MOLM-13 and MV4-11 cells and induced the degradation of FLT3-ITD.241 

A promising PROTAC PF15 was synthesized recently and degraded FLT3 and inhibited downstream STAT5 
signaling.242 All degraders showed efficacy in vivo models. Quizartinib was converted into a PROTAC with more 
selectivity and enhanced apoptotic activity via FLT3-ITD degradation in both in vitro and in vivo models although its 
kinase inhibitory function was partly abolished.243

Flavonoids in FLT3 AML
Flavonoids are natural products commonly found in plants.11 These compounds work as anti-oxidant, anti-bacterial, anti- 
viral, anti-inflammatory, and anti-cancer agents.244 Only flavones and flavonols are suggested to be anti-cancer agents 
among flavonoids due to their ability to induce mitochondria-mediated apoptosis and suppress multiple signaling 
pathways including MAPK, PI3K, and NF-κB.11 Hispidulin, luteolin, acacetin, and eupatin, subgroups of flavones and 
flavonols, are shown to have inhibitory properties towards FLT3.245,246

Natural chalcones were more potent toward FLT3-ITD cell lines and inhibited cell growth. All chalcones inhibited the 
FLT3 and reduced the phosphorylation of downstream pathways including STAT5 and ERK.247
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O-methylated flavonol, a precursor of fisetin, inhibited the activity of FLT3-ITD and FLT3-D835Y kinases.244 

Moreover, FLT3-ITD MOLM-13 and MV4-11 cells, when treated with this flavonol, arrested cell cycle at the G0/G1 
phase and activated apoptotic proteins such as PARP, caspase 3, and BAX.244

Isoliquiritigenin extracted from licorice root also demonstrated anti-cancer activity by targeting FLT3. The prolifera-
tion of FLT3-ITD AML MOLM-13 and MV4-11 cells was selectively inhibited by isoliquiritigenin. In vivo studies on 
isoliquiritigenin revealed that it inhibited tumor growth in the MV4-11 xenograft mouse model and extended the survival 
time. The inhibitory activity of isoliquiritigenin towards resistant FLT3-ITD/F691L cell line makes it a promising natural 
compound in FLT3-ITD mutant AML.248

Resveratrol, an anti-carcinogenic plant-derived polyphenol was shown to inhibit the proliferation of FLT3-ITD 
mutated MV4-11 and MOLM-13 cells via modulation of sphingolipid metabolism enzymes including anti-apoptotic 
sphingosine kinase-1 and glucosylceramide synthase and apoptotic serine palmitoyltransferase.249,250 Although the 
studies investigating the roles of flavonoids in FLT3 positive AML are limited, natural products or their derivatives 
seem to possess the potential to develop new therapeutic agents targeting FLT3 or to be used as an integrative medicine 
in combination with FLT3i.

Conclusion
The discovery of FLT3 and its mutations has dramatically changed the AML course and treatment. The patients with 
FLT3 mutations have better options to be treated due to the approval of FLT3i in the clinical settings, which should be 
carefully selected based on patients’ current health condition, previous treatment history, genetic characterization, and 
eligibility for induction, consolidation or maintenance therapy as discussed extensively. On the other hand, the emergence 
of primary and mainly secondary resistance is a major limiting factor for effective FLT3i treatment, therefore under-
standing the detailed molecular mechanisms behind resistance will obviously increase the design of novel FLT3i or dual 
FLT3i and combinational treatment strategies. Additionally, emerging treatments involve immunotherapeutics such as 
FLT3 targeted antibodies, FLT3-specific T cell therapy, and novel potential immunotargets such as CD99 and PD-L1 and 
small molecule FLT3 degraders including HSP90 and proteasome inhibitors and PROTACs which have resulted in some 
initial success in pre-clinical and early phase clinical studies. However, more mechanistic studies or larger randomized 
trials are still needed to prove the advantages of these novel treatment modalities over approved treatments. Their 
specificity, safety profile, and appropriate dose should be carefully discussed based on the data which will be accumulat-
ing in the future. It is also inevitable that the development of novel therapeutics after identifying specific molecular 
targets in FLT3-ITD AML will be shaping the treatment strategies. To be noted, flavonoids are being investigated for 
their potential as adjuvants in FLT3-mutated AML with increasing anti-leukemic potentials. Based on all the studies 
investigating the targeting of FLT3, it would be possible to find a more specific and durable FLT3-ITD therapy approach 
even for a specific group of patients in the near future most probably in combination with already approved therapies.
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