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Objective: The study aimed to develop and validate a nomogram model with clinical risk factors and radiomic features for 
differentiating tuberculous spondylitis (TS) from pyogenic spondylitis (PS).
Methods: A total of 254 patients with TS (n = 141) or PS (n = 113) were randomly divided into training (n = 180) and validation 
(n = 74) groups. In addition, 43 patients (TS = 22 and PS = 21) were collected to construct a test cohort. t-test analysis, de-redundancy 
analysis, and minimum absolute shrinkage and selection operator (lasso) algorithm were utilized on the training set to obtain the 
optimal radiomics features from computed tomography (CT) for constructing the radiomics model and determine the radiomics score 
(Rad-score). Eight clinical risk predictors were identified to develop the clinical model. Combined with clinical risk predictors and 
Rad-scores, a nomogram model was constructed using multivariate logistic regression analysis.
Results: A total of 1781 features were extracted, and 12 optimal radiomic features were utilized to construct the radiomic model and 
determine the Rad-score. The combined clinical radiomics model revealed good discrimination performance in both the training cohort 
and the validation cohort (AUC = 0.891 and 0.830) and was superior to the clinical (AUC = 0.807 and 0.785) and radiomics 
(AUC = 0.796 and 0.811) models. The calibration curve and DCA also depicted that the nomogram had better clinical efficacy. The 
discriminative performance of the model is well validated in the test cohort (AUC=0.877).
Conclusion: The clinical radiomic nomogram could serve as a promising predictive tool for differentiating TS from PS, which could 
be helpful for clinical decision-making.
Keywords: tuberculous spondylitis, pyogenic spondylitis, computed tomography, radiomics, clinical risk factors, nomogram

Introduction
Tuberculous spondylitis (TS) is one of the most severe and common extrapulmonary tuberculosis, affecting about 50% of 
all bone and joint tuberculosis. With the progress of the disease, the bone is severely damaged, leading to scoliosis, 
affecting nerve function, and seriously impacting the quality of life of patients.1,2 Early diagnosis and precise treatment 
of TS can not only prevent the further development of the disease but also prevent the occurrence of spinal deformities 
and improve the quality of life among patients.3,4 However, the onset of TS is occult. The early clinical manifestations, 
laboratory examinations, and imaging lack specificity, which can easily be confused with pyogenic spondylitis (PS).5 

Especially in recent years, with the abuse of antibiotics and immunosuppressants, PS with atypical clinical symptoms is 
becoming more common. The differential diagnosis between the two becomes difficult.6 Due to the significant 
differences in treatment options for different diseases, a safe, rapid, and accurate diagnosis method without invasive 
intervention will help the clinic take further measures to intervene in the treatment.7,8

Bacterial culture is the gold standard for differentiating TS from PS, but it has many limitations. First, it requires 
a long time for bacterial culture.9 Second, excessive utilization of antibiotics before tissue sampling or incorrect tissue 
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sampling could lead to a low positive rate.10,11 Computed tomography (CT) is an important imaging technique for 
identifying and diagnosing orthopedic diseases.12 Studies have found that CT scan is of great significance in the 
differential diagnosis of TS and PS, particularly in depicting vertebral bone destruction.13

For a long time, imaging scientists have extracted subjective and semi-quantitative information from images. In addition 
to displaying conventional descriptive signs, images include extensive and deeply excavated digital information.14,15 

Radiomics is an emerging quantitative imaging method enabling high-throughput extraction of quantitative and characteristic 
information regarding regions of interest (ROI) among medical images.16 Currently, studies have demonstrated the potential 
of radiomics during the differential diagnosis of spinal diseases, including spinal tumors, spinal fractures, and 
osteoporosis.17–19 Combining the radiomics and clinical factors can improve disease diagnosis accuracy.20 However, there 
have been no reports of imaging biomarkers that could distinguish TS from PS depending on radiomics approaches.

Therefore, this study attempted to investigate the radiomics features obtained from CT to identify TS and PS and to 
develop and validate a combined clinical radiomics nomogram model for identifying TS and PS.

Materials and Methods
Patients
We reviewed the patients who underwent surgery from the First Affiliated Hospital of Guangxi Medical University for 
TS or PS between January 2015 and September 2022. The inclusion criteria were1 Patients diagnosed with TS or PS 
by pathological examination after an operation.2 CT examination and complete clinical data of patients who underwent 
before operation. The exclusion criteria were1 The postoperative pathological diagnosis was unclear.2 It was combined 
with tumors or other immune-related diseases.3 The imaging data was incomplete, or the image was unclear.4 

Incomplete clinical information. Simultaneously, the electronic medical record system collected indicators, including 
age, gender, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), white blood cells (WBC), red blood cells 
(RBC), hemoglobin (HGB), platelets (PLT), neutrophil count (NEU), lymphocyte count (LYM), monocyte count 
(MONO), eosinophil count (EOS), Basophil count (BASO), mean red blood cell volume (MCV), mean RBC 
hemoglobin content (MCH), mean RBC hemoglobin concentration (MCHC), RBC volume distribution width CV 
(RDWCV), mean platelet volume (MPV), plateletcrit (PCT), platelet volume distribution width (PDW), hematocrit 
(HCT), monocyte-to-lymphocyte ratio (MLR), platelets -to- monocyte ratio (PMR), platelets -to- lymphocyte ratio 
(PLR), neutrophil -to- lymphocyte ratio (NLR), and platelets -to- neutrophil ratio (PNR). Finally, 254 patients 
diagnosed with TS (n = 141) or PS (n = 113) were included in this study. Patients were randomly divided into the 
training and validation cohorts at a ratio of 7:3. In addition, 43 patients (TS = 22 and PS = 21) were recruited to the 
test cohort (Figure 1). The Ethics Committee of the First Affiliated Hospital of Guangxi Medical University approved 
this study. The study complies with the Declaration of Helsinki.

Figure 1 The workflow of this study. 
Abbreviations: TS, Tuberculous spondylitis; PS, Pyogenic spondylitis; LASSO, least absolute shrinkage and selection operator.

https://doi.org/10.2147/IDR.S388868                                                                                                                                                                                                                                   

DovePress                                                                                                                                                      

Infection and Drug Resistance 2022:15 7328

Wu et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Image Acquisition
CT images were extracted from the archiving and communication system (PACS) of the hospital. The CT scans mainly 
used helical 64-channel CT scanners. CT scan parameters were set: tube voltage 120 kVp or 150 kVp, tube current 
200–300 mA, depending on the tube weight, size, and slice thickness 2.0 mm.

Image Segmentation and Radiomics Features Extraction
Two musculoskeletal experts who were unaware of the diagnosis of each patient identified and segmented all the diseased 
vertebral bodies. They analyzed the diseased vertebral bodies of each patient. If there were any disputes, they would 
discuss them to obtain a consensus. This process was achieved by semi-automatic segmentation of the images in the 
vertebral body region through a segmentation threshold by 3D Slicer (version: 5.0.2). Image resampling was performed 
with the interpolator method, and the feature extraction was performed through the open source pyradiomics Library 
(version: 3.0). Finally, 1781 radiomics features were obtained and subsequently, the feature distribution was normalized 
through the Z-score transform.

Establishment of Radiomics Features Model
First, we performed a t-test analysis on all features to determine the differences between the two groups. Subsequently, 
the redundant features with a correlation coefficient R>0.9 were removed by determining intraclass correlation coeffi-
cients. Finally, a radiomics model was constructed with LASSO to select the optimal features. The Rad-score for each 
patient was calculated based on the weighting coefficients of the components. The Rad-score calculation formula is 
shown in Supplementary Table S1.

Establishment of the Clinical Model
Similarly, we performed a t-test or chi-square analysis on the collected indicators such as age, gender, ES, CRP, and 
routine blood tests. Finally, we used LASSO to select the key clinical factor construction from the clinical model.

Establishment of Clinical Radiomics Model
Further, we constructed a clinical radiomics nomogram model combining the Rad-score of each patient with key clinical 
predictors and evaluated the performance of the combined model. Ultimately, we constructed three models to discrimi-
nate between TS and PS: the clinical model, the radiomics model, and the combined clinical radiomics model.

Model Validation and Comparison
The discrimination performance of the three models in differentiating TS and PS in the training and validation cohorts 
was determined by plotting the receiver operating characteristic (ROC) curve. The accuracy, sensitivity, specificity, 
positive predictive value (PPV), and negative predictive value (NPV) were calculated. The DeLong test assessed the 
differences in AUC values between these models. The consistency between the predicted and actual probability was 
evaluated by plotting the calibration curve. The clinical utility of the nomogram was assessed through decision curve 
analysis (DCA) to quantify the net benefit of the patients at each threshold probability. The test cohort was used to further 
validate the discriminative performance of the best model.

Statistical Analysis
SPSS (IBM version 26.0) and R statistical software (version 4.2.1) were utilized for statistical analysis. t-test was used 
for continuous variables, and the chi-square test or Fisher’s exact test was used for categorical variables. Pearson’s test 
was used for correlation analysis for normally distributed data, while Spearman’s test was used for non-normally 
distributed data. The Hosmer-Lemeshow goodness-of-fit test were used to assess model discrimination and calibration. 
All the continuous variables were expressed as mean ±standard deviation (SD). P < 0.05 was considered a significant 
statistical difference.
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Results
Clinical Characteristics
A total of 254 patients, including 141 TS (55.51%) and 113 PS (44.49%) patients, were divided into training cohort 
(n=180) and validation cohort (n=74) according to the ratio of 7:3 by computer generated random numbers. No 
significant difference in clinical factors was found between the two cohorts (P > 0.05) (Supplementary Table S2), 
which proves that the divided training set and trial set are reasonable.

Clinical Model
After statistical analysis, we found that there were statistically significant differences between the two groups in the 
clinical factors of age, RBC, HGB, NEU, MONO, EOS, MPV, PCT, PDW, HCT, MLR and PNR (Table 1). We then 
performed LASSO regression on these parameters using 10-fold cross-validation to select the best λ parameter 
(Figure 2A and B). Finally, eight critical clinical factors, including age, RBC, HGB, NEU, MONO, HCT, MLR and 
PNR, were assessed.

The critical clinical factors were used to construct clinical models. In the training set, the model AUC was 0.807 
(95% CI: 0.744–0.869) and the Hosmer–Lemeshow test = 0.382. In the validation set, the model AUC was 0.785 (95% 
CI: 0.684–0.886) and the Hosmer–Lemeshow test = 0.389.

Radiomics Model
A total of 1781 radiomic features were obtained, 12 optimal radiomic features were identified (Figure 2C and D), and the 
Rad-score for each patient was determined by summing the weighting coefficients of features (Figure 3). There was 
a statistically significant difference in Rad-score among the TS and PS groups (P<0.05) (Figure 4).

The 12 optimal radiomic features were utilized to construct a radiomic model. In the training set, the model AUC was 
0.796 (95% CI: 0.732–0.859) and the Hosmer–Lemeshow test = 0.425. In the validation set, the model AUC was 0.811 
(95% CI: 0.714–0.908) and the Hosmer–Lemeshow test= 0.329.

The Clinical-Radiomics Nomogram Construction
The age, RBC, HGB, NEU, MONO, HCT, MLR, PNR and Rad-score were utilized to construct the clinical-radiomics 
nomogram (Figure 5). The AUC of the model in the training set was 0.891 (95% CI:0.845–0.937) and the Hosmer– 
Lemeshow test = 0.933. The AUC of the model in the validation set was.830 (95% CI:0.740–0.921) and the Hosmer– 
Lemeshow test = 0.768. (Figure 6). It could be found from the calibration curve that the observed values were very close 
to the ideal values, indicating good consistency (Figure 7). Through DCA, we identified that the clinical radiology model 
revealed more significant benefits than the simple clinical model or the radiomics model, suggesting that it has excellent 
clinical utility (Figure 8).

Model Validation and Comparison
Through the DeLong test and comparative analysis of the AUC among the three models, it was identified that the 
radiomics and the clinical models had similar discrimination and prediction efficiency in both the training (0.796 vs 
0.807, P > 0.05) and the validation (0.804 vs 0.790, P > 0.05) sets (Supplementary Table S3).

In the training cohort, the discrimination and prediction efficiency of the clinical radiomics nomogram model was 
significantly better than the radiomics and clinical (0.891 vs 0.796 and 0.807, P < 0.05) models. In addition, accuracy, 
sensitivity, specificity, PPV, NPV, and Youden’s index were better than other models. In the validation cohort, the clinical 
radiomics nomogram model revealed better performance than the radiomics or clinical feature model in terms of 
accuracy, specificity, NPV, and Youden’s index. However, its AUC value was not significantly better than other models 
(0.830 vs 0.811 and 0.785, P > 0.05) (Table 2). Therefore, by combining radiomics and clinical factors, a comprehensive 
model could better distinguish TS and PS (Figure 9). The discriminative performance of the clinical radiomics nomogram 
model was also validated for the test cohort (Figure 10).
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Table 1 Comparison of Clinical Data in TS and PS

Clinical Factors Training Cohort (n=180) P Validation Cohort (n=74) P Test Cohort (n=43) P

TS (n=99) PS (n=81) TS (n=42) PS (n=32) TS (n=22) PS (n=21)

Age 48.21±16.75 54.73±14.55 0.006 54.31±17.62 56.5 ± 16.24 0.586 48.14±19.64 55.95±17.11 0.172
Gender 0.203 0.687 0.933

Male 53 (50.96%) 51 (49.03%) 27 (55.10%) 22 (44.90%) 17 (51.52%) 16 (48.48%)

Female 46 (60.53%) 30 (39.47%) 15 (60.00%) 10 (40.00%) 5 (50.00%) 5 (50.00%)
ESR 40.92±25 45.77±27.25 0.216 38.4 ±23.13 59 ± 27.65 0.001 37.23±27.86 52.95±31.32 0.089

CRP 30.97±40.24 32.06±37.39 0.852 22.67±27.72 38.73 ±34.67 0.03 24.55±33.47 44.95±50.77 0.126

WBC 7.33±2.38 6.96±2.58 0.322 6.96 ± 1.89 6.75 ± 2.07 0.649 7.63±2.45 10.6±6.15 0.042
RBC 4.68±0.75 4.24±0.78 <0.001 4.59 ± 0.77 4.08 ± 0.58 0.002 4.59±0.66 3.97±0.86 0.011

HGB 123.16±14.93 112.36±20.65 <0.001 123.84 ±19.4 108.76 ± 13.58 <0.001 119.1±18.12 113.86±20.95 0.385

PLT 317.84±98.34 325.03±112.68 0.648 305.94 ±110.2 317.85 ± 107.74 0.643 329.4±133.15 306.33±116.44 0.549
NEU 3.56±2.9 2.03±1.78 <0.001 2.96 ± 2.46 3.24 ± 2.4 0.627 2.65±3.1 6.56±6.95 0.025

LYM 0.93±0.74 0.84±0.94 0.49 0.98 ± 0.98 1.21 ± 1.02 0.334 0.73±1.14 1.06±1.06 0.334

MONO 0.44±0.36 0.23±0.26 <0.001 0.44 ± 0.43 0.43 ± 0.4 0.944 0.37±0.53 0.65±0.54 0.097
EOS 0.59±0.61 0.92±0.84 0.004 0.84 ± 0.73 0.59 ± 0.61 0.123 1.03±0.79 0.84±0.95 0.494

BASO 0.07±0.08 0.11±0.14 0.069 0.09 ± 0.09 0.11 ± 0.16 0.462 0.27±0.55 0.11±0.22 0.221

MCV 81.99±9.02 82.65±9.91 0.643 83.83 ±8.51 82.51 ± 9.09 0.522 81.22±8.69 88.25±7.02 0.006
MCH 26.71±3.47 26.77±3.86 0.906 27.25 ± 3.52 26.94 ± 3.57 0.713 26.17±3.78 28.96±2.85 0.009

MCHC 324.97±12.1 322.95±12.66 0.279 324.19 ± 13.15 325.85 ± 10.87 0.565 321.11±16.18 327.9±12.99 0.138

RDWCV 0.23±0.12 0.25±0.11 0.167 0.26 ± 0.13 0.2 ± 0.09 0.029 0.29±0.12 0.22±0.11 0.065
MPV 5.35±3.94 3.86±4.13 0.015 5.23 ± 4.41 5.03 ± 3.66 0.836 3.35±4.48 5.24±3.8 0.144

PCT 0.22±0.08 0.2±0.07 0.047 0.23 ± 0.1 0.21 ± 0.08 0.395 0.22±0.11 0.21±0.1 0.938

PDW 0.19±0.07 0.21±0.08 0.047 0.18 ± 0.05 0.18 ± 0.06 0.886 0.2±0.07 0.17±0.05 0.144
HCT 3.03±3.75 4.18±3.6 0.038 3.52 ± 3.92 2.92 ± 3.7 0.509 5.16±3.87 2.91±3.77 0.06

MLR 0.39±0.32 0.2±0.25 <0.001 0.34 ± 0.31 0.28 ± 0.19 0.276 0.28±0.4 0.61±0.59 0.038

PMR 22695.1±36,284.76 109,286.14±482,974.86 0.111 22,875.37 ± 32,510.73 26,189.75 ± 65,889.19 0.777 92,854.49±115,870.65 36,811.63±83,997.77 0.076
PLR 1810.64±3115.87 3194.42±8082.12 0.119 1494.93 ± 1757.77 1267.45 ± 1692.5 0.577 2204.1±1856.92 1430.95±2091.49 0.207

NLR 6.41±6.37 7.3±16.01 0.614 5.21 ± 3.2 4.36 ± 2.88 0.241 6.15±3.05 8.95±7.58 0.126

PNR 204.82±200.12 334.22±265.83 <0.001 224.77 ± 189.77 221.85 ± 229.96 0.953 345.58±254.69 188.99±220.09 0.037

Abbreviations: CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; WBC, white blood cells; RBC, red blood cells; HGB, hemoglobin; PLT, platelets; NEU, neutrophil count; LYM, lymphocyte count; MONO, monocyte count; 
EOS, eosinophil count; BASO, Basophil count; MCV, mean red blood cell volume; MCH, mean RBC hemoglobin content; MCHC, mean RBC hemoglobin concentration; RDWCV, RBC volume distribution width CV; MPV, mean platelet 
volume; PCT, plateletcrit; PDW, platelet volume distribution width; HCT, hematocrit; MLR, monocyte-to-lymphocyte ratio; PMR, platelets-to-monocyte ratio; PLR, platelets-to-lymphocyte ratio; NLR, neutrophil-to-lymphocyte ratio; 
PNR, platelets-to-neutrophil ratio.
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Figure 2 Identification of optimal characteristics and clinical risk factors by LASSO. (A) LASSO coefficient profiles of the clinical risk factors. (B) The clinical risk factors were screened 
out by tuningλusing LASSO via minimum binomial deviation. (C) LASSO coefficient profiles of the radiomics features. (D) The most valuable features were screened out by tuningλusing 
LASSO via minimum binomial deviation.

Figure 3 The 12 optimal radiomic features chosen for the radiomics model and the LASSO regression coefficient of features.
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Discussion
The correct diagnosis of TS and PS is directly associated with the treatment and prognosis of patients. Timely and 
accurate treatment can reduce the disability rate and damage to bodily function and enhance the quality of life of 
patients.21 In this study, we developed and validated a predictive model for distinguishing TS from PS based on the 
radiomics features of CT. The model combines clinical risk factors and radiomics elements and has better predictive 
value than the radiomics and clinical models in training and validation cohorts.

In recent decades, traditional imaging techniques such as magnetic resonance imaging (MRI) and computed 
tomography (CT) have an increasingly important role in revealing changes among spinal infection patients with the 
advancement of medical imaging technology.22–24 Although MRI has high sensitivity and specificity for showing 

Figure 4 Comparative analysis of Rad-scores in TS and PS groups in the training (A) and validation (B) cohort. 
Abbreviations: TS, tuberculous spondylitis; PS, pyogenic spondylitis; Blue circle, Rad-score of tuberculous spondylitis; Red circle, Rad-score of pyogenic spondylitis.

Figure 5 The predictive clinical-radiomics nomogram for differentiating TS from PS. 
Abbreviations: PNR, platelets-to-neutrophil ratio; MLR, monocyte-to-lymphocyte ratio; HCT, hematocrit; MONO, monocyte count; NEU, neutrophil count; HGB, 
hemoglobin; RBC, red blood cells.
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inflammatory edema,25 it has specific implications for the differential diagnosis of spinal infections.26,27 However, MRI 
is insufficient in depicting vertebral and bone destruction morphology. In contrast, CT has a unique advantage in 
delivering skeletal changes.13,28 A previous study identified the significant benefits of CT in differentiating purulent 
spondylitis from Brucella spondylitis and indicated that CT could compensate for MRI deficiencies.29 Liu et al described 
bone destruction and formation depending on CT images and constructed a simple diagnostic model, which can 
distinguish TS and PS and clinically differentiates PS and TS.30 However, the above studies are based on the visual 
interpretation of images, and the ability to identify small lesions is limited. Simultaneously, radiomics methods can 
extract texture features that the naked eye cannot recognize for quantitative analysis. Therefore, in this study, we 

Figure 6 ROC curves of the clinical, radiomics, and combined models in the training (A) and validation (B) cohort. 
Abbreviations: AUC, area under the receiver operator characteristic curve; ROC, receiver operator characteristic.

Figure 7 The clinical-radiomics nomogram calibration curve in the training (A) and validation (B) cohort.
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extracted the radiomics features of the diseased vertebral body depending on CT and evaluated its role in differentiating 
TS from PS.

As a relatively new technology, radiomics has become a novel method for quantifying various data in imaging images 
and assisting diagnosis and disease treatment31 and has been widely utilized in the diagnosis and differential diagnosis of 
spinal diseases. Chee et al obtained 14 radiomics features from CT images of patients having benign and malignant 
vertebral fractures. They constructed a prediction model for the malignant degree of vertebral compression fracture. The 
results indicated that the ACC of malignant vertebral fracture within the low-risk and the high-risk groups in the training 
and the test groups was 98.2% and 90.9%, respectively. It was revealed that radiomics has a significant differential ability 
in predicting benign and malignant compression fractures within vertebral bodies.32

Recent studies have depicted that combining radiomics signatures with clinical factors indicates excellent potential in 
the diagnosis and prognosis of the disease.33,34 Routine blood tests have a significant role in diagnosing diseases and 
observing the curative effect and prognosis and are a commonly used clinical examination method. NEU, LYM, and 
MONO are common infection indicators and systemic inflammation inside the body.35 Chen et al analyzed the blood tests 
of 496 spinal tuberculosis cases and 504 non-spinal tuberculosis cases, totaling 1000 patients. They found that age, PLR, 
MLR, and monocyte percentage had good diagnostic values for spinal tuberculosis. They believed that MLR might 
predict active spinal tuberculosis and be associated with TS severity.36 Liu et al also found that NEU, MONO, PLR, and 
other indicators can differentiate TS from PS.37 In this study, we also analyzed the blood test results of patients with TS 

Figure 8 The decision curve analysis for the clinical, radiomic, and combined models in the training (A) and validation (B) cohort. The y-axis indicates the net benefit; the 
x-axis indicates threshold probability.

Table 2 Diagnostic Performance of Each Model in the Training and Validation Cohorts

Model Training Cohort Validation Cohort

Clinical Radiomics Clinical+Radiomics Clinical Radiomics Clinical+Radiomics

AUC (95% CI) 0.807 (0.744–0.869) 0.796 (0.732–0.859) 0.891 (0.845–0.937) 0.785 (0.684–0.886) 0.811 (0.714–0.908) 0.830 (0.740–0.921)

Accuracy 0.733 0.72 0.817 0.689 0.716 0.729

Sensitivity 0.815 0.852 0.901 0.476 0.524 0.571

Specificity 0.667 0.626 0.747 0.969 0.969 0.938

PPV 0.667 0.651 0.745 0.952 0.957 0.923

NPV 0.815 0.838 0.902 0.585 0.608 0.625

Youden’s index 0.481 0.478 0.649 0.445 0.493 0.509

Abbreviations: AUC, area under the receiver operator characteristic curve; CI, confidence interval; PPV, Positive predictive value; NPV, Negative predictive value.
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and PS. We constructed a clinical model to evaluate their ability to discriminate between TS and PS. After comparative 
analysis, single radiomics and clinical models can better distinguish TS and PS, and the efficacy is equivalent. We also 
found that the clinical radiomics model had the highest AUC in ROC and the most significant net gain in most threshold 
probabilities for DCA, indicating that the combined model showed the best discriminative power and was validated for 
the test cohort.

However, the current study has several limitations: First, this is a single-center, retrospective study with few samples 
and may have inevitable selection bias. In the future, we must increase the sample size and conduct a multicenter, 

Figure 9 The radar chart shows the diagnostic performance of clinical, radiomic, and combined models in the training (A) and validation (B) cohort. 
Abbreviations: AUC, area under the receiver operator characteristic curve; CI, confidence interval; PPV, Positive predictive value; NPV, Negative predictive value.

Figure 10 The discriminative performance of the clinical-radiomics nomogram model in the test cohort. (A) The ROC curve of the clinical-radiomics nomogram model in 
the test cohort. (B) The radar chart shows the diagnostic performance of the clinical-radiomics nomogram model in the test cohort. 
Abbreviations: AUC, area under the receiver operator characteristic curve; CI, confidence interval; PPV, Positive predictive value; NPV, Negative predictive value.
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prospective study for validation. Second, manual ROI segmentation is time-consuming and complex, and the potential 
subjectivity in the manual segmentation process could hinder the reproducibility of results, demanding automatic 
segmentation techniques having good reliability and repeatability.

Conclusion
By combining CT-based radiomic features and vital clinical factors, a non-invasive clinical radiomics nomogram model 
was constructed and validated, which has good accuracy for identifying TS and PS and could be helpful in precision 
medicine and enhancing medical decision support.
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