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Background: COVID-19 is still instigating significant social and economic chaos worldwide; however, there is no approved antiviral 
drug yet. Here, we used in silico analysis to screen potential SARS-CoV-2 main protease (Mpro) inhibitors extracted from the essential 
oil of Thymus schimperi which could contribute to the discovery of potent anti-SARS-CoV-2 phytochemicals.
Methods: The absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles of compounds were determined 
through SwissADME and ProToxII servers. AutoDock tools were used for molecular docking analysis studies, while Chimera, DS 
studio, and LigPlot were used for post-docking studies. Molecular dynamic simulations were performed for 200 ns under constant 
pressure.
Results: All compounds exhibited a bioavailability score of ≥0.55 entailing that at least 55% of the drugs can be absorbed unchanged. 
Only five (9%), nine (16%) and two (3.6%) of the compounds showed active hepatotoxicity, carcinogenicity, and immunotoxicity, 
respectively. Except for flourazophore P, which showed a little mutagenicity, all other compounds did not show mutagenic properties. 
On the other hand, only pinene beta was found to have a little cytotoxicity. Five compounds demonstrated effective binding to the 
catalytic dyad of the SARS-CoV-2 Mpro substrate binding pocket, while two of them (geranylisobutanoate and 3-octane) are found to 
be the best hits that formed hydrogen bonds with Glu166 and Ser144 of SARS-CoV-2 Mpro.
Conclusion: Based on our in silico analysis, top hits from Thymus schimperi may serve as potential anti-SARS-CoV-2 compounds. 
Further in vitro and in vivo studies are recommended to characterize these compounds for clinical applications.
Keywords: structural analysis, SARS-CoV-2, main protease, inhibitors, Thymus schimperi

Introduction
Coronavirus disease 19 (COVID-19) is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2). Since its emergence in December 2019, it exerts a big economic and social impact globally. Data from 
worldometer (https://www.worldometers.info/coronavirus/) showed that COVID-19 cases surpass 655 million with 
a death toll of over 6.6 million as of December 14, 2022. It is unknown when the challenge posed by the pandemic 
will last. However, its impact could be longer due to various means of transmission, large asymptomatic carriers, absence 
of point-of-care cost-effective tests, absence of therapeutics and resistance of variants to vaccines.1–6 One of the 
challenges in tackling the prevention and control activities is the presence of various modes of transmission.1

Studies have been discovering promising inhibitors of SARS-CoV-2. Previously, the FDA approved remdesivir to use 
in case of emergency7; however, it has limited clinical outcomes in non-mechanically ventilated severely ill patients,8 

indicating that further efforts are required to identify therapeutically effective antivirals.9 Owing to their key role in the 
viral cycle and relatively conserved nature, targeting viral enzymes like the main protease or 3C-like protease (Mpro or 
3CLpro), papain-like protease (PLpro), non-structural protein 12 (nsp12), and RNA-dependent RNA polymerase (RdRP) 
could be promising.10

Advances and Applications in Bioinformatics and Chemistry 2023:16 1–13                                  1
© 2023 Mengist et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. 
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the 

work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Advances and Applications in Bioinformatics and Chemistry                Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 30 October 2022
Accepted: 11 January 2023
Published: 18 January 2023

A
dv

an
ce

s 
an

d 
A

pp
lic

at
io

ns
 in

 B
io

in
fo

rm
at

ic
s 

an
d 

C
he

m
is

tr
y 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://orcid.org/0000-0002-8467-6985
http://orcid.org/0000-0001-6490-0743
https://www.worldometers.info/coronavirus/
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


The main protease (Mpro) of SARS-CoV-2 plays key roles in viral replication and assembly11,12 and human protease 
enzymes with similar specificity have not been reported so far,13,14 making it the ultimate potential drug target. The Mpro 

is a cysteine protease where two protomers (each containing Domains I, II, and III) form a homodimer. Residues 8–101 
and 102–184 form Domains I and II, respectively. A Cys-His catalytic dyad, which is proteolytically active, is located 
between Domains I and II.15–19

Viral protease enzymes have a relatively conserved sequence, and they also have crucial roles in viral maturation and 
assembly which make them potential therapeutic targets. So far, the FDA approved several antiviral drugs targeting viral 
proteases including HIV-1 protease inhibitors20 and hepatitis C virus (HCV) NS3/4A protease inhibitors.21 Since it is 
a key viral enzyme, the main protease of coronaviruses is a potential drug target that several studies are focusing on.11 

The Mpro digests polyproteins to release enzymes essential for replication and it also has NTPase and RNA helicase 
activity.22,23 In this regard, studies looking for drugs against COVID-19 have been targeting SARS-CoV-2 Mpro. 
Therefore, it is essential to design antivirals targeting SARS-CoV-2 Mpro as it could have a potential clinical 
application.24

Repurposed broad-spectrum drugs, new drugs, medicinal plants, and known antivirals effectively inhibited SARS- 
CoV-2 Mpro with potential antiviral effects.9 Among others, peptidomimetic alpha ketoamide inhibitors,25,26 Michael 
acceptor compounds,27 carmofur,27,28 ebselen,27,29 aldehyde-based compounds,30 and 6e,31 clinically approved drugs 
(lopinavir/ritonavir),32 antiplatelet drug dipyridamole,33,34 boceprevir (anti-Hepatitis C virus), GC-376, calpain inhibitors 
(II, XII) and GC-37335–37 exhibited effective anti-SARS-CoV-2 Mpro activities.

Molecular docking and molecular dynamic simulations are becoming famous means of in silico drug discovery. These 
methods determine the effective binding of lead compounds in the active site of the Mpro of SARS-CoV-2. Accordingly, 
a study identified 12 best hits from Super Natural II and Traditional Chinese Medicine databases.38 Besides, several 
potential compounds were identified from the traditional Chinese Medicine database interacting with active site residues 
of the Mpro (His41, Gly143, and Cys145).39 Qumar et al40 also recommended the top nine hits from several phytochemicals 
to consider as potential anti-SARS-CoV-2 Mpro lead molecules. Studies also showed that phytochemicals demonstrated 
strong pharmacokinetic and drug-likeness properties with acceptable toxicity profiles.41 Bioflavonoids42 also showed 
promising drug candidacy for SARS-CoV-2. In addition to targeting Mpro, phytochemicals have been demonstrating 
effective in silico drug potential for other core viral components including RNA polymerase.43

The structure–function-based designing of drugs is an important phase in drug discovery. In addition to drug 
repurposing, studying the in silico structural basis of prospective SARS-CoV-2 Mpro inhibitors from medicinal plants 
is considered pivotal to further study the antiviral activity of these compounds for clinical application. In this regard, in 
silico mutational analysis of the Mpro helps for better drug repurposing.44 Several studies have been investigating the in 
silico potential inhibitory activities of compounds against the Mpro of SARS-CoV-2. A study identified that three 
clinically approved drugs (glibenclamide, bedaquiline, and miconazole) effectively bind on the active site of SARS- 
CoV-2 Mpro with possible inhibitory activities.45

In another study, Kanhed et al46 identified ritonavir, nelfinavir, and saquinavir to be potent Mpro inhibitors. Ritonavir 
formed hydrogen bonds with Gly143 and Cys145 with its (thiazol-5-yl) methylcarbamate of oxygen, while the thiazolyl 
ring formed polar contacts with Thr25, Thr26 and Leu27 of the S1’ subsite. Nelfinavir stabilized its binding with Mpro via 
hydrogen bonding with Glu166, and with His41 and Tyr54 in the S2 subsite. Depending on the structure of the pocket, 
compounds containing oxirane rings are suggested to be good Mpro inhibitors.47 Arbutin, terbutaline, barnidipine, 
tipiracil, and aprepitant were identified as potential hits forming different hydrophilic, hydrophobic, and electrostatic 
interactions with Mpro.48 Thioflavonol is a synthetic flavonoid analog that showed a strong binding with the conserved 
residues in the S1 subsite.49 These and other studies illustrated the efficient binding of compounds on the substrate 
binding pocket (active) site of the Mpro indicating their potential anti-SARS-CoV-2 roles.

The genus Thymus contains about 350 species traditionally being used to treat different diseases worldwide.50 

Members of the genus, mostly T. schimperi, locally known as “Tosign”, in Ethiopia are used to treat diseases. Its leaves 
are used as spices in various Ethiopian foods and traditional medicines to treat different diseases including colds.51 No 
significant in vivo and silico rat embryonic toxicity was observed from compounds derived from the essential oil of this 
plant,52 indicating the further application of this plant extract for other infectious diseases including COVID-19. Here, we 
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used in silico analysis to identify potential SARS-CoV-2 Mpro inhibitors from Thymus schimperi which could provide 
structural insights to discover potent anti-SARS-CoV-2 phytochemicals.

Materials and Methods
ADMET Analysis of Compounds
Extraction of 56 compounds from the essential oil of Thymus schimperi was done by using GC-MS.52 Then, the 
PubChem CID number of each compound was obtained from PubChem53 and two-dimensional structures were built 
by Chemdraw (8.0).54 SMILES were created through the Swiss ADME web tool.55 Finally, the in silico absorption, 
distribution, metabolism, and excretion profiles were analyzed by using the online SwissADME server55 and ProToxII 
predicted the in silico toxicity profile of the ligands.56

Ligand and Protein Preparation
The ligands were prepared in PDB format first and then in PDBQT format suitable for molecular docking. Regarding 
protein preparation, the water molecules were removed, polar hydrogens were added, Kollam united atom force field was 
used to add charges and finally the structure was saved in a PDBQT format for further molecular docking analysis. To 
run the molecular docking, the crystal structure of SARS-CoV-2 Mpro (PDB ID: 6y2e)25 was prepared and refined similar 
to previous studies by using AutoDock tools 1.5.7.57–59 His41 was considered as the active site residue for molecular 
docking purposes. The protein we used (PDB ID: 6y2e) was solved by X-ray crystallography at a resolution of 1.75 Å.

Receptor Grid Preparation
The grid box for the Mpro was generated through AutoDock tools58 around the active site. The Grid Box center was set as 
75, 75, and 75 for the X, Y, and Z centers, respectively. The substrate-binding site is in the cleft between domains I and II 
and the protomers, which bind each other through N-terminus residues 1–7, are located between domains II and III with 
roles in the formation of the substrate-binding site.18,25,40,60,61 Mpro is a cysteine protease digesting viral polyproteins. 
First, a proton is transferred from Cys145 to His41 with a simultaneous nucleophilic attack of the carbonyl carbon atom of 
the peptide bond by the sulfur atom of Cys145 resulting in a thiohemiketal intermediate with subsequent protease 
activity.62

Comparative Molecular Docking Analysis
Three docking tools (AutoDock Vina,58 GOLD (Genetic Optimization for Ligand Docking) and MOE (Molecular 
Operating Environment)) were used for the molecular docking study of the 56 compounds (Supplementary Table 1). 
The selected compounds were sketched and minimized by ChemDraw Ultra 3D and saved into Mol2 and PDB format for 
molecular docking purposes.

The molecular docking of selected compounds with the Mpro was performed by AutoDock Vina to assess the 
inhibitory action of ligands against the Mpro. The ligand and protein were converted into pdbqt files using MGL tools. 
Grid sizes were adjusted to 75 × 75×75 Å in the X, Y and Z axes, respectively, with the grid spacing value of 0.650 Å to 
cover the target receptor. The fitness score was determined to select the best docking pose of inhibitors in the binding 
pocket. The best binding affinity was selected in all the docking processes.

After importing all the ligands into MOE, MDB file conversion, 3D protonation and energy minimization was 
conducted to 0.01 gradient. The protein structure concerns of the Mpro PDB structure were resolved in MOE. Before 
energy minimization, hydrogen atoms were introduced to structures with their typical geometry, and all solvent 
molecules were removed. Adjustments were made to the scoring methodologies’ default values. After the docking 
processes were completed, the acquired poses were analyzed, and the poses with the lowest allowable rmsd refine values 
and the same binding mode as the native ligand were chosen.

Alkyl, hydrogen, and hydrophobic interactions between the ligand and receptor were investigated through Chimera 
v1.8.1 and LigPlot63 tools within the range of 5Å while BIOVIA Discovery Studio Visualizer v21.1 was used to identify 
the key interacting residues with maximum binding energies. Molecular dynamics (MD) simulations were conducted to 
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validate docking results and assess the binding behavior and stability of prospective drugs by using the GROMACS 
2016.4 Linux command line suite.25

Validation of the Molecular Docking Method
The molecular docking protocol was validated by using an N3 peptide inhibitor as a reference ligand.27 Then, a decoy set 
of ligands were used along with the active ligands. After the generation of the decoy dataset, all the ligands were 
prepared by MGL tool for docking.

Molecular Dynamics (MD) Simulation
The best-scored docking models of the most promising lead compound (3-octane) in complex with Mpro were selected as 
the starting coordinates for a 200-ns all-atom molecular dynamics simulation using the GROMACS-2016 program 
(GNU, General Public License; http://gromacs.org) and CHARMM36 force field. Solvation of the ligand–protein 
complex was done within a cubic box of the transferable intermolecular potential with a three-point (TIP3P) water 
model93,93 with a minimum distance of 10 between the protein and each side of the 3D boxes. CHARMM General Force 
Field (CGenFF) tool was used to define the CHARMM force field parameters for the examined ligand64 (ParamChem 
project; https://cgenff.umaryland.edu/). The protein residues were allocated to their standard ionization states under 
physiological conditions (pH 7.0), and the whole complexes were neutralized by adding enough K+ and Cl− ions via the 
Monte Carlo ion-placing method. Heavy atom retaining, and maintaining original protein folding was also considered 
using a 1000 kJ/mol.N m2 force constant in a three-step MD simulation. First, each system geometry was optimized with 
5000 iterations (5 ps) of the steepest descent algorithm. In the succeeding step, the system was conditioned for 100,000 
iterations (100 ps) at each stage of two-staged equilibration. The initial equilibration step was carried out using a constant 
number of particles, volume, and temperature (NVT) ensemble following the Berendsen temperature coupling method 
for controlling the temperature within the 3D box. Subsequently, the second equilibration stage was conducted in 
a constant number of particles, pressure, and temperature (NPT) ensemble at 1 atm and 303.15 K utilizing the Parrinello- 
Rahman barostat as a reference. Lastly, MD simulations were performed for 200 ns under constant pressure.

Results
ADME and Toxicity of the Compounds
Based on online server ADMET analysis, potential SARS-CoV-2 Mpro inhibitors from Thymus schimperi exhibited 
variable water solubility, GI absorption, blood–brain barrier (BBB) permeant, bioavailability score and synthetic 
accessibility. Among the screed compounds, 83.9% (47/56) of them are water-soluble, while the rest are either poorly 
soluble or moderately soluble. About 48% (27/56) of the compounds are predicted to be highly absorbable in the 
gastrointestinal (GI) system but 17.9% (10/56) of them are not able to penetrate the BBB. All compounds have 
a bioavailability score of ≥0.55 entailing that at least 55% of the drugs can be absorbed unchanged. Besides, almost 
all compounds have a synthetic accessibility (SA) score of below 5.00 while 35.7% (20/56) of them have a SA score of 
below 3.00 indicating their ease of synthetic accessibility (Supplementary Table 1).

The lethal dose (LD50) of the compounds ranges from 113 to 5700 mg/kg. Two compounds, alpha-phellandrene and 
myrcenol, showed non-toxic (with a toxicity class value of 6 and LD50 value >5000 mg/kg). Except for 6 (10.7%) 
compounds exhibiting a toxicity class of 3 indicating “toxic if swallowed”, other 48 (85.7%) compounds have a toxicity 
class of 4/5 indicating that these compounds are harmful/may be harmful if swallowed. Only five (9%), nine (16%) and 
two (3.6%) of the compounds exhibited active hepatotoxicity, carcinogenicity and immunotoxicity, respectively. Except 
for flourazophore P with a little mutagenicity, all other compounds did not show mutagenic properties. On the other hand, 
only pinene beta was found to have a little cytotoxicity (Supplementary Table 2).

Molecular Docking
In molecular docking, five compounds from Thymus schimperi (amphotericin-gamma, geranylisobutanoate, 3-octane, 
vetivenene_beta and germacrene-D) were the top hits based on lowest binding energy and highest gold score (Table 1). 
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These compounds form hydrogen bonds, van der Waals interactions and alkyl interactions with the amino acids of Mpro 

(Supplementary Figure 1). Among these, amphotericin-gamma, geranylisobutanoate, 3-octane and germacrene-D showed 
strong binding on the His41-Cys-145 catalytic dyad of the SARS-CoV-2 Mpro substrate binding pocket (Supplementary 
Figure 2). Except for beta-vetivenene, other compounds exhibited strong interaction with the Mpro residues through all 
Chimera, DS studio and LigPlot analyses. Further, according to DS studio and LigPlot analysis, geranylisobutanoate, and 
3-octane form hydrogen bonds Glu166 and Ser144 indicating that these compounds are the best among others (Table 1). 
Based on the highest binding affinity (−5.0 kJ/Mol) and gold score (44.88), 3-octane–Mpro protein–ligand complex was 
taken for MD simulation studies for investigating the potentiality of a small drug-like molecule to occupy the catalytic 
dyad of Mpro cavity in a way that would disrupt the function of Mpro (Figure 1).

Molecular Dynamics Simulation Studies
The stability of the projected docked 3-octane–Mpro complex was evaluated by an all-atom MD simulation study. 
Implementing this type of study would also give useful insights concerning the dynamic nature of both the ligand and 
Mpro, as well as an evaluation of the ligand’s most significant binding interactions with essential catalytic site residues.65 

Enrolling of the predicted ligand–protein complex for 3-octane and Mpro protein was done within a 200 ns MD simulation run.

Trajectory Analysis of 3-Octane–Mpro Complex
MD experiments conducted in the complex elucidated the plausible mechanism of inhibition. The shape of the protein 
influences the conformational dynamics, thus understanding the functional flexibility of a biological macromolecule is of 

Table 1 Summary of Top Five Hits Screened Against SARS-CoV-2 Mpro

Ligand Name Binding Affinity 
(kcal/Mol)

Visualization

AV MOE Gold 
Score

Chimera DS Studio LigPlot

Interacting Residues Interacting Residues H Bond Interacting 
Residues

H Bond

Geranylisobutanoate −4.8 −5.17 44.26 His41, Met49, Phe140, Leu141, 

Asn142, Gly143, Ser144, Cys145, 

His163, His164, Met165, Glu166, 

His172, Gln189

His41, Met49, Phe140, 

Leu141, Asn142, Gly143, 

Ser144, Cys145, His163, 

Met165, Glu166, Gln189

1: 

Glu166

His41, Met49, 

Leu141, Asn142, 

Ser144, Cys145, 

His163, Met165, 

Glu166, Gln189

2: 

Glu166, 

Ser144

Amphotericin- 

gamma

−5.5 −4.8 37.98 Thr25, Thr26, Leu27, His41, 

Met49, Phe140, Leu141, Asn142, 

Gly143, Ser144, Cys145, His163, 

His164, Met165, Glu166, His172

Leu, 27, His41, Met49, 

Phe140, Leu141, Asn142, 

Gly143, Ser144, Cys145, 

His163, His164, Met165, 

Glu166

His41, Phe140, 

Leu141, Asn142, 

Gly143, Ser144, 

Cys145, His163, 

His164, Met165, 

Glu166

Germacrene-D −5.0 −4.6 35.78 Thr25, His41, Ser46, Met49, 

Phe140, Leu141, Asn142, Gly143, 

Ser144, Cys145, His163, His164, 

Met165, Glu166, His172, Arg188, 

Gln189

His41, Met49, Asn142, 

Gly143, Cys145, His163, 

Met165, Glu166, Gln189

His41, Met49, 

Asn142, Cys145, 

His163, Met165, 

Glu166, Gln189

3-Octane −5.0 −5.17 44.88 His41, Met49, Phe140, Leu141, 

Asn142, Gly143, Ser144, Cys145, 

His163, His164, Met165, Glu166, 

His172, Gln189

His41, Met49, Phe140, 

Leu141, Asn142, Gly143, 

Ser144, Cys145, His163, 

His164, Met165, Glu166, 

His172, Gln189

1: 

Glu166

His41, Met49, 

Leu141, Asn142, 

Ser144, Cys145, 

His163, Met165, 

Glu166, Gln189

2: 

Glu166, 

Ser144

Vetivenene-beta −5.6 −4.9 36.88 Glu55, Leu58, Ile59, Lys61, His80, 

Ser81, Met82

Glu55, Leu58, Ile59, His80, 

Ser81, Met82
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utmost important.65 The average RMSD for the 3-octane–Mpro complex was found to be 0.25 Å when computed for 200 
ns which indicated that the system was highly stable during the MD simulations (Figure 2A). Similar to previous RMSD 
analysis, the obtained Rg plot confirmed better protein–ligand complex stability with an average value of 0.25 Å 
(Figure 2B).

As shown in Figure 3C, RMSF values were 0.2 Å indicating the flexibility of residues forming the catalytic dyad. The 
200 ns of MD run showed that the flexibility of the residues reached a peak upon binding of the ligand with the receptor 
as depicted by the RMSF. Significant fluctuations were observed at SER-46, LEU-50, THR-190, THR-224, and ASN-277 
and PHE-305 with an average RMSF value of 0.2 Å (Figure 2C). SASA corresponds with the molecular surface area that 
can be assessed by solvent molecules, hence providing a quantitative assessment of the level of protein/solvent 
interaction. The study was performed on the atoms of residues bordering the Mpro binding site to estimate the solvent- 
exposed region (Figure 2D).

Conformational Analysis Across the Selected Trajectories
To detect the structural variability of the simulated system, the MD trajectories (0 ns, 50 ns, 100 ns, 150 ns and 200 ns) 
were superimposed on the pre-simulated 3-octane–Mpro docked complex (Figure 3) and produced the superimposed 
structure at 0.8 Å. The 3D and 2D interaction diagrams (Figure 4) of 0 ns, 50 ns, 100 ns, 150 ns and 200 ns trajectories 
presented that the interacting residues of Mpro were consistent with the course of the 200 ns MD simulation run. 
Interestingly, there is no significant orientation change for the ligand within the Mpro binding site between the time 

Figure 1 3D and 2D representation of the best docked pose of the compound 3-octane highlighting the critical binding site residues of Mpro. (A) Ribbon representation of 
the ligand 3-octane bound to the Mpro. The blue color represents the ribbon representation of Mpro while the ligand is represented in green color. The protein residues 
interacting with the ligand are represented in orange color. (B) The surface representations of the Mpro depicting the ligand are tightly bound within the binding groove of 
the protein. (C) The 2D representation of the docked pose protein–ligand complex. (i) 2D interaction diagram of 3-octane–Mpro complex generated by MOE. (ii) Ligplot 
representation of the protein–ligand complex drawn by LigPlot+. (iii) 2D depiction of the docked complex highlighting hydrogen bonds and cation-p interaction through DS 
Visualizer.
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frames 0 and 200 ns. A slight shift caused a loss of the initial hydrogen bond with GLU-166. Stabilization of 3-octane 
within its new conformation/orientation was further mediated by several hydrophobic residues including His41, Leu141, 
Ser144, and Cys145.

Figure 2 Global stability analysis of ligand-hACE2 protein complexes throughout 200 ns all-atom MD simulation. (A) Analysis of RMSD trajectories for the 3-octane–Mpro 

protein complex throughout 200 ns MD simulation deciphering the primary conformational switches. (B) The radius of gyration for the protein–ligand complex reflects the 
complex structure’s global stability. (C) RMSF of protein–ligand complex depicting fluctuations across protein residues during 200 ns of MD simulations. (D) Extent of Mpro 

binding site coverage via SASA analysis along with the time evolution 200 ns all-atom MD simulation.

Figure 3 The structure superimposition of MD trajectories (0 ns, 50 ns, 100 ns, 150 ns, and 200 ns) over the pre-simulated 3-octane–Mpro complex. (A) The secondary 
structure representation of superimposed protein–ligand complexes. The ligand is represented in green color. (B) The surface representation of Mpro representing that 
ligand is bound within the same active site groove throughout the 200 ns of MD simulation run considering it stable active site conformation of the ligand.
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Discussion
Computational drug design is quite an important tool to speed up drug discovery, especially in case of emergency.66 So 
far studies focused on both repurposing previously approved drugs and/or identifying new potent phytochemicals. 
Proposed plant metabolites are assumed to serve as potential anti-SARS-CoV-2 lead compounds to combat COVID- 
19.67 Medicinal plants especially those used in Chinese traditional medicine have been investigated for applications in 
COVID-19 treatment.68 Studies identified potential SARS-CoV-2 Mpro inhibitors from different plants and Traditional 
Chinese Medicine databases that effectively interact with the active site residues in the catalytic dyad of the Mpro38–40,69– 

73 with promising outcomes.
Here we screened 56 compounds from Thymus schimperi for their ADME, toxicity and binding profiles. Most of the 

screened compounds showed good water solubility, gastrointestinal absorption, and permeant to the BBB. According to 
bioavailability score definitions,74 our compounds could be well absorbed in humans since they have a good predicted 
bioavailability score of ≥0.55 which is similar to previous studies.75 Synthesizing natural compounds could be better to 

Figure 4 Conformations of the 3-octane complex at Mpro binding site through selected trajectories.
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minimize the resource and time required to extract from their natural sources. In this regard, our molecules have an SA 
score below 5.00 indicating that these compounds are not difficult to synthesize,76 indicating their potential consideration 
for further optimization and drug development studies.

Five compounds from Thymus schimperi (amphotericin-gamma, geranylisobutanoate, 3-octane, vetivenene-beta and 
germacrene-D) were the top hits that formed hydrogen bonds, van der Waals interactions and alkyl interactions with the 
amino acids of Mpro. Specifically, geranylisobutanoate and 3-octane showed strong SARS-CoV-2 Mpro binding affinity 
with acceptable toxicity and ADME profiles except these compounds showed hepatotoxicity in in silico analysis. 
Interestingly, these compounds are under toxicity class 5 which is acceptable in medicine. The effective binding of 
these compounds to the Mpro and their good ADMET profiles is in line with previous studies.77–82 Thus, considering 
these compounds for further applications is of significance; however, in vitro, and in vivo chronic toxicity studies are 
pivotal.52

Previous studies also reported similar findings to our study. Numerous plant-derived phytochemicals such as 
curcumin, gartanin, robinetin,83 amentoflavone, gallocatechin gallate,84 chelidimerine, rutin, fumariline, catechin gallate, 
adlumidine, astragalin, somniferine,85 kaempferol, herbacetin, eugenol, 6-shogaol,86 triacontane, hexacosane, methyl 
linoleate, and methyl palmitoleate,87 cosmosiine, pelargoniding-3-O-glucose, and cleomiscosin88 formed similar binding 
patterns while docking with the main protease. Another study also reported that plant-derived phytochemicals including 
flavan 3-ols (catechins/procyanidins), complex oligomeric procyanidins (procyanidin A3, procyanidin A4, procyanidin 
A1, and procyanidin B3) exhibited very good binding characteristics like our compounds.89 Interestingly, the main 
protease of coronaviruses is relatively conserved.90–92 Thus, designing drugs against the main protease could broadly 
attack the virus variants. Additionally, the absence of human host-cell proteases with similar activity with viral main 
proteases make the prospective drugs to have less off-target actions.13,14

Bioinformatics analyses have demonstrated their value in the invention of innovative computer-assisted compounds 
against a variety of diseases, including neurological disorders, cancer, and pathogenic infections.93 To better comprehend 
the structure and function of Mpro, a crucial element in the design of medications, computational studies are necessary. 
Computational drug design methods also play a crucial part in determining which medicine is the best among others.24 

MD simulation studies connect the theoretical and experimental studies in drug discovery by analyzing the protein– 
ligand complex. Further, these studies are crucial to determine the stability of the ligand-receptor complex.94 The MD 
simulation results in this study confirm the firm binding of 3-octane at 200 ns. These results present pieces of evidence 
that 3-octane could be a promising SARS-CoV-2 Mpro inhibitor, while in vitro and in vivo studies are yet required for 
further clinical application. The problem behind drug discovery is less probability of the anticipated compounds passing 
clinical trials. Therefore, continuous efforts and further investigation of compounds through in silico, in vitro and in vivo 
studies are required.

Compounds from food spices are reported to have potential anti-SARS-CoV-2 Mpro activities.95 Thymus schimperi is 
used as a food spice in Ethiopia. Studies have shown that essential oils from Thymus schimperi exhibited promising 
antimicrobial activities.96,97 In silico screening of lead compounds from food promote the therapeutic role of food in 
combating the COVID-19 pandemic.98 As the top hits in this study exhibited excellent binding and acceptable ADMET 
properties, further studies are recommended to optimize these compounds in the plant to design drugs tackling respiratory 
diseases. More importantly, considering geranylisobutanoate and 3-octane for future clinical applications could be of 
significance.

Many lessons have been learned from previous in silico and structure-based drug designing studies that would help 
prospective studies succeed fast in discovering effective antivirals to tackle COVID-19 and other related diseases.24 

Future studies need to focus on the inhibitor enzyme complex which included atomic-level mechanisms of peptide 
cleavage, pharmacophore requirements of the Mpro, stability of the inhibitor-enzyme complex, and plasticity of the active 
site of Mpro. Besides, the occurrence of mutations at the domains and/or the active site affecting the pocket, the size and 
accommodation capacity of the subsites of the Mpro should be considered in designing new drugs or modifying 
previously known broad-spectrum drugs. Most studies solely report the binding affinity and energy of compounds 
towards the substrate-binding cleft of the Mpro, improvements considering the abovementioned points should be taken in 
the future.
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Generally, structure–function analysis is a key factor in drug design and discovery where in silico studies are crucial 
to predict the drug ability of compounds in a short period in addition to its indispensable role in predicting the best drug 
candidates among others. The big challenge in computational drug designing is that the clinical use of these desired drugs 
is questionable corresponding to the possible limitations of passing clinical trials. Although our study characterizes 
a limited number of compounds, it provides a glimpse into the identification of lead compounds from food spices that 
could serve as therapeutic drugs in clinical medicine.

Conclusion
We identified potential compounds from Thymus schimperi that could serve as drugs to inhibit SARS-CoV-2 Mpro. 
Among the top hits, geranylisobutanoate and 3-octane exhibited strong binding to the catalytic dyad of SARS-CoV-2 
Mpro with acceptable ADMET profiles. Interestingly, our results entail that 3-octane could be the most promising anti- 
SARS-CoV-2 Mpro inhibitor. Further studies are required to determine the in vitro and in vivo characteristics of the 
identified potential compounds to employ them in clinical applications.
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