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Background: The incidence of cutaneous melanoma continues to rise rapidly and has an extremely poor prognosis. Immunotherapy 
strategies are the most effective approach for patients who have developed metastases, but not all cases have been successful due to the 
complex and variable mechanisms of melanoma response to immune checkpoint inhibition.
Methods: We synthesized collagen-coding gene expression data (second-generation and single-cell sequencing) from public Gene 
Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Bioinformatics analysis was performed using 
R software and several database resources such as Metascape database, Gene Set Cancer Analysis (GSCA) database, and 
Cytoscape software, etc., to investigate the biological mechanisms that may be related with collagens. Immunofluorescence and 
immunohistochemical staining were used to validate the expression and localization of Nidogen-2 (NID2).
Results: Melanoma patients can be divided into two collagen clusters. Patients with high collagen levels (C1) had a shorter survival than those 
with low collagen levels (C2) and were less likely to benefit from immunotherapy. We demonstrated that NID2 is a potential key factor in the 
collagen phenotype, is involved in fibroblast activation in melanoma, and forms a barrier to limit the proximity of CD8+ T cells to tumor cells.
Conclusion: We clarified the adverse effects of collagen on melanoma patients and identified NID2 as a potential therapeutic target.
Keywords: Skin Cutaneous Melanoma, collagen molecules, NID2, bioinformatics, immunotherapy

Introduction
Skin Cutaneous Melanoma (SKCM) is a highly malignant tumor of melanocyte origin that occurs primarily in the skin and is the 
third most common type of skin malignancy.1 According to the National Cancer Institute, by 2022, an estimated 99,780 new 
cases of melanoma will be diagnosed and 7650 patients will die from melanoma.2 In recent years, with the rapid development of 
modern tumor immunology, immunotherapy for the development of SKCM has become a hot topic of current research.3,4 The 
use of immune checkpoint inhibitors (ICIs) such as CTLA-4 inhibitors (ipilimumab)5 or PD-1/PD-L1 inhibitors (nivolumab and 
pembrolizumab) has been highly successful in improving the prognosis of patients with SKCM.6–8 It is worth noting that 
combining radiotherapy with immunotherapy can significantly enhance the immune stimulation potential to enhance the efficacy 
of immunotherapy.9 Numerous studies have shown that anti-PD-1/PD-Ll therapy significantly improves objective response rates 
and survival in advanced malignant melanoma. Based on previously published data on the KEYNOTE-001 clinical trial study, 
the 5-year survival rate for all patients in the population included in this study was 34%, and for patients, on initial treatment with 
anti-PD-1 therapy, the 5-year survival rate was 41%, which provided a significant and clinically meaningful improvement in 
survival without distant metastases.10,11 Nevertheless, immunotherapy does not benefit all patients, especially those with SKCM 
whose tumor tissue is not infiltrated by immune cells.
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Over the past decades, we have learned that the tumor microenvironment (TME) plays a significant role in tumor 
immunosuppression.12,13 And the extracellular matrix (ECM), a core member of the TME, has become a hot research 
topic in recent years.14–16 Increasingly, studies have shown that ECM is one of the major hurdles to obtaining successful 
cancer immunotherapy.17,18 The ECM is a non-cellular three-dimensional macromolecular network consisting of 
collagen, proteoglycans (PGs)/glycosaminoglycans (GAGs), elastin, fibronectin (FN), laminin, and several other 
glycoproteins.19 Whether in normal tissue or tumor, stromal components and cell adhesion receptors bind to each 
other to form a complex network that regulates a variety of cellular functions such as survival, growth, migration, 
differentiation, and immunity.20 Numerous studies have shown that ECM promotes tumor cell growth, invasion, 
metastasis, and angiogenesis.21 More importantly, the deposition of ECM leads to an increase in density and stiffness, 
thus resisting cell death and drug diffusion.22 Collagen is one of the main components of the ECM and is involved in the 
structural formation of cancer fibrosis and solid carcinomas, together with stromal glycoproteins such as FN, laminin, 
elastin as well as versican.23 This deposited collagen component is somewhat similar to the dense vegetation of a tropical 
rainforest or a 3D spider’s web that wraps tightly around the outer edges of the tumor. This web-like structure formed by 
the collagen makes it more difficult for immune cells to squeeze through the web and enter the tumor.24,25 Studies have 
shown that this heterogeneous collagen reduction can reprogram the tumor microenvironment, promote T-cell infiltration 
and improve prognosis.26 Therefore, a deeper understanding of the relationship between collagen molecules and tumor 
immune responses will help to realize the potential of targeting ECM to improve cancer immunotherapy.

In this study, we analyzed the gene expression heterogeneity of 44 collagen molecules at the pan-cancer level, and the 
results showed that DNA methylation and copy number variation affect the expression of collagen molecules. We jointly 
analyzed information from multiple datasets sources to correlate collagen molecule activity with immunotherapy 
resistance. We developed a scoring system, called Col_Score, to quantify collagen molecules activity in SKCM. 
Integration of collagen molecules with prognosis and immunotherapeutic response is of great clinical importance.

Materials and Methods
Public Datasets
The RNA-seq transcriptome information and matching clinical data of 471 patients with Skin Cutaneous Melanoma 
(SKCM) patients have been acquired from the Cancer Genome Atlas (TCGA) portal website.27 Validation data were 
downloaded from the Gene Expression Omnibus (GEO) database (GSE65904;28 GSE15605;29 GSE19234;30 

GSE59455;31 GSE91061)32 The Single-Cell RNA data included in this study were obtained based on an acral melanoma 
study (GSE189889).33 All the gene expression data were obtained from the official portal and with the help of 
R software, the data matrix was established for subsequent assessments.

Consensus Clustering
We summarized data on collagen molecules from The Human Genome Organisation (HUGO) portal: COL1A1, COL1A2, 
COL2A1, COL3A1, COL4A1, COL4A2, COL4A3, COL4A4, COL4A5, COL4A6, COL5A1, COL5A2, COL5A3, COL6A1, 
COL6A2, COL6A3, COL6A5, COL6A6, COL7A1, COL8A1, COL8A2, COL9A1, COL9A2, COL9A3, COL10A1, 
COL11A1, COL11A2, COL12A1, COL13A1, COL14A1, COL15A1, COL16A1, COL17A1, COL18A1, COL19A1, 
COL20A1, COL21A1, COL22A1, COL23A1, COL24A1, COL25A1, COL26A1, COL27A1, and COL28A1. First, based 
on the expression level of 44 collagen molecules, unsupervised clustering analysis was used to identify the collagen 
phenotypes in melanoma, to classify patients. The optimal clustering number of melanoma-Cohort was determined by the 
consensus clustering algorithm, and its stability was verified. The R package “ConsensusClusterPlus” was used to 
perform each step, and the process was repeated 50 times (resampling rate 80%).34

Col_Score Evaluation
We used the principal components analysis (PCA) (orthogonal rotation) method in the “IOBR” package35 to construct 
a scoring system to evaluate the levels of 44 collagen molecules in SKCM patients and named it Col_Score. The 
Col_Score formula is Col_Score = ∑(PC1+PC2).36
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Enrichment Analysis
For the analyses of Gene Ontology (GO)37 and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment,38 the 
METASCAPE tool was used.39 Furthermore, with the “GSVA” package,40 the differential signaling pathways principled on 
gene set variation analysis (GSEA) were also acquired. The HALLMARK gene set data resource was downloaded from the 
Molecular Signatures Database-MsigDB (www.broadinstitute.org/gsea/msigdb) as a background set.41 P < 0.05 was considered 
important. In addition, the R package “Limma” was used to identify differentially enriched genesets between C1 and C2.

Immune Analysis
Based on the “IOBR” package, we calculated immune infiltration estimations for TCGA-SKCM samples with the Tumor 
Immune Estimation Resource (TIMER)(http://cistrome.shinyapps.io/timer), QUANTISEQ (http://icbi.at/quantiseq), XCELL 
(http://xCell.ucsf.edu/), and EPIC algorithms.42 Heat maps demonstrating the differential abundance of immune cells were 
obtained by the “heatmap” R package. Tumor immune dysfunction and exclusion (TIDE) score43 was determined for predicting 
the blockade response of potential immune checkpoint (ICB) in SKCM participants. Finally, the gene sets built into the ‘IOBR’ 
package were used to evaluate the various biological signal scores in melanoma samples and to compare the distribution in 
different collagen subtypes by Welch’s t-test.

Cox Regression
The Univariate and multivariate Cox regression was applied to evaluate the hub genes’ independent prognostic value.44 

Finally, the results were visualized by R with the forest plot including the hazard ratios (HRs), P-value, and 95% 
confidence intervals (CIs) of every variable.

Single-Cell Analysis
The Single-Cell RNA Sequencing (scRNA-seq) data GSE189889 was acquired from Gene Expression Omnibus (GEO) 
data.45 All the data were incorporated into Seurat V3 and the obtained filtered cells were analyzed in Uniform Manifold 
Approximation and Projection (UMAP) and t-Distributed Stochastic Neighbor Embedding (t-SNE) after strict quality 
control of raw Unique molecular identifier (UMI) > 200, percentage of mitochondrial genes < 20%, log10 Gene per 
nUMI > 0.8). Then, by manual annotation, Hepatocyte from all cells was identified. The “FindAllMarkers” function 
(min.pct=0.25, logfc.threshold=1, tes.use=“Wilcox”) was adjusted for evaluating each cell type marker genes.46 For 
plotting dplotslot and violin plots, “Dot plot” and “Vlnplot” functions were used. In addition, the “monocle3” package 
was used to infer potential evolutionary trajectories in fibroblasts.47

Construction of Co-Expression Networks
The R software package “multiscale embedded gene co-expression network analysis (MEGENA)” was applied to 
distinguish the co-expression network. MEGENA, is a method for assessing the co-expression module, was recently 
developed, and has novel advantages for the efficient construction of large-scale co-expression plane filtering networks 
and gene interaction preservation.48 The construction of a fast planar filtered network (PFN) is the initial step in 
MEGENA analysis, followed by the computational determination of valuable PFN gene pairs, and finally, the aggrega-
tion of constructed PFNs for multiscale clustering analysis (MCA) for further evaluations. In addition, the degree values 
were measured for ranking the module genes to determine the potential hub genes.

Immunohistochemical Staining and Tissue Section Immunofluorescence Staining
Immunohistochemical (IHC) and Immunofluorescence staining followed the method described in the previous study.49,50 The 
antibodies used are listed in Supplementary Table 1. The concentrations used were based on those used in previous research or on 
the manufacturers’ recommendations. After blocking tissue sections with protein blocking solution, slides were incubated with 
primary antibody. IHC results (intensity and extent of staining) were independently scored by two observers. The images were 
captured using a NIKON Eclipse Ni-E microscope (NIKON, Japan). Staining intensity was graded as follows: 0, negative 
staining; 1, weak staining; 2, moderate staining; and 3, strong staining. The extent of staining was scored based on the proportion 
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of positively stained cells per specimen, as follows: 0, no positively stained cells; 1 <10% positively stained cells; 2, 10–50% 
positively stained cells; and 3, >50% positively stained cells. The histochemistry score (H-SCORE), which represents the 
proportion of positively stained cells and the intensity of expression, was calculated as follows: H-SCORE= ∑(PI × I) = 
(percentage of cells with weak intensity × 1) + (percentage of cells with moderate intensity × 2) + (percentage of cells with 
strong intensity × 3). In the formula, PI represents the percentage of positive cells to the total number of cells in a particular field 
and I represent the intensity of staining. The H-SCORE ranges from 0 to 300, with a higher score representing stronger positive 
staining.51

After blocking in 5% bovine serum albumin in phosphate-buffered saline, 0.1% Tween was followed by an overnight 
incubation (4 °C) with the primary antibody. This procedure was followed by incubation with the secondary antibodies. 
Nuclei were stained using 4’,6-diamidino-2-phenylindole (DAPI) for 3 min, and the cells were incubated in the dark for 3 
min. The slides were washed with phosphate-buffered saline (PBS) four times, for 5 min each. Then, the slides were 
sealed with a sealing solution containing a fluorescence quencher and observed and imaged with an inverted fluorescence 
microscope (Olympus CKX-41, Japan).

Inclusion/Exclusion Criteria for Participants and Sample Collection
The use of specimens was carried out with the informed consent of the patients in accordance with the principles of the 
Declaration of Helsinki.52 All patient records/information was anonymized and de-identified prior to analysis. Each sample 
was collected frozen and immediately stored in liquid nitrogen. Inclusion criteria: (1) All patients were diagnosed as SKCM 
for the first time by pathology. (2) The diagnosis was referenced in the latest (8th edition) American Joint Committee on 
Cancer (AJCC) SKCM staging system.53 (3) Patients with SKCM who were hospitalized in the Department of Dermatology 
and Oncology of Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine from 2020-01-01 to 
2022-01-01. Also, pathological specimens from each melanoma patient were kept for independent re-diagnostic confirmation 
by two doctors. (4) All patients had complete clinical information. Exclusion criteria: (1) Patients with a clinical diagnosis of 
a tumor that has metastasized to the skin from another site. (2) Exclusion of any other serious chronic disease or other 
visceral tumors. (3) Incomplete clinical data. Finally, a total of 40 patients with SKCM were analyzed.

Identification of Differentially Expressed Genes in SKCM
By applying the “Limma” package,54 the differentially expressed genes (DEGs) were determined. DEGs, which had a P 
value <0.05 and absolute log2 fold change (FC) >2, were contemplated as statistically important, which were then 
subsequently used for future analyses.

Expression and Survival Analysis
In the public dataset, the mortality was assessed through survival analysis visualized by the “survival” R package, which mainly 
includes progression-free interval (PFI), overall survival (OS), and disease-specific survival (DSS). Furthermore, paired samples 
in TCGA-SKCM differences were assessed by paired t-test, and via the “ggplot2” package all the results were visualized.55

Reagents
The Supplementary Material enlists all the antibodies and reagents used in this investigation (Supplementary Table 1). Antibodies 
dilutions were prepared by following either previous research or by the recommendations provided by the manufacturer.

Statistical Analysis
We used Spearman correlation coefficients to determine the correlation between variables. The Welch’s t-test was used to 
estimate the statistical significance of normally distributed variables, and the Mann–Whitney U-test (also known as the 
Wilcoxon rank sum test) was used to analyze non-normally distributed variables. To compare two or more groups, Kruskal– 
Wallis and one-way ANOVA tests were used. The log-rank (Mantel-Cox) test was used to determine statistically significant 
differences. A univariate Cox proportional hazard regression model was used to calculate the hazard ratio. All statistical 
analyses used R (https://www.r-project.org/), with a P value < 0.05 (two-tailed) indicating significant differences.
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Results
Transcriptional Variation and Functional Characterization of 44 Collagen Molecules
We obtained basic information on 44 collagen molecules from Human Genome Organization (HUGO). Figure 1A demonstrates 
the function of collagen in providing a physical barrier to tumor cells from attack by the immune system. We selected 4394 
samples with at least one collagen molecule mutation from the TCGA database to observe the transcriptomic variation of collagen 
molecules at the pan-cancer level. The 10 collagen molecules with the highest somatic mutation frequencies were COL11A1, 
COL6A3, COL22A1, COL12A1, COL6A6, COL7A1, COL5A1, COL4A4, COL14A1, and COL3A1 (Figure 1B). Out of 4395 
samples, 2726 samples had collagen mutations with a frequency of 62.04%. The highest mutation frequency was found in 
COL11A1 (16%), followed by COL6A3 (14%) and COL22A1 (13%), missense mutation was the most common type of genomic 
alteration, and melanoma (TCAG-SKCM) was the most common type of cancer. Our results suggested that transcriptome 
variation is one of the important factors affecting collagen molecule levels. In most cancer types, copy number variation (CNV) 
and mRNA expression levels were positively correlated, especially in COL8A2 (Figure 1C), while DNA methylation levels were 
negatively correlated with mRNA expression levels, especially in COL1A1 (Figure 1D). Analysis of SNV frequency showed that 
the single nucleotide variant (SNV) frequencies of 44 collagen molecules in the pan-cancerous tissues varied significantly, with 
the highest frequency of COL11A1, especially in SKCM (Figure 1E). We noted that in pan-cancer, almost all collagen molecules 
exhibited a consistent activating effect on EMT (Figure 1F). This part of the results suggests that collagen molecules are highly 
transcriptionally heterogeneous in various cancers and their abnormal expression is closely associated with genomic alterations.

We next focus on the significance of collagen molecules in melanoma. Interestingly, we found frequent mutational co- 
occurrence between collagen molecules, such as COL24A1 and COL9A3 mutations, while exclusive mutation events 
were hardly observed (Figure 2A). Among the 104 samples, 79 samples carried mutations in collagen molecules, with 
a mutation frequency of 75.96%, and COL22A1 had the highest mutation frequency, which was mainly missense 
mutation (Figure 2B). In melanoma tissues, most collagen molecules inhibited the DNA damage response, but there 
was no consistent effect on the cell cycle, EMT, hormone AR signaling pathway, and RAS/MAPK signaling pathway 
(Figure 2C). The TCGA-SKCM data suggested an extensive co-expression relationship between collagen molecules 
(Figure 2D). To ensure the stability of the results, we integrated data from the Gene Expression Omnibus (GEO) 
database, including 565 melanoma samples, and corrected for batch effects using the “Combat” algorithm in the SVA 
package. The gene expression baseline for each cohort was shown before (Figure S1A) and after (Figure S1B) the batch 
effect. Subsequently, we observed similar results to TCGA in the mGEO data (Figure S2). Finally, we confirmed the 
localization of collagen expression by using a single-cell RNA-seq dataset containing 35,988 single cells of melanoma 
samples. We annotated the cells by marker genes specific to each cell type (Figure S3A–C), and the results showed that 
collagen molecules are highly expressed on fibroblasts (Figure 2E–G).

Two Different Collagen Clusters Identified by Unsupervised Learning
To further understand the heterogeneity of collagen in melanoma, unsupervised consensus analysis was used to classify the 471 
samples in TCGA-SKCM into two different subtypes with different molecular and clinical characteristics, including 194 samples 
in cluster 1 and 277 samples in cluster 2, based on the mRNA expression levels of 44 collagen molecules (Figure 3A and B). 
Figure S4A showed that we can obtain the satisfactory clustering effect when k = 2. The PCA showed that the two clusters can be 
well distinguished from each other (Figure 3C). The heatmap showed that the levels of collagen molecules differed between the 
two clusters and that the levels of collagen molecules were significantly higher in C1 than in C2 (Figure 3D). Notably, C1 
contained more patients with advanced stage than C2 (Figure 3E). Survival analysis also showed that patients in C1 had a more 
unfavorable prognosis, including overall survival (OS) and disease-specific survival (DSS), than those in C2 (Figure 3F and G, 
P < 0.05, logrank test). To ensure the stability of the clustering, the same process was performed based on the mGEO data 
(Figures S5A–H and S4B). These results suggested that collagen expression patterns were heterogeneous in melanoma and were 
strongly associated with the clinical outcomes of melanoma patients.
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Figure 1 Expression variation of collagen molecules in pan-cancer. (A) The pattern map was drawn to show the molecular regulation mechanism of the extracellular matrix 
(ECM) and its potentially important regulatory role in the tumor immune microenvironment. (B) The waterfall diagram shows the somatic mutations of the 10 collagen 
molecules with the highest mutation frequency using pan-cancer analysis. 62.04% is the proportion of 2726 samples with at least one mutation of the top 10 genes among 
4394 samples with at least one mutation of 44 collagen molecules. The percentage figure of each line on the right of the picture is the number of samples with the 
corresponding gene mutation divided by 4394 samples with at least one mutation among the 44 collagen molecules. (C) The bubble chart shows the correlation between 
copy number variant (CNV) and mRNA expression level. Red indicates a positive correlation; blue indicates a negative correlation. The deeper color indicates a larger 
correlation index. The bubble size indicates the false discovery rate (FDR). (D) The bubble chart shows the correlation between DNA methylation of the 44 collagen 
molecules and mRNA expression. Red shows a positive correlation and blue shows a negative correlation. The darker color indicates a larger correlation index. Bubble size 
indicates the FDR. (E) The heatmap inferring the genetic relationship using single-nucleotide variations (SNV) data from The Cancer Genome Atlas (TCGA) pan-cancer 
database. The darker the color, the higher the percentage in the sample. (F) Mutation frequency of 44 collagen molecules in 471 patients with Skin Cutaneous Melanoma 
(SKCM) in the TCGA-SKCM cohort. Each column represents an individual patient.
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Biological Signaling Differences in Collagen Phenotypes
We analyze here the differences in gene expression between collagen subtypes and explore the characteristics of the 
associated biological signatures. GSVA enrichment analysis revealed differences in enrichment pathways between C1 
and C2, and specifically, EMT and angiogenesis were significantly highly enriched in C1 (Figure 4A). We obtained DEGs 

Figure 2 Expression variation of collagen molecules in SKCM. (A) Mutation characteristics of the 44 collagen molecules in 104 patients with SKCM in the TCGA-SKCM 
cohort; green indicates co-mutation, brown indicates mutex-mutation, the asterisk indicates P-value (*P <0.01, •P <0.05). (B) The heatmap shows the correlation between 
the expression level of the 44 collagen molecules in important cancer signaling pathways. The global percentage of cancers in which a gene has an effect on the pathway 
among the 32 cancer types, is shown as the percentage: (number of activated or inhibited cancer types/32 *100%). Heatmap shows collagen molecules that have a function 
(inhibit or activate) in at least 5 cancer types. “Pathway activate” (red) represents the percentage of cancers in which a pathway may be activated by given genes, inhibition in 
a similar way shown as “pathway inhibit” (blue). (C) The correlation between the 40 collagen molecules in SKCM and important cancer signaling pathways. The solid line 
represents activation and the dashed line represents inhibition. (D) Correlation between expression levels of 40 collagen molecules, red represents positive correlation, blue 
represents negative correlation, and shades of yellow indicate the P values. (Spearman method, TCGA-SKCM, n = 471). (E) Cells were clustered into 2 types via Uniform 
Manifold Approximation and Projection (UMAP) plot dimensionality reduction algorithm. Fibroblast was distinguished from all other cells based on UMAP dimensionality 
reduction analysis. (F) UMAP visualization of the collagen feature. (G) Violin plots of the collagen feature.
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Figure 3 Unsupervised Machine Learning algorithms was used to identify 2 molecular subtypes in TCGA-SKCM. (A) Left: The cumulative distribution function (CDF) 
curves in consensus cluster analysis. CDF curves of consensus scores by different subtype numbers (k = 2, 3, 4, 5, and 6) were displayed. Right: Relative change in area under 
the CDF curve for k = 2–6. (B) The consensus score matrix of all samples when k = 2. The higher the consensus score was, the more likely they were assigned to the same 
group based on TCGA-SKCM. (C) The Principal Component Analysis (PCA) distribution of TCGA-SKCM samples by the expression profile of collagen molecules. Each 
point represents a single sample; different colors represent the C1 and C2 subtypes respectively. (D) Expression distribution of 44 collagen molecules between two subtypes 
based on TCGA-SKCM. (E) The Sankey diagram fully demonstrated the association between Clinicopathological and subtypes attributes. (F and G) Survival analysis 
including Overall Survival (OS) and Disease-Specific Survival (DSS) based on 2 subtypes (TCGA-SKCM, Logrank test, n = 471).
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Figure 4 Analysis of collagen-related signaling pathways. (A) Gene Set Variation Analysis (GSVA) enrichment analysis shows the activation status of biological pathways between 2 
different collagen subtypes. Bar plots were used to visualize the HALLMARK geneset, with blue representing activation and green representing inhibition in C1. Gray regions stand for 
not statistically significant. (B and C) Volcano map of differentially expressed genes (DEGs) between C1 and C2 based on TCGA-SKCM (B) and mGEO (C) dataset. Data on the 
abscissa are differences in gene expression (log2 fold change); data on the ordinate represent the significance of these differences (−log10 padj). Red indicates upregulation in C1, and 
blue indicates downregulation in C1. (D) Venn diagram indicates the intersecting genes of two independent datasets. (E) Significant Gene Ontology (GO) enrichment terms and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the overlap genes. Each row represents one cluster and color indicates significance. Heatmap shows the 
top 20 clusters correlated with the intersecting genes. (F) The co-expression network of intersecting genes is based on Multiscale Embedded Gene Co-Expression Network Analysis 
(MEGENA). Each node represents a module, with the larger nodes indicating a higher number of genes. (G–I) The MEGENA network shows the top three gene modules. The larger 
the size, the more important it is in the network ((G)C1_3; (H) C1_5; (I) C1_6). (J) Circos plot representing the intersections of the top three gene modules. The outermost circle is 
colored to represent different samples, the inner circle is Orange for each sample-specific gene, and the blue line indicates gene intersections. (K) GO and KEGG enrichment analysis of 
the top three gene modules. Each row represents one cluster; color indicates significance, and gray color indicates non-significance. Heatmap showing the top 20 clusters correlated 
with the top three gene modules.
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between the two clusters based on TCGA-SKCM (Figure 4B) and mGEO (Figure 4C), respectively, and enrichment 
analysis indicated that the intersecting genes were involved in ECM-related signaling pathways (Figure 4D and E). To 
identify possible regulatory mechanisms in the collagen phenotype, we constructed a MEGENA network using the above 
intersecting genes (Figure 4F). As shown in Figure 4G–I, among all gene modules, the largest module C1_3 consists of 
122 genes, followed by C1_6 and C1_5 with 91 and 83 genes, respectively. These three gene modules were closely 
linked to each other (Figure 4J) and were all highly correlated with ECM-related signals (Figure 4K). Finally, we 
included the obtained hub genes in the COX regression to identify reliable prognostic factors and we found that both 
NID2 and ZEB1 were unfavorable factors for survival in melanoma patients (Figure 5A–C), interestingly, the levels of 
NID2 were higher in patients who had developed metastases (Figure 5D). The results suggested that ZEB1 and NID2 may 
be potentially important regulators of the collagen phenotype.

Single-Cell Analysis of NID2
As a hot molecule in cancer research, there is considerable evidence that ZEB1 is involved in various biological processes 
to promote the growth and metastasis of various tumors, including melanoma. Thus, we focused our attention on NID2, 
which has not yet been characterized in melanoma. All cells were processed with Uniform Manifold Approximation and 
Projection (UMAP) and divided into 20 clusters Figure 6A and the expression of NID2 at the single cell level was shown 
in Figure 6B. To further determine the possible functions of NID2, fibroblasts were distinguished from other cells and 
divided into 6 clusters (Figure 6C). Both TCGA and GEO data showed a high positive correlation between NID2 levels 
and fibroblast abundance (Figure 6D; TCGA, r = 0.736, P < 0.001; mGEO, r = 0.610, P < 0.001; MCPcounter). 
Pseudotime analysis suggested an evolutionary route from Cluster 0 to Cluster 2 in fibroblasts, and enrichment analysis 
indicated that Cluster 2 functions involved the cytoskeleton, focal adhesion, and blood vessel development (Figure 6E 
and F). We next compared the trends in the levels of NID2 and several fibroblast activation markers and found that the 
trends of NID2 and ACTA2, CAV1 were highly consistent, suggesting that NID2 may be involved in the activation 
process of fibroblasts (Figure 6G and H). These results provided solid evidence that NID2 expression level was closely 
associated with specific stromal cell types (fibroblasts).

Variation in the Infiltration Characteristics of TME Cells in Collagen Phenotype
We further analyzed the effect of collagen on the tumor immune microenvironment of s. Our results show that only 
fibroblasts and endothelial cells were highly enriched in C1, while immune cell abundance hardly differed between the two 
clusters (Green Box; Figure 7A, TCGA; Figure 7B, mGEO). To clarify whether collagen affects the abundance of immune 
components, we compared the differences in the expression of immune cytokines including chemokines, interleukins, 
interferons, etc. between the two clusters. The results were consistent with what we had envisioned-no significant differences 
were observed (Figure 7C, TCGA; Figure 7D, mGEO). These results imply that the expression of collagen molecules in 
melanoma may only affect the abundance of tumor stroma. We evaluated the TME score using the “ESTIMATE” package 
and showed that stromal scores were significantly higher in C1 than in C2, while results on immune scores and immune 
checkpoint levels were inconsistent in the two independent datasets (Figure 7E, TCGA; Figure 7F, mGEO). Pathological 
sections confirmed that C1 exhibited a significantly high abundance of stromal components (Figure 7G). Considering that the 
tumor stroma is a key barrier to the success of immunotherapy, we finally explored the impact of collagen phenotype on 
immunotherapy by the tumors immune dysfunction and exclusion (TIDE) algorithm (Figure 7H) and the cohort of 
immunotherapy (Figure 7I), respectively, and found that patients in C1 may have more difficulty benefiting from immu-
notherapy compared to those in C2. The results further confirmed that C1 was critically characterized by a high abundance of 
collagen matrix compared to C2, and affected the expected effect of immunotherapy.

Clinical Significance of Col_Score
The above results confirm the importance of collagen phenotype for tumor stroma and survival of melanoma patients. We 
constructed a collagen molecule-based scoring model to quantify collagen abundance, called Col_Score. The Col_Score 
in C1 is significantly higher than that in C2 based on TCGA (Figure 8A, Welch’s t-test, P = 4.09e-79) and mGEO 
(Figure 8B, Welch’s t-test, P = 4.18e-92). We assigned patients in the TCGA-SKCM and mGEO cohorts to high or low 
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Col_Score group based on median Col_Score levels and found that Col_Score was a detrimental factor for survival in 
melanoma patients, including OS (TCGA, P = 0.03; mGEO, P = 0.014), PFS (mGEO, P = 0.019), and DSS (TCGA, P = 
0.024; mGEO, P = 0.028) (Figure 8C–G). Col_Score was positively correlated with the level of infiltration of fibroblasts, 
endothelial cells, monocytes/macrophages, and neutrophils, but not with the number of almost all types of T cells 
(Figure 8H). In addition, Col_Score was positively correlated with EMT, CAFs, and ICB resistance signal scores, but not 
with immune checkpoint scores (Figure 8I). Finally, pathological sections confirmed that the high Col_Score group 
showed a higher stromal component (Figure 8J and K), again indicating a strong positive correlation between collagen 
and tumor stroma.

Characterization of NID2 as a Marker of Fibroblast Activation and Correlation with 
Immune Exclusion Phenotype
Since the above results suggested that NID2 may play a crucial role in fibroblast activation. Immunofluorescence 
(IF) staining results directly confirmed that the expression of NID2 was highly consistent with ACTA2 
(Figure 9A). Subsequently, we found in IF staining of SKCM samples that NID2 could form a barrier to prevent 
CD8+ T cells from entering the tumor tissue to exert their killing effect (Figure 9B). Concurrently, we calculated 
the correlation between the NID2 and the TIDE score and found TIDE score was positively correlated with the 
NID2 expression level (Figure 9C TCGA-SKCM, r = 0.34, P < 0.001, Spearman). Since the predicted results 

Figure 5 Identification of NID2 as a key factor in the collagen phenotype. (A) Univariate and multivariate COX model showing an association between hub DEGs expression and OS 
as well as DSS in SKCM. (B and C) The Kaplan-Meier survival analysis including OS, and DSS based on NID2 expression levels in TCGA-SKCM (n = 471). Logrank test was performed. 
(D) Association of NID2 expression with T (Tumor), N (Node), and M (Metastasis) stages and pathologic stage of SKCM patients (n = 471). *P < 0.05, ***P < 0.001. 
Abbreviation: NS, not significant.
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Figure 6 Single-cell analysis. (A) Cells were clustered into 20 types via UMAP. (B) Dot plots demonstrate the expression distribution of NID2. (C) UMAP plot 
dimensionality reduction algorithm, each color represents a unique cluster. Fibroblasts are distinguished from all other cells based on UMAP dimensionality reduction 
analysis. (D) Correlation analysis of the Fibroblasts and NID2 mRNA expression levels based on TCGA-SKCM, and mGEO datasets. (E) Pseudotime trajectory of all the 
fibroblasts. The Orange circle indicating Cluster 5 identified by Seurat and all the fibroblasts were colored by their assigned pseudotime values. (F) Functional enrichment 
analysis of Cluster 5. (G) Jitter plots show the expression level of the fibroblast activation markers and NID2 changing with pseudotime. (H) UMAP dimensionality reduction 
visualizes the similarity of expression profiles of NID2 and 9 fibroblast activation markers.
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Figure 7 Variations in immune-related genes and the infiltration characteristics of TME cells in 2 collagen molecules phenotypes. (A and B) The thermogram shows the frequency of 
TME infiltrating cells and immune score in 2 collagen molecules phenotypes ((A) TCGA-SKCM; (B) mGEO). (C and D) The thermogram shows variations in mRNA expression of 
chemokines, interferons, interleukins, and other cytokines between the 2 levels of collagen molecules ((C) TCGA-SKCM; (D) mGEO). (E and F) The violin plots specifically showed the 
differences between C1 and C2 in terms of the immune checkpoint, immune score, stromal score, and tumor purity (Welch’s t-test; (E) TCGA-SKCM, (F) mGEO). (G) Representative 
pictures of pathological Hematoxylin-eosin (HE) staining of C1 and C2 (Scale bars, 500 and 20 μm (enlarged images). (H) The differences in tumor immune dysfunction and exclusion 
(TIDE) score between C1 and C2 based on TCGA-SKCM. (I) The Sankey diagram fully demonstrated the difference in response to immunotherapy between different two 2 subtypes 
based on GSE91061. 
Abbreviations: CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; UNK, unknown.
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Figure 8 Clinical significance of Col_Score. (A and B) The violin plots show the Col_Score difference between 2 different collagen subtypes. The line in the box represents 
the mean value ((A) TCGA-SKCM; (B) mGEO). (C–G) The Kaplan-Meier curve shows a significant difference in the survival rate between high and low Col_Score groups 
((C and D) TCGA-SKCM, logrank test, n = 471; (E–G) mGEO, logrank test, n = 545). (H) The bubble chart shows the correlation between the Col_Score and the level of 
immune cell infiltration. The color indicates the P-value. The bubble size indicates the degree of correlation; with larger bubbles indicating a stronger correlation. (I) The 
chart shows the correlation between the Col_Score and Epithelial-mesenchymal transition (EMT), Cancer-Associated-Fibroblasts (CAFs), Immune checkpoint blockade 
(ICB) resistance, and immune checkpoint. Yellow represents a positive correlation, blue represents a negative correlation. The smaller the P-value, the deeper the red color. 
(J and K) Image representing the pathological HE staining variation between the low (J) and high (K) Col_Score groups (Scale bars, 500 and 20 μm enlarged images).
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Figure 9 NID2 is related to the tumor immune microenvironment. (A) Double immunofluorescence staining images of NID2 and ACTA2 in the SKCM tissue. The 
representative view of the co-staining of NID2 and ACTA2 is shown in the enlarged image view below. Nuclei (DAPI) in blue (Magnification, ×400, scale bars = 20 μm). (B) 
Correlation between NID2 mRNA expression level and TIDE score was analyzed based on TCGA-SKCM (Spearman method, n = 471). (C) Representative co-stained 
images of NID2, CK, and CD8. According to the spatial distribution of CD8+ T cells. Measures were taken from different samples (Magnification, ×50, scale bars = 200 μm). 
(D) NID2/CD8 immunohistochemistry was performed on consecutive sections. Tumors were sliced as serial 3-μm sections and histologic sections were scored in a blinded 
manner by 2 pathologists (Magnification, ×400, scale bars = 50 μm). (E) The Sankey diagram fully demonstrated the difference in response to immunotherapy between high 
and low NID2 expression groups based on GSE91061.
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suggest that NID2 may be associated with poor immunotherapy outcomes, we retrospectively collected 40 SKCM 
patients and assessed their NID2 and CD8 levels by Immunohistochemistry (IHC), whereas there was no 
significant correlation between NID2 and CD8 expression level (Figure 9D). GES91061 dataset showed that 
patients who had high NID2 levels had more difficulty benefiting from immunotherapy compared to those who 
had low NID2 levels (Figure 9E). The results further confirmed that NID2 is a potential immune exclusion factor.

Discussion
Benefiting from its impressive efficiency and low side effects, Immunotherapy is becoming a pillar of modern cancer 
treatment.56 Because melanoma is one of the most immunogenic tumors, it is most likely to respond favorably to 
immunotherapy.57,58 However, immunotherapy strategies are not successful in all patients.59 With the large-scale clinical 
application of immunotherapy and continuous in-depth research, a large number of mutually synergistic inhibitory 
mechanisms have been discovered that can help tumor cells evade surveillance and destruction by both intrinsic and 
adaptive immunity.60–62 In addition to the “depleted” phenotype of cytotoxic T cells infiltrating the tumor, the physical 
exclusion of T cells mediated by tumor fibrosis also leads to a downregulation of T cell effector function to weaken tumor 
immunity.63,64 The distinguishing feature of tumor fibrosis is the remodeling of the ECM, a complex structure composed 
of variable members of different protein families.65,66 The most abundant of these is the collagen family, which contains 
more than 40 different collagen types.67 In the present study, we overviewed the transcriptional heterogeneity of 44 
collagen molecules at the pan-cancer level and found that the imbalance of collagen molecule expression may be 
associated with the regulation of genomic variants. We defined two clusters by transcriptome expression profiles of 
collagen molecules in two separate datasets named Cluster 1 (C1) and Cluster 2 (C2), respectively. We noted that 
collagen activity was significantly higher in C1 than in C2 and that the distribution of pathological features was 
significantly different in the two clusters.

It has been well established that changes in the stiffness and density of collagen-rich ECM are associated with tumor 
cell invasion and metastasis.68 We found that EMT and angiogenesis signaling were significantly and highly enriched in 
C1, with the former acting as a key pathway for activating the latter, resulting in both always appearing simultaneously to 
aid tumor growth and metastasis. It has also been recently shown that high levels of type VI collagen promote EMT, 
angiogenesis, inflammation, and chemoresistance.69,70 We then integrated the Differential gene expression (DEG) 
between the two clusters and constructed the Multiscale Embedded Gene Co-Expression Network Analysis 
(MEGENA) network, identifying three important gene modules that have strong intersections with each other and are 
closely associated with ECM-related biological signals. Finally, we included all hub genes in COX regression to further 
identify reliable prognostic factors and found that overexpression of ZEB1 and NID2 predicted poor prognosis in 
melanoma patients. The importance of ZEB1 as a star molecule in cancer research in solid tumors needs no elaboration, 
and notably, ZEB1 has been found to inhibit CD8+ T cell recruitment in melanoma to promote resistance to anti-PD1 
immunotherapy.71 NID2, a new promising tumor marker, is associated with malignant invasion of tumor cells in bladder 
cancer and gastrointestinal tract tumors.72–74 Considering that NID2 has not been characterized in melanoma, we focused 
our study on NID2. Single-cell analysis showed that NID2 was restrictedly expressed on fibroblasts and endothelial cells 
and was highly positively correlated with fibroblast abundance. Resident fibroblast populations in TME frequently 
expand and express proteins specific to their activation state to orchestrate the inflammation that promotes cancer, and it 
is now generally accepted that fibroblast activation is associated with collagen deposition.75 Since C1 is notably 
characterized by high expression of collagen, we speculated that NID2 may be a potential key regulator. Interestingly, 
we found that the expression trends of NID2 and most fibroblast activation proteins are consistent, implying that NID2 
may be involved in fibroblast activation.

Tumors with high T cell infiltration often referred to as “hot” tumors, are associated with a higher likelihood of 
responding to immune checkpoint blockade, as opposed to immune cold tumors that show minimal T cell infiltration and 
typically fail to respond to checkpoint regulation.76–78 This knowledge has shaped the conceptual framework of “hot” 
and “cold” tumors and has been the driving force behind the conversion of the so-called cold tumor microenvironment 
into an immune-active or “hot” microenvironment.79 However, in clinical practice, a significant proportion of patients 
with tumors defined as “hot” remain unresponsive or poorly responsive to anti-PD-1/PD-L1 therapy, suggesting that 
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a more precise biological theory is needed to define mechanisms of therapeutic resistance.80 Previous studies have 
demonstrated the ability of TGF-β1 to exert immunosuppressive functions by activating fibroblasts to produce a collagen 
barrier that protects tumors from immune infiltration.81,82 We observed a high abundance of stromal cell infiltration, 
including fibroblasts and endothelial cells, in C1. In addition, it is noteworthy that there was little difference in each 
immunological index between the two clusters, which strongly suggests that the high degree of mesenchymalization may 
be the most important reason for the poor prognosis in C1. “ESTIMATE” showed that the stromal score of C1 was much 
higher than that of C2, while the pathological sections directly confirmed that the tumor tissue of C1 was rich in stroma. 
It has been demonstrated that the highly grown tumor stroma produces abnormal tumor-stromal signaling under the 
coercion of the tumor parenchyma thereby limiting the delivery of various drugs as well as immune components, 
a malignant feature currently considered to be highly associated with the immune exclusion phenotype.83 Our results 
suggested that patients with C1 are less likely to benefit from immunotherapy compared to C2.

Considering the close relationship between collagen molecules and immune exclusion and the heterogeneity of 
collagen molecular phenotypes in melanoma patients, we developed a scoring system, Col_Score, to quantify the 
expression of collagen molecular factors in tumor patients. Col_Score was highly positively correlated with fibroblast 
and endothelial cell infiltration, and significantly correlated with EMT progression. In clinical practice, Col_Score can be 
used to evaluate the expression patterns of collagen molecules and the corresponding infiltration characteristics of 
stromal cells in melanoma patients, identify the immunophenotype of the tumor, predict the prognosis of the patients, and 
select the appropriate immunotherapy strategy. Finally, we verified the importance of NID2 in the effect on melanoma 
stroma growth and immunophenotyping through various experiments. Tumors with high NID2 expression tended to have 
an immune exclusion phenotype, whereas there was no significant correlation between NID2 and CD8 levels, suggesting 
an important role of NID2 in collagen-induced immune exclusion.

Our study has some limitations. The current main conclusions rely on second-generation sequencing data, and further 
analysis of large-scale protein sequencing is needed to verify the clinical feasibility. In addition, we found that NID2 may 
play an important function in fibrosing interstitial melanoma, but the specific biological mechanisms remain unexplored. 
Our researchers are conducting an in-depth study on this topic.

Conclusion
In conclusion, our study highlights the relationship between collagen and immune exclusion features of melanoma. These 
observations may be useful for the treatment of melanoma patients based on immunotherapy. We also identified NID2 as 
a potential key factor under the collagen phenotype, restricted expression on fibroblasts, and associated with fibroblast 
activation as an independent prognostic factor in melanoma patients.
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