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Abstract: Inflammatory factors, such as the IL-1 family, are generally acknowledged to be involved in systemic diseases and IL-1α 
and IL-1β, in particular, have been linked to cardiovascular disease with IL-18, IL-33, IL-36, IL-37 and IL-38 yet to be explored. The 
current review aims to summarize mechanisms of IL-18, IL-33, IL-36, IL-37 and IL-38 in myocardial infarction, hypertension, 
arrhythmia, valvular disease and aneurysm and to explore the potential for cardiovascular disease treatment strategies and discuss 
future directions for prevention and treatment. 
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Introduction
Cardiovascular disease (CVD) often occurs in middle-aged or older patients1,2 and CVD morbidity and mortality are on 
the rise along with global aging.3–5 In addition, the population of CVD patients has become younger as obesity, poor 
lifestyle, dietary habits and substance abuse (cocaine, e-cigarettes) increase in the youthful population.6 Countries in the 
Asian region, such as China and India, have the highest global burden of CVD due to their large population bases.7,8 

Therefore, mechanisms of CVD pathogenesis require urgent attention.
A great deal of research has allowed us to conclude that inflammatory responses are involved in human physiological 

and pathological processes.9–13 The interleukin-1 family has numerous family members that stimulate inflammation- 
related genes and contribute to intestinal diseases, tumors, rheumatoid arthritis, liver and kidney diseases, skin diseases 
and neurological disorders14–19 and have been shown to affect human metabolism, sleep, appetite and mood.20 The 
interleukin-1 family can be broadly divided into two types, pro-inflammatory, IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β 
and IL-36γ, and the anti-inflammatory, IL-1Ra, IL-36Ra, IL-37 and IL-38.21 Recent studies have focused on IL-1 and its 
isoforms, IL-1α, IL-1β and IL-1Ra22–26 but other family members also deserve scrutiny. IL-18 drives myeloid-derived 
suppressor cell production and suppresses T-cell responses to promote multiple myeloma.27 IL-33 mediates microglia 
synaptic phagocytosis in central nervous system development.28 Targeted inhibition of IL-36 signaling is used to treat 
pustular psoriasis29 and both IL-37 and IL-38 suppress allergic disease, with the former binding maternal anti-alopecia 
homolog 3 and entering the nucleus to affect gene transcription,30 and the latter antagonizing the ERK1/2 and NF-κB 
pathways and upregulating host defense genes.31 The interleukin-1 family has been linked to CVD and IL-1α creates 
a pro-thrombotic microenvironment by inducing IL-6 production while IL-1β drives inflammation during 
atherosclerosis.32 Low-grade chronic inflammation mediated by IL-1 is involved in vascular aging, and increased 
expression of IL-1Ra has been observed in the elderly.33 IL-1 also affects L-type calcium channels through altered 
gene expression or IL-1R signaling to trigger heart failure.34 CVD-related mechanisms of IL-1 have been extensively 
reported and will not be repeated here. Instead, the focus will be on the mechanisms of IL-18, IL-33, IL-36, IL-37 and IL- 
38 in CVD and development of therapeutic strategies will be discussed.
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Regulation of Interleukin-1 Family in Cardiovascular Diseases
Myocardial Infarction
Thrombosis, coronary spasm and atherosclerotic plaque erosion due to acute rupture of coronary atherosclerotic plaque 
are common causes of coronary heart disease. All may lead to coronary occlusion, distal myocardial blood supply 
obstruction and myocardial infarction (MI).35,36 Myocardial injury results in the secretion of cytokines by fibroblasts to 
mediate inflammatory responses.37 Mild inflammatory responses facilitate myocardial repair while excessive responses 
lead to cardiac adaptive remodeling and systolic dysfunction, precipitating the condition of heart failure.38

MI involves the formation of the leukocyte NLRP3 inflammasome in the infarcted area and the activation of IL-1β 
and IL-18 in the presence of caspase-1.39 Cardiomyocytes express and activate IL-18 but not IL-1β, even in the presence 
of high-dose stimulation.39 IL-18 has been shown to be involved in vascular fibrosis and the promotion of atherosclerotic 
plaques40 and is considered to be a predictor of inflammation risk in MI patients.41 IL-18 acts synergistically with IL-12 
and IL-15 to induce IFN-γ secretion, enhance TH1-type immune responses and induce post-MI fibrosis.42,43 IL-18 also 
triggers release of adhesion molecules, GM-CSF and iNOS, and promotes vascular endothelial cell apoptosis, inhibits 
cardiac contractile function and induces myocardial fibrotic remodeling.44,45 IL-18 is cross regulated with inducers of 
extracellular matrix metalloproteinase (EMMPRIN), promoting MMP-9 release, amplifying and exacerbating MI.46 

Silencing of EMMPRIN reduced myocardial remodeling by IL-18.43 Moreover, targeted inhibition of the IL-18/ 
TGFβ1/P-SMAD2/3 pathway in a model of MI reduced synthesis of the pro-fibrotic proteins, EDA-Fibronectin, 
Periostin, Vimentin and α-SMA.47 Similar results were reported for a mouse model of ischemia-reperfusion (I/R). IL- 
18 blockade reduced infiltration of monocytes and CD4+ T cells in the mouse myocardium, TH17 cell differentiation was 
inhibited and I/R injury attenuated.48 The conclusion can be drawn from previous studies that elevated post-MI IL-18 
exacerbates disease progression. Blockade of the IL-18 signaling pathway appears beneficial but further studies are 
needed to observe long-term effects.

Many tissues express IL-33. Cardiac fibroblasts are responsible for their synthesis within the heart.49,50 The IL-33 
receptor, ST2, has a soluble isoform, sST2, which often acts as a decoy receptor, and the alternative, ST2L to which IL- 
33 binds and forms an active complex with IL-1R accessory protein.49 Current studies have focused on the IL-33/ST2 
axis. IL-33 enriches regulatory T lymphocytes (Tregs) in mouse models of MI and I/R via IL-33/ST2 and increases Sparc 
expression to promote collagen maturation and maintain cardiac integrity.51,52 Binding of IL-33 to ST2 amplified the 
group 2 innate lymphocyte (ILC2) population, including IL-13, Areg and BMP-7. IL-13 promotes M2-type macrophage 
polarization, BMP-7 inhibits TGF-β1 signaling and Areg acts on cardiomyocytes. These factors work together to 
alleviate post-infarction myocardial fibrosis.53 However, Mia et al found that blockade of the IL-33/ST2 signaling 
pathway in an MI model attenuated Yap/Taz-induced conversion of cardiac fibroblasts to myofibroblasts, attenuating 
myocardial fibrosis.54 Thus, IL-33 has the potential to exacerbate myocardial injury. The influences of IL-33 on MI 
remain controversial and further exploration is required.

IL-36 has four isoforms with different impacts on MI, three agonists, IL-36α, IL-36β and IL-36γ, and one natural 
inhibitor, IL-36Ra.55,56 IL-36γ upregulates macrophage CD36 expression via the phosphatidylinositol 3-kinase pathway, 
amplifying the inflammatory response and promoting uptake of oxidized low-density lipoprotein to stimulate foam cell 
formation and atherogenesis.57 Indeed, targeted inhibition of the IL-36(α/β)/IL-36R pathway attenuated oxidative 
damage to the vascular endothelium and VCAM-1 and ICAM-1 expression in an I/R mouse.58 IL-36 has hitherto 
received little attention with respect to MI and isoform functions require characterization.

IL-37 is a cytokine with anti-inflammatory effects which is elevated in the peripheral blood of MI patients.59 IL-37 
amplified Tregs and suppressed TH1 and TH17 cells in PBMC of 129 infarct patients, exerting a protective effect.60 

Injection of induced cardiosphere overexpressing IL-37 into an I/R model reduced myocardial infarct size, improved left 
ventricular function and downregulated pro-inflammatory cytokines.61 Moreover, IL-37 contributed to increased propor-
tions of M2-type macrophages and reduced infiltration by pro-inflammatory macrophages and collagen deposition in the 
myocardium of an MI model, perhaps due to inhibition of NOTCH1 and NF-κB signaling pathways.62,63 IL-37 also 
mediated lipid metabolism via the IL-1R8/TLR4/NF-κB signaling pathway to reduce MI.64 In conclusion, IL-37 
influences CD4+ T cell typing, promotes macrophage transformation and regulates lipid metabolism during MI. The 
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IL-37 amplification of Tregs is similar to the IL-33/ST2 signaling pathway and research is necessary to demonstrate 
whether these two cytokines engage in cross-talk.

IL-38 is considered anti-inflammatory in various diseases31,65,66 and inhibited the NLRP3 inflammasome and NF-κB 
and MAPK signaling pathways downstream of IL-36 to block vascular injury during MI.67 Anti-inflammatory effects 
also result from IL-38 stimulation of the IL-1RAPL1/JNK/AP1 pathway68 and IL-38 promotes the M1 to M2 phenotypic 
switching in macrophages.69 The IL-38 receptor has yet to be characterized along with the site of macrophage binding 
(Figure 1).

Hypertension
Hypertension is a common and complex clinical syndrome with multiple pathological mechanisms,70 often caused by 
low-grade chronic inflammation of the kidney and blood vessel walls.71,72

Chronic kidney disease is associated with CVD73 and IL-18, a product of NLRP3 inflammation, has been demon-
strated to be involved in the initiation and maintenance of renal inflammation.71,74,75 IL-18 stimulates ICAM-1 and 
VCAM-1 secretion by vascular endothelial cells to precipitate renal inflammation and hypertension and to mediate 
leukocyte aggregation, causing damage to the vascular endothelium. Three signaling pathways are involved, IL-18/Src/ 
ERK, IL-18/PI3K/AKT and IL-18/MyD88/TRAF/IRAK/NF-κB.73 However, whether IL-18, like the NLRP3 product, IL- 
1β, has a role in mediating central system inflammation and causing salt-sensitive hypertension is far from clear.76 IL-18 

Figure 1 Interleukin 1 family in myocardial infarction. IL-18 promotes the expression of pro-fibrotic proteins, EDA-Fibronectin, Periostin, Vimentin and α-SMA, by activating 
the TGF-β/P-samd2/3 signaling pathway and cross-regulates with EMMRPRIN to promote MMP-9 release. IL-18 acts synergistically with IL-12 and IL-15 to induce IFN-γ 
release and enhances TH1-type immune responses. These mechanisms aggravate myocardial infarction. IL-36α/β promotes VCAM-1 and ICAM-1 release through NF-κB 
signaling pathway and aggravates endothelial cell injury. IL-36γ upregulates CD36 through the PI3K signaling pathway, promotes oxLDL secretion and aggravates 
atheromatous plaque progression. IL-33 stimulates ST2 receptors and activates the Yap/Taz signaling pathway, promoting conversion of cardiac fibroblasts to myofibroblasts. 
IL-33 binds to ST2 and amplifies the group 2 innate lymphocyte population, including IL-13, Areg and BMP-7. IL-13 promotes M2-type macrophage polarization, BMP-7 
inhibits the TGF-β1 signaling pathway and Areg acts directly on cardiomyocytes. IL-37 inhibits NOTCH1 and NF-κΒ signaling pathways, promotes the M2 conversion of 
macrophages and reduces the secretion of pro-inflammatory factors and chemokines, inhibiting myocardial infarction progression. IL-38 binds to the IL-1RAPL1 receptor to 
exert anti-inflammatory effects through the JNK/AP1 signaling pathway and alleviate myocardial infarction. 
Abbreviations: TGF-β, transforming growth factor-β; α-SMA, α-Smooth muscle actin; EMMRPRIN, extracellular matrix metalloproteinase inducer; MMP-9, matrix 
metalloproteinases-9; IFN-γ, interferon-γ; NF-κB, nuclear factor kappa B; VCAM-1, vascular cell adhesion molecule-1; ICAM-1, intercellular adhesion molecule-1; PI3K, 
phosphatidylinositol 3-kinase; oxLDL, oxidized low-density lipoprotein; ST2, growth ST imulation expressed gene 2; BMP-7, bone morphogenetic protein 7; Sparc, secreted 
protein acidic and rich in cysteine; TLR4, toll-like receptor 4; MCP-1, monocyte chemoattractant protein-1; IL-1RAPL1, interleukin 1 receptor accessory protein-like 1; Treg, 
regulatory T cells; JNK, c-jun N-terminal kinase; API, activator protein 1.
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connects kidney disease and hypertension and elevated IL-18 has been associated with arterial stiffness in patients with 
metabolic syndrome, weakening the elastic reservoir effect of the artery and increasing late systolic blood pressure.40 IL- 
18 is a promising therapeutic target in hypertension and its mechanism merits further scrutiny.

Blood pressure correlates with structural changes to the left ventricle and higher blood pressure puts mechanical strain 
on cardiac myocytes.77 IL-33 was elevated when myocardial endothelial cells were subject to mechanical stretch. It binds 
to the ST2L receptor, producing an anti-hypertensive, anti-myocardial hypertrophy effect. By contrast, the sST2 receptor 
competes for IL-33 binding, antagonizing this effect.78 Heterodimerization of ST2L and IL-1RAcP in the presence of IL- 
33 activates NF-kB and AP-1 to promote hypertension.79 IL-33 restored perivascular adipose tissue (PVAT) activity 
mediated by eosinophils and vascular anti-constriction to reverse hypertension in a model of obesity.80 Roles of IL-33/ 
ST2 in hypertension remain controversial and the impact of IL-33 on PVAT merits further attention.

Obesity is a common cause of high blood pressure.81–83 IL-36 stimulated the MAPK (p42/p44) pathway, promoting 
increased intestinal mucus secretion and intestinal commensal A. muciniphila abundance to reduce diet-induced weight 
gain in mice.84 IL-36 influence on blood pressure was not studied during the above work but the gut microbiome is 
known to correlate with hypertension.85–88 IL-36 may influence blood pressure by an effect on gut microbes. Nishikawa 
suggested that IL-36 aggravates acute kidney injury and exacerbates hypertension through upregulation of NF-κB, TNF- 
α and IL-6 activities.89 The effect ofIL-36 on other organs should be considered in the context of treatment strategies for 
hypertension.

IL-37 has been shown to be associated with hypertension,90 regulating immune cell differentiation and inhibiting 
inflammatory factor release.91 IL-37 may reduce vascular endothelial damage during hypertension by mediating NO 
bioavailability while reducing NADPHO-associated products.92 Mice injected with recombinant IL-37 had reduced 
secretion of the inflammatory factors, IL-1β, CXCL-1 and TNFα, in epididymal adipose tissue and improved systemic 
insulin resistance status. A similar effect was observed in human adipocytes and AMPK and the mTOR signaling 
pathway have been implicated.93 The protective effect of IL-37 in hypertension appears largely due to inhibition of 
inflammatory factor release.

There is a paucity of reports demonstrating direct effects of IL-38 on hypertension but its anti-inflammatory and 
hyperlipidemia modulating effects may be involved.31,94 IL-38 inhibited human adipocyte differentiation and reduced 
secretion of inflammatory cytokines, IL-1β and MCP-1,95 and IL-38 reduction of joint inflammation involved the NF-κB 
signaling pathway also known to be involved in hypertension.96,97 Macrophages, smooth muscle cells and vascular 
endothelial cells also release IL-38 under apoptotic conditions and affect the circulatory Bcl-2/Bax/Caspase-3 signaling 
pathway, attenuating hyperlipidemia.68,94 No direct relationship between IL-38 and hypertension has yet been shown but 
this molecule does seem to ameliorate the disorder (Figure 2).

Arrhythmias
Arrhythmias occur alone or as a complication of various types of heart disease and in severe cases increase the risk of 
death.98 Inflammatory leukocytes may cause arrhythmias by switching phenotypes or interfering with conduction 
between cardiomyocytes.99

Increased IL-18 in the peripheral circulation has been associated with atrial fibrillation and could be considered 
a potential therapeutic target.100,101 Indeed, the QT interval in sickle cell cardiomyopathy patients was strongly correlated 
with plasma IL-18 and IL-18 increased susceptibility to ventricular arrhythmias, perhaps through the NF-κB signaling 
pathway.102 Inhibition of IL-18 via a binding protein improved cardiac diastolic function and targeting this molecule may 
be beneficial for patients at risk of sudden cardiac death.

IL-37 level correlated with the type of atrial fibrillation (AF), levels being lower in patients with paroxysmal and 
persistent AF than in those with permanent AF.103 IL-37 treatment decreased IL-6 and CRP secretion in in vitro 
experiments.103 Thus, IL-37 appears to have a protective effect in AF, perhaps through inhibition of the NF-κB signaling 
pathway.

Targeting the inflammatory response may be an appropriate therapeutic foundation for the treatment of atrial 
fibrillation.
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Valvular Heart Disease
Valvular heart disease is common in industrialized countries, and the incidence rate in the United States is approximately 
2.5%.104 Surgery is the best option for patients with end-stage disease.

IL-18 is expressed in the aortic valve and correlates with aortic stenosis.105 IL-18 induced the conversion of valvular 
interstitial cells to myofibroblasts and induced osteopontin (OPN) secretion via NF-κB to accelerate valve 
calcification.106 HO-1 and FPN were also activated through the p38 MAPK/ERK1/2 signaling pathway, promoting 
phagocytosis and degradation of erythrocytes by M1-type macrophages, exacerbating valvular calcification.107

IL-33 and sST2 were found to be elevated in peripheral blood from patients with non-rheumatic aortic disease and α- 
SMA, OPN and ST2 were co-expressed, demonstrating that IL-33 induces phenotypic transformation of valvular 
mesenchymal cells through the NF-κB and p38 MAPK pathways and exacerbates aortic lesions.108 Moreover, IL-33 
binding to ST2 receptors activated valvular interstitial cells and promoted mesenchymal transformation of valve 
endothelial cells, contributing to mitral mucinous tumor degeneration.109

IL-37 was found to be expressed in both aortic disease and mitral valve disease but with lower levels at the site of 
aortic stenosis.110 Recombinant IL-37 attenuated the osteogenic response in valves by inhibiting the NF-κB and ERK1/2 
signaling pathways and reducing bone morphogenetic protein-2 and alkaline phosphatase release.111

Figure 2 Interleukin 1 family in hypertension. IL-18 promotes VCAM-1 and ICAM-1 secretion through three signaling pathways, Src/ERK, PI3K/AKT and MyD88/TRAF/ 
IRAK/NF-κB. Renal vascular endothelial injury is exacerbated and hypertension promoted. IL-36α stimulates the NF-κB signaling pathway, IL-6 and TNF-α are secreted, renal 
vasculature damaged and hypertension aggravated. IL-36 activates the MAPK signaling pathway, upregulates A. muciniphila abundance, regulates lipid metabolism and lowers 
blood pressure. Competitive binding of IL-33 by sST2 receptors attenuates the protective effect of IL-33/ST2L on blood pressure. IL-33 also promotes an increase in 
eosinophils, catecholamine secretion, perivascular adipose tissue activity and results in the attenuation hypertension. IL-37 attenuates the damage of NADPHO metabolites 
on vascular endothelium, while activating the MAPK signaling pathway and inhibiting the mTOR pathway, attenuating inflammatory factor secretion in adipose tissue and 
alleviating hypertension. IL-38 reduces inflammatory factor secretion in adipocytes and inhibits the BCL-2/Bax/Caspase-3 signaling pathway while binding to CD4+ T cells, 
decreasing Th17 ratio and upregulating Th2 and Treg ratios and controlling blood pressure. 
Abbreviations: Src, tyrosine protein kinase; ERK, extracellular regulated protein kinases; PI3K, phosphatidylinositol 3-kinase; AKT, protein kinase B; MyD88, myeloid 
differentiation factor 88; TRAF, tumor necrosis factor receptor-associated factor; IRAK, interleukin-1 receptor-associated kinase; NF-κB, nuclear factor kappa B; VCAM-1, 
vascular cell adhesion molecule-1; ICAM-1, intercellular adhesion molecule-1; CCL3, chemokines-3; CCL4, chemokines-4; CXCL1, chemokine (C-X-C motif) ligand 1; 
CXCL2, chemokine (C-X-C motif) ligand 2; TNF-α, tumor necrosis factor-α; MAPK, mitogen-activated protein kinase; A. muciniphila, Akkermansia muciniphila; ST2L, the 
membrane-bound isoform; sST2, soluble protein; PVAT, perivascular adipose tissue; NADPHO, nicotinamide adenine dinucleotide phosphate oxidase; ROS, reactive oxygen 
species; mTOR, mammalian target of rapamycin; BCL-2, B cell lymphoma protein-2; Bax, apoptosis proteins; Caspase-3, cysteine aspartate protease 3; Treg, regulatory 
T cells; MCP-1, monocyte chemoattractant protein-1.
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IL-18 and IL-33 appear to facilitate valvular calcific disease via specific protein activating effects while IL-37 was 
protective. However, the paucity of relevant literature and the lack of mature animal models means that further research 
is needed to consolidate these conclusions.

Aneurysms
Aneurysms, whether thoracic or abdominal aortic, are extremely dangerous and aortic dissection is a fatal hazard.112 The 
pathophysiological basis concerns inflammatory cascade and extracellular matrix breakdown due to arterial injury.113

IL-18 has recently been found that to enhance OPN expression in the intima, leading to the release of matrix 
metalloproteinases from macrophages and decreased collagen and elastin which exacerbates the progression of abdom-
inal aortic aneurysms.114 Obesity is a pre-disposing factor for cardiovascular disease, including aneurysms, and changes 
in PVAT may form part of the underlying mechanism.115,116 Adipocytes and PVAT were found to bind IL-18r and Na-Cl 
cotransport protein (NCC) at the sites of abdominal aortic aneurysm lesions which enhanced IL-18 binding to macro-
phages, arterial smooth muscle cells and vascular endothelial cells, exacerbating endothelial injury and promoting disease 
progression. IL-18r and NCC were found to act synergistically and also participated independently in the pathophysiol-
ogy of abdominal aortic aneurysms.117

Animal experiments have shown beneficial effects of IL-33.118 Activation of the IL-33/ST2 signaling pathway 
amplifies Tregs to inhibit inflammatory factors and chemokines such as IL-6 and MCP-1 in smooth muscle cells while 
M2 macrophage conversion is promoted. However, Tregs are crucial for this mechanism and in their absence, the 
protective effect was lost (Figure 3).

Figure 3 Interleukin 1 family in other cardiovascular diseases. IL-18 activates the NF-κB signaling pathway, causing the release of inflammatory factors and inducing 
arrhythmia. However, IL-37 reduces the incidence of arrhythmia by inhibiting the NF-κB pathway. IL-18 activates the MAPK(p38)/ERK1/2 signaling pathway, promotes HO-1 
and FPN secretion, and accelerates valve calcification. IL-33 mediates the MAPK(p38)/ NF-κB signaling pathway and promotes OPN and α-SMA secretion through IL-33/ST2, 
which aggravates valve calcification. IL-37 inhibits ERK1/2 and reduces BMP-2 and ALP release, thus reducing valve calcification. IL-18 promotes the secretion of OPN which 
causes macrophages to secrete MMP and aggravates abdominal aortic aneurysm. IL-33 binds to the ST2 receptor and enriches Treg, to exert an inhibitory effect on 
abdominal aortic aneurysm by inhibiting macrophage MMP secretion and promoting macrophage conversion to the M2 phenotype. 
Abbreviations: NF-κB, nuclear factor kappa B; CRP, c-reactive protein; MAPK, mitogen-activated protein kinase; ERK1/2, extracellular regulated protein kinase 1/2; HO-1, 
heme oxygenase-1; FPN, ferroportin; ST2, growth ST imulation expressed gene 2; OPN, osteopontin; α-SMA, α-Smooth muscle actin; BMP-2, bone morphogenetic protein 
2; ALP, alkaline phosphatase; MMP, matrix metalloproteinases; Treg, regulatory T cells.
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IL-18 appears to promote aneurysm development and the relationship between IL-18 and PVAT could provide new 
treatment options. IL-33 is a protective factor despite its aggravating effect on CVD. IL33/ST2 pathway specificity in 
aneurysmal awaits further clarification.

Prospect and Future
IL-18 promotes several cardiac diseases through multiple pathways and statins, eg, atorvastatin, commonly prescribed for 
coronary heart disease have lipid-lowering effects and inhibit the NLRP3 inflammasome to reduce IL-18 secretion.119 

Other drugs such as remifentanil and baicalin120,121 may also inhibit IL-18. In addition, NCC inhibitors such as 
hydrochlorothiazide, have potential value in limiting the progression of abdominal aortic aneurysms. Interleukin 
receptors may thus be a suitable focus for therapeutic research and interactions between IL-18 and other cytokines 
require attention. IL-18 acts synergistically with IL-1 to exacerbate systemic acute infectious inflammation122 and 
a synergistic interaction between IL-22 and IL-18 in the prevention and treatment of rotavirus infection was also 
found by Zhang.123 However, synergistic effects of IL-18 with other inflammatory factors have been little reported 
and should be considered when designing drugs.

While focusing on the therapeutic potential of IL-33 for CVD its harmful effects should also be kept in mind. IL-33 
induced eosinophilic pericarditis through the IL-33 receptor124 and the beneficial effects of IL-33 in CVDs, such as 
hypertension, are attenuated by its sST2 decoy receptor. Promising effects of IL-33 injections have been reported for 
hypertension but the resulting splenomegaly does significantly limit its therapeutic potential.80 Several IL-33 blocking 
strategies signaling are feasible with anti-IL-33 mAb, anti-ST2 or sST2 being under development for asthma and 
COPD.125,126 In addition, the hybrid factor, IL-233, a complex of IL-2 and IL-33, enhances the protective effect of 
Tregs and ILC2 in AKI and prevents I/R injury.127

IL-36 inhibitors are currently used for psoriasis29 and effect on blood pressure, via modulation of metabolic patterns 
and gut microbiota, and on vascular endothelial damage, demonstrate the therapeutic potential for CVD. Elevated urinary 
IL-36α and enhanced IL-36α staining in renal biopsy samples are found in AKI89 and a contrasting increase in IL-36γ in 
P. aeruginosa infection-mediated lung injury.128 IL-36β enhances disease progression in a mouse model of colitis by 
promoting the Th2 response while decreasing the Foxp3+ Tregs response.129 Different isoforms of IL-36 mediate disease 
in different ways and attention should be paid to its subtypes.

IL-37 and lL-38 suppress the secretion of inflammatory factors, inhibit macrophage polarization and transport and 
modulate immunity. Recombinant IL-37 enhances mesenchymal stem cells for the treatment of SLE.130 Probiotics and 
prebiotics increase IL-38 gene expression and reduce airway inflammation to control asthma.131 Positive effects of IL-37 
and IL-38 have been shown in animal models of CVD but have been little studied in hypertension, valvular disease, 
aneurysms and arrhythmias and deserve further investigation.

Conclusion
The interleukin-1 cytokines, IL-18, IL-33, IL-36, IL-37 and IL-38, have been linked to CVD. IL-18 and IL-36 promote 
the development of MI, hypertension, calcific valve disease and aneurysm by inducing release of inflammatory factors, 
chemokines, adhesion factors, related proteins and promoting lipid deposition. By contrast, IL-37 and IL-38 inhibit the 
above pathways and exert a protective effect. IL-36 increases the abundance of intestinal flora and reduces hypertension. 
Controversy surrounds the protective and promotional role of CVD by IL-33. Further elucidation of mechanisms, 
regulatory relationships and effector targets is needed for therapeutic development.
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