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Abstract: Determining the accuracy of a medical test is quite difficult because accuracy is 

an elusive parameter to estimate. A common scenario is estimating the true and false positive 

fractions from different studies and arriving at a common value of the accuracy of the test. 

The accuracy is expressed with an estimate similar to the area under the receiver operating 

characteristic (ROC) curve. Under the assumption that the ROC area is the same across all tests, 

the true and false positive fractions can be plotted on the same graph to obtain an experimental 

ROC curve, called the summary ROC curve (SROC) curve. The estimate of the accuracy of 

the curve is the ordinate of the point of intersection, where the SROC curve intersects the 

line with equation true positive rate + false positive rate = 1. Using a Bayesian approach, the 

presentation begins with summarizing information about test accuracy for tests with ordinal 

and continuous scores, where it is assumed the tests share a common ROC curve, but the tests 

may differ in the threshold used to declare a positive test. The true and false positive rates are 

transformed so that one may use bilogistic regression to determine the accuracy of the combined 

tests where the posterior distribution of the parameters of the model are determined. Bayesian 

inferences are based on the posterior distribution of the SROC curve and the computations are 

executed with the WinBUGS software package, and several examples from various areas of 

medicine illustrate the methodology.
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Introduction
Determining the accuracy of a medical test is quite difficult because accuracy is an 

elusive parameter to estimate. It is well known that the accuracy of a particular test will 

vary because of intra and inter study variation. Even though a test can be  replicated 

under identical conditions, the accuracy will still vary between replications. The 

literature on the accuracy of the particular test continues to grow, each study giving 

some estimate of its accuracy, but of course the estimates vary because of different 

study conditions. The accuracy varies because the study populations of patients vary, 

the test itself changes somewhat, and the readers of the test scores of course also vary. 

Because of the various sources of variation it is important to conduct studies that 

summarize the accuracy of a particular medical test.

For example take the case of heart disease and the accuracy of the exercise stress test. 

Hundreds of studies have estimated the accuracy (the true and false positive fractions 

or the receiver operating characteristic [ROC] area) of this test. Suppose the exercise 

stress test could be replicated under identical conditions with the same patients and 

the same readers to interpret the test scores and the test accuracy estimated. Of course, 
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the accuracy of the test will vary from test to test and such 

variation is called experimental error. It is difficult and in fact 

almost impossible to estimate the experimental error for most 

medical tests, and more common is the case of summarizing 

the accuracy of the exercise stress test of different studies 

that involve different patient populations and different sets 

of radiologists. There are studies in which it is possible to 

estimate the replication variation within readers.

The first scenario to be considered is estimating the 

 common ROC area. The accuracy is expressed with an 

estimate similar to the area under the ROC curve, and the 

estimate of the accuracy of the so-called SROC (summary 

ROC curve) is the ordinate of the point of intersection, where 

the SROC curve intersects the line with equation true positive 

rate (TPR) + false positive rate (FPR) = 1.

The approach taken here is appropriate for ordinal and 

continuous data that employ a threshold to declare a positive 

test and follows the presentation of Kardaun and Kardaun1 

and Moses et al2 who do not work directly with the true and 

false positive rates but with their logits and consequently 

with a regression model that allows one to work easily with 

the SROC curve. It should be noted that this approach is also 

adopted by Zhou et al3 and will be followed to some extent 

here, except a Bayesian model is established. Much has been 

accomplished using the Bayesian approach and the reader is 

referred to Stangl and Berry,4 who edited a book including 

many articles that address various issues in meta-analysis 

from a Bayesian viewpoint; however, the book focuses on 

summarizing various estimates of treatment efficacy in 

clinical trials and not on estimating various measures of test 

accuracy.

This presentation begins with summarizing information 

about test accuracy for tests with ordinal and continuous 

scores where it is assumed the tests share a common ROC 

curve, thus, the tests may differ in the threshold used to 

declare a positive test. The false and positive rates can be 

plotted to determine a common ROC curve called the SROC 

curve. The true and false positive rates are transformed so that 

one may use bilogistic regression to determine the accuracy 

of the combined tests where the posterior distribution of 

the parameters of the model are determined. The slope 

and intercept of the regression determine the SROC curve. 

The paper is continued by allowing the inclusion of study 

covariates that allows for inter-study variation between the 

various studies that comprise the meta-analysis. Two or more 

versions of the same tests are compared with the bilogistic 

regression methodology by using inter study covariates. 

Bayesian inference is illustrated with a well-known 

example of DeVries et al5 which is based on two versions 

of ultrasonography for the diagnosis of stenosis of the 

peripheral arteries, and the accuracy of the two versions 

are compared with a regression model and by comparing 

the Q-statistics which measures the accuracy of the SROC. 

Additional examples include diagnostic studies for coronary 

artery disease, inflammatory bowel disease, osteomyelitis, 

breast cancer, and recurrent colorectal cancer. The conclusion 

of the paper emphasizes the summarization of tests with a 

common ROC area, where the posterior distribution of the 

ROC area and its standard deviation allow one to compute 

the common area, which is estimated as a weighted average 

of the individual ROC areas weighted by the inverse of 

the posterior variance.

Several of the examples are based on recent studies of 

meta-analysis. For example, a meta-analysis by Vanhoenacker 

et al7 summarizes the accuracy of multidetector computed 

tomography (CT) angiography for the diagnosis of coronary 

artery disease, while the Horsthuis et al8 meta-analysis 

explores the detection of inflammatory bowel disease with 

ultrasound, magnetic resonance (MR) scintigraphy, and 

CT. The latter study allows one to compare the accuracy 

of the three modalities. A third example by Pakos et al9 is a 

meta-analysis of a nuclear medicine procedure to diagnose 

osteomyelitis, and in all three examples the SROC curve is 

inferred by Bayesian methods. Such articles have a standard 

way to present their results including an introduction, a 

description of the methods, a reporting of the results, and a 

section for comments and conclusions. Such articles usually 

have enough detail so that others may check and replicate 

their results. Of paramount importance is describing just how 

the various studies of the meta-analysis are included in the 

study, and the description should include enough information 

to determine the heterogeneity between the various studies, 

including the number of readers used in each study, and 

the threshold value. If the SROC curve is to be determined, 

the homogeneity needs to be demonstrated so that one has 

confidence in the overall accuracy of the combined studies.

The SROC curve and bilogistic 
regression
The first scenario for meta-analysis is the least complicated, 

namely, one assumes the various studies have a common 

ROC curve. If the test scores are continuous or ordinal, the 

threshold value may vary giving different FPR and TPR 

values which can be plotted to give the common ROC 

curve referred to as the summary ROC curve or the SROC 

curve. Thus, there is enough homogeneity between studies 
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to assume a common ROC curve and this assumption needs 

to be checked by the information given for the various 

studies. The reader should remember that the inclusion and 

exclusion criteria may vary between studies, that of course 

the readers interpreting the test scores will not be the same 

between studies, that the threshold (the value that declares 

a positive test) value can vary, and lastly that the various 

tests, although related, may not be the same. For example 

when using CT to diagnose lung cancer, the CT equipment 

will not be the same and not operated in the same manner 

from study to study. On examining the recent issues of the 

imaging literature, the summary accuracy is usually based 

on a SROC analysis.

The approach taken here is to base the regression analysis 

on the approach of Moses et al,2 who do not work with the 

(FPR, TPR) points directly, but with a transformation

 B = V − U (1)

and

 S = V + U (2)

where,

 U = logit(FPR) (3)

and

 V = logit(TPR).

The B values are regressed on the S values

 B = beta[1] + beta[2]S, (4)

where beta[1] and beta[2] are unknown parameters.

It is assumed that U and V have logistic distributions, 

thus, it is reasonable to assume that B and S also have 

logistic distributions. The interpretation of B and S is very 

informative, because B is the log odds ratio where the 

numerator is the odds of a positive test given the disease 

is present and the denominator is the odds the test score is 

positive given the disease is not present. The variable S can 

be thought of as measuring the effect of the threshold value, 

in the sense that if S and beta[1] are zero, the true and false 

positive rates are equal, and also if S is positive the sensitivity 

(TPR) is greater than the FPR. On the other hand when the 

sensitivity is less than the FPR, the values of S are negative. 

Note the interpretation of the intercept beta[1] is the average 

value of B (the log odds ratio) when S = 0 and that beta[2] 

measures the effect of S on B, that is for each unit increase in 

S, B increases on the average by beta[2] units. It is probably 

safe to say that if beta[2] is estimated to be close to zero, 

the test at hand has the same power to detect a difference in 

the two populations (diseased versus non-diseased) for all 

values of the threshold.

It can be shown, see Zhou et al (eq 12.4)3 that the SROC 

curve is defined as

 SROC(FPR) = [1 + exp-beta[1]/(1 − beta[2]) [(1 − FPR) 

  /FPR](1+beta[2])/(1−beta[2])]−1 (5)

and the curve is determined by plotting (FPR, SROC) where 

the SROC and FPR values are given by (11.5). Note that if 

beta[2] = 0, (5) can be modified accordingly.

There are many ways to estimate the parameters beta[1] 

and beta[2] of the regression of B on S, and the reader is 

referred to Moses et al2 for some non-Bayesian estimation 

techniques. The approach here is Bayesian where first the 

posterior density of beta[1] and beta[2] are determined 

using (4) with a noninformative priors for the regression 

coefficients and scale parameter tau. The prior distribution 

of the beta[1] is normal (0.0001, 0.0001) and the prior 

distribution for tau is gamma with parameters 0.0001 and 

0.0001. Note the logistic distribution has two parameters and 

is similar in shape to the normal distribution. The posterior 

distribution of the ordinates of the SROC curve (5) is induced 

by the posterior distribution of beta[1] and beta[2], and will 

be illustrated with several examples in a later section.

Bayesian analysis for summary 
accuracy
The obvious measure of test accuracy for a meta-analysis 

is the area under the SROC curve; however, since the TPR 

values tend to be concentrated over a relatively small range 

of FPR values, the entire SROC curve must be estimated by 

extrapolation to the entire range of FPR values over (0, 1). 

Because of this impediment, other measures have been 

devised, for example, by Moses et al,2 who proposed the 

ordinate of the intersection between the SROC curve and 

the line with equation

 TPR + FPR = 1 (6)

which is the negative diagonal of the unit square.

It can be shown that the ordinate of the intersection is

 Q = (1 + e−beta[1]/2)−1, (7)

where beta[1] is the intercept term of the bilogistic  regression 

(4). Therefore, the posterior distribution of beta[1] induces 

the posterior distribution of Q. Note that ‘large’ values of 

Q close to one, indicate excellent accuracy because the 
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intersection point is close to the (0,1) point of the unit 

square, and in a similar way, values of Q close to 0.5 imply 

the SROC curve is close to the main diagonal of the unit 

square, indicating very poor accuracy. It should be noted 

that Q is a surrogate measure of accuracy and that  generally 

speaking accuracy is the mean of a weighted difference 

between the mean transformed TPR and mean transformed 

FPR on where the transformation maps the ROC curve onto 

a straight line.

A meta-analysis for one test
The first set of examples of a meta-analysis are for studies 

with a common SROC curve, where the sample informa-

tion consists of true and false positive ratios or equiva-

lently the true negative (TN), true positive (TP), false 

positive (FP), and false positive (FN) of the 2 by 2 square 

for each study. Consider the DeVries et al5 meta-analysis 

that summarizes nine studies in which peripheral artery 

stenosis is determined with regular duplex ultrasonogra-

phy. The information from the study is in the form of a 2 

by 2 table of TN, TP, FP, and FN values for each study 

and appears in the list statement of BUGS CODE 1 given 

below.

BUGS CODE 1
# one test

model;

{

for(i in 1:N){tpr[i],−(tp[i] + 0.5)/(tp[i] + fn[i] + 0.05)}

for(i in 1:N){fpr[i],−(fp[i] + 0.5)/(fp[i] + tn[i] + 0.05)}

for(i in 1:N){u[i],−logit(fpr[i])}

for(i in 1:N){v[i],−logit(tpr[i])}

for(i in 1:N){b[i],−v[i]−u[i]}

for(i in 1:N){s[i],−v[i] + u[i]}

# bilogistic regression of b on s

for(i in 1:N){b[i]∼dlogis(mu[i],tau)

mu[i],−beta[1] + beta[2]*s[i]}

for(i in 1:2){beta[i]∼dnorm(0.0000,0.0001)}

tau∼dgamma(0.0001,0.0001)

P,−1 + exp(−beta[1]/2)

# accuracy of test

Q,−1/P

#sroc curve assumes slope is 0

r1,−exp(−beta[1])

for(i in 1:N){r2[i],−(1−fpr[i])/fpr[i]}

for(i in 1:N){r3[i],−1 + r1*r2[i]}

for(i in 1:N){sroc[i],−1/r3[i]}

}

# data from DeVries et al5 duplex mode

list(N = 8, tn = c(516,89,235,262,488,48,156,376),

fn = c(28,8,23,20,14,7,2,31),

fp = c(20,12,5,22,9,3,14,12),

tp = c(78,59,75,89,118,48,39,121))

# data from Meijer et al6

# a 1 replaces a 0 in the data of Meijer et al6

list (N = 20,

 tn = c(23,35,10,9,23,30,60,48,12,38,23,60,9,42,27,50,35, 

5,37,20),

fn = c(2,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1),

fp = c(1,2,1,1,1,6,7,4,4,1,6,7,1,4,3,5,1,1,3,3),

 tp = c(36,28,29,29,16,19,20,18,88,12,35,14,25,53,38,25, 

13,26,44,76))

# initial values

list(beta = c(0,0), tau = 1))

For example the TN, FN, FP, and TP values for the first 

study are 516, 28, 20, and 78 respectively and the program 

calculates the TP and FP rates. First, a biologistic regression 

is performed which produces the posterior characteristics 

of the regression coefficients beta[1] and beta[2], then the 

posterior distribution of the Q parameter is calculated, which 

expressed the summary accuracy of the eight studies. Lastly, 

the posterior characteristics of the ordinates of the SROC 

curve are determined corresponding to the 8 FPR values 

of the eight studies. The analysis is executed with 65,000 

observations generated from the joint posterior distribution, 

with a burn in of 5000 and a refresh of 100.

Regression analysis of B on S reveals that the slope is ‘small’ 

with a 95% confidence interval (−0.6842, 0.5995) indicating 

that it is not unreasonable to let beta[2] = 0 and implying that 

ultrasound duplex is discriminating between the diseased and 

non diseased populations in the same way for all values of the 

test threshold. BUGS CODE 1 contains statements that calcu-

late the SROC values assuming the slope is zero. The coefficient 

beta[1] has posterior mean 4.7 which is the average value of B 

when S = 0, indicating that the odds ratio has posterior mean 

4.7, that is to say, the odds of a positive test for the diseased 

population (those with stenosis in the peripheral arteries) is 4.7 

times more than the odds of a positive test result for the non 

diseased patients. Q had a posterior mean of 0.91 which implies 

good accuracy with ultrasound to detect stenosis.

The slope beta[2] of the regression of B on S is estimated 

to be close to zero and the analysis calculates the posterior 

characteristics of the SROC values corresponding to the FPR 

values which are calculated as the FPR vector. The  posterior 

density of beta[2] is depicted in Figure 1 and shows that the 

posterior probability is large in the neighborhood of zero.
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Simulation errors were quite small for all parameters 

which demonstrates that 60,000 observations are sufficient 

for a reliable posterior analysis. The above determination of 

the SROC values assumes beta[2] = 0, however, I performed 

the analysis assuming beta[2] is not zero and the results were 

quite similar to Table 1, and the analysis is executed with 

BUGS CODE 2.

BUGS CODE 2
# one test with beta[2] not zero

model;

{

for(i in 1:N){tpr[i],−(tp[i] + 0.5)/(tp[i] + fn[i] + 0.05)}

for(i in 1:N){fpr[i],−(fp[i] + 0.5)/(fp[i] + tn[i] + 0.05)}

for(i in 1:N){u[i],−logit(fpr[i])}

for(i in 1:N){v[i],−logit(tpr[i])}

for(i in 1:N){b[i],−v[i]−u[i]}

for(i in 1:N){s[i],−v[i] + u[i]}

# bilogistic regression of b on s

for(i in 1:N){b[i]∼dlogis(mu[i],tau)

mu[i],−beta[1] + beta[2]*s[i]}

for(i in 1:2){beta[i]∼dnorm(0.0000,0.0001)}

tau∼dgamma(0.0001,0.0001)

P,−1 + exp(−beta[1]/2)

# accuracy of test

Q,−1/P

# sroc curve, does not assume slope is zero

r1,−exp(−beta[1]/(1−beta[2]))

for(i in 1:N){r2[i],−(1−fpr[i])/fpr[i]}

r3,−(1 + beta[2])/(1−beta[2])

for(i in 1:N){r4[i],−pow(r2[i],r3)}

for(i in 1:N){r5[i],−1 + r1*r4[i]}

for(i in 1:N){sroc[i],−1/r5[i]}

}

# data from DeVries et al5 duplex mode

list(N = 8, tn = c(516,89,235,262,488,48,156,376),

fn = c(28,8,23,20,14,7,2,31),

fp = c(20,12,5,22,9,3,14,12),

tp = c(78,59,75,89,118,48,39,121))

# initial values

list(beta = c(0,0), tau = 1))

Summary accuracy for scintigraphy
Our second example of a meta-analysis involves 

the diagnosis of osteomyelitis using antigranulocyte 

scintigraphy with99m radiolabeled monoclonal antibodies, 

and the analysis consists of 19 non-overlaping studies with 

reference standards of cell culture, histologic examination, 

and clinical follow-up. The study was conducted by Pakos 

et al9 with MEDLINE and Embase searches and a summary 

ROC curve was constructed, and the reader is referred 

to the article for additional important information as to 

the heterogeneity of the meta-analysis. Our approach is 

Bayesian and will be made up of determining the overall 

accuracy as expressed by the Q parameter, performing the 

regression analysis of the B scores on the S scores, and 

finally computing the posterior characteristics of the SROC 

values. Note, for this example, the input values are the true 

Table 1 Posterior analysis for peripheral artery stenosis

Parameter Mean SD Error 2 1/2 Median 97 1/2

Q 0.9104 0.0270 ,0.0001 0.861 0.9132 0.946
beta[1] 4.7 0.551 0.0098 3.647 4.707 5.728
beta[2] −0.0275 0.3372 0.0060 −0.6842 −0.0231 0.5995
sroc[1] 0.802 0.0857 0.0015 0.604 0.8149 0.9244
sroc[2] 0.9319 0.0455 ,0.0001 0.8411 0.9399 0.9775
sroc[3] 0.7104 0.1046 0.0018 0.4735 0.7219 0.8781
sroc[4] 0.8946 0.0587 0.0011 0.7674 0.905 0.9636
sroc[5] 0.673 0.1102 0.0019 0.4277 0.62 0.8569
sroc[6] 0.8796 0.0636 0.00125 0.7384 0.8907 0.9577
sroc[7] 0.9017 0.0563 0.0011 0.7814 0.9116 0.9663
sroc[8] 0.7737 0.9023 0.0016 0.5607 0.7865 0.9109
tau 2.063 0.6882 0.0051 0.9117 1.995 3.602

−6.0

0.0

1.0

−4.0

Beta[2] sample: 60,000

−2.0
Beta[2]

P
(b

et
a[

2]
)

0.0 2.0 4.0

Figure 1 Posterior density of beta[2].
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and false positive rates of the 19 studies contained in the 

list statement of BUGS CODE 3 below.

BUGS CODE 3
# one test

model;

{

for(i in 1:N){ u[i],−logit(fpr[i])}

for(i in 1:N){v[i],−logit(tpr[i])}

for(i in 1:N){b[i],−v[i]−u[i]}

for(i in 1:N){s[i],−v[i] + u[i]}

# bilogistic regression of b on s

for(i in 1:N){b[i]∼dlogis(mu[i],tau)

mu[i],−beta[1] + beta[2]*s[i]}

for(i in 1:2){beta[i]∼dnorm(0.0000,0.0001)}

tau∼dgamma(0.0001,0.0001)

P,−1 + exp(−beta[1]/2)

# Q value

Q,−1/P

# sroc curve assumes slope is 0

r1,−exp(−beta[1])

for(i in 1:N){r2[i],−(1−fpr[i])/fpr[i]}

for(i in 1:N){r3[i],−1 + r1*r2[i]}

for(i in 1:N){sroc[i],−1/r3[i]}

}

# data from Pakos et al9

 list(N = 19,tpr = c(0.67,0.75,0.85, 35,0.99,0.95,0.90,0.99,0.8

0,0.78,0.95,0.61,0.90,0.89,0.88,0.93,0.93,0.43,0.38), fpr = c

(0.15,0.05,0.11,0.17,0.22,0.33,0.33,0.01,0.33,0.60,0.43,0.04,

0.17,0.01,.10,0.70,0.01,0.01,0.57))

# initial values

list( beta = c(0,0), tau = 1))

A Bayesian analysis is performed with 65,000 observations 

generated for the Monte Carlo Markov Chain (MCMC) 

simulation, with a burn in of 5000 and a refresh of 100 and 

the results appear in Table 2.

It should be noted the 19 SROC values correspond to the 

following (in that order) FPR ratios

 fpr = (0.15,0.05,0.11,0.17,0.22,0.33,0.33,0.01,0.33,0.60, 

   0.43,0.04,0.17,0.01,0.10,0.70,0.01,0.01,0.57)

where the SROC values are computed according to  formula 

(5), assuming beta[2] = 0. The 95% confidence interval 

for beta[2] is (−0.7051, 0.2755) and contains zero, thus, I 

let beta[2] = 0 in the code for SROC of BUGS CODE 3. 

A regression of B on S values give a posterior mean (sd) 

for the intercept of 3.559 (0.5512) impling that the odds 

ratio for a positive test is 3.6 times larger for those patients 

with osteomyelitis than for those without the disease (when 

S = 0). Figure 2 is a plot of the SROC curve for the Pakos 

Table 2 Bayesian analysis for the osteomyelitis meta-analysis

Parameter Mean SD Error 2 1/2 Median 97 1/2

Q 0.8524 0.0346 ,0.0001 0.7756 0.8555 0.9113
beta[1] 3.559 0.5512 0.0048 2.481 3.558 4.658
beta[2] −0.2063 0.2454 0.0020 −0.7051 −0.2032 0.2755
sroc[1] 0.8486 0.0702 ,0.0001 0.6783 0.8609 0.949
sroc[2] 0.6899 0.1189 0.0010 0.3861 0.6487 0.8473
sroc[3] 0.7994 0.08594 ,0.0001 0.5963 0.8126 0.9287
sroc[4] 0.8661 0.064 ,0.0001 0.7099 0.8778 0.9557
sroc[5] 0.8981 0.0511 ,0.0001 0.7712 0.9082 0.9675
sroc[6] 0.9382 0.0335 ,0.0001 0.8548 0.9453 0.9811
sroc[7] 0.9382 0.0335 ,0.0001 0.8548 0.9453 0.9811
sroc[8] 0.2745 0.1052 ,0.0001 0.1077 0.2616 0.5158
sroc[9] 0.9382 0.0335 ,0.0001 0.8548 0.9453 0.9811
sroc[10] 0.9785 0.0127 ,0.0001 0.9472 0.9813 0.9937
sroc[11] 0.9585 0.0235 ,0.0001 0.9001 0.9636 0.9876
sroc[12] 0.5881 0.1243 ,0.0001 0.3324 0.5938 0.8146
sroc[13] 0.8661 0.064 ,0.0001 0.7099 0.8778 0.9557
sroc[14] 0.2745 0.1052 ,0.0001 0.1077 0.2616 0.5158
sroc[15] 0.7826 0.0906 ,0.0001 0.5704 0.7958 0.9214
sroc[16] 0.9861 0.0084 ,0.0001 0.9654 0.9879 0.996
sroc[17] 0.2745 0.1052 ,0.0001 0.1077 0.2616 0.5185
sroc[18] 0.2745 0.1052 ,0.0001 0.1077 0.2616 0.5185
sroc[19] 0.9758 0.0142 ,0.0001 0.9406 0.9789 0.9929
tau 0.7552 0.1549 ,0.0001 0.4822 0.7445 1.087
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et al9 meta-analysis whose ordinates are the posterior means 

portrayed in Table 2.

What is the area under the curve? This is left as an 

exercise! It appears the accuracy implied by the SROC 

curve is quite good, which is confirmed by the value of the 

Q parameter which has a posterior mean 0.8524 and a 95% 

confidence interval of (0.7756, 0.9113).

Meta-analysis with two tests
When two tests are used to diagnose the same disease, 

the main emphasis is on comparing the accuracy of the 

two tests. There are many examples of a meta-analysis 

that summarize the accuracy of two sets of studies. The 

first set is a series of studies that use one test to diagnose 

disease, and the other set focuses on a series of tests with 

another test for diagnosing the same disease. For such a 

 situation, two regressions of B on S are performed, two 

values of Q are computed and the SROC curve for each 

test is determined.

Thus, let

 B
1
 = beta1[1] + beta1[2]S

1 
(8)

be the first regression, and

 B
2
 = beta2[1] + beta2[2]S

2 
(9)

be the second, where

 B
i
 = V

i
 − U

i

and the U
i
 and V

i
 are the logits of the TPR and FPR for the 

i-th test i = 1,2.

See (1) and (2) for the formal definitions.

In a similar way, the accuracy of the i-th test is based on 

the Q parameters

 Q
i
 = [1 + e−betai[2]/2]−1 (10)

for i = 1,2.

Finally, the summary ROC curve is defined by its 

ordinates for the i-th test as

 SROCi(FPR) = [1 + exp-betai[1]/(1−betai[2]) 

	 	 × [(1−FPR)/FPR](1+betai[2])/betai[2])]−1 
 (11)

corresponding to the FPR of the i-th test, where i = 1,2. Note 

if the regression analysis implies beta[2] = 0, then one should 

modify (1) accordingly.

For the first example, consider the meta-analysis of 

Horsthuis et al8 which is a study of the use of ultrasound 

and MRI to diagnose inflammatory bowel disease, and nine 

studies are based on ultrasound and seven on MRI. On the 

basis of the meta-analysis, our purpose is to compare the two 

modalities. The authors found 1406 articles in a MEDLINE 

search and reduced the number to 16 for the present analysis 

and much information was extracted about the number of 

readers, the threshold values for a positive test, and other 

study covariates. A later section will be devoted to includ-

ing study covariates into the determination of test accuracy. 

The Bayesian analysis will consist of performing regression 

analyses for the two modalities and determining if the slope 

coefficient is zero. Depending on the value of beta[2], the 

appropriate formula for the SROC values for each test are 

used to determine the summary curve, and last the Q values 

are computed to compare the two modalities for accuracy.

Consider BUGS CODE 4 below.

BUGS CODE 4
# two tests

model;

{

# for test 1

for(i in 1:N1){u1[i],−logit(fpr1[i])}

for(i in 1:N1){v1[i],−logit(tpr1[i])}

for(i in 1:N1){b1[i],−v1[i]−u1[i]}

for(i in 1:N1){s1[i],−v1[i] + u1[i]}

# bilogistic regression test 1

for(i in 1:N1){b1[i]∼dlogis(mu1[i],tau1)

mu1[i],−beta1[1] + beta1[2]*s1[i]}

for(i in 1:2){beta1[i]∼dnorm(0.0000,0.0001)}

tau1∼dgamma(0.0001,0.0001)

P1,−1 + exp(−beta1[1]/2)

# accuracy of test 1

Q1,−1/P1

#sroc test 1, assumes slope is 0

r11,−exp(−beta1[1])

Pakos et al

FPR
0.80.70.60.50.40.30.20.10.0

S
R

O
C

1.0

0.8

0.6

0.4

0.2

0.0

Figure 2 Summary receiver operating characteristic curve (Pakos et al).9
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for(i in 1:N1){r12[i],−(1−fpr1[i])/fpr1[i]}

for(i in 1:N1){r13[i],−1 + r11*r12[i]}

for(i in 1:N1){sroc1[i],−1/r13[i]}

# for test 2

for(i in 1:N2){u2[i],−logit(fpr2[i])}

for(i in 1:N2){v2[i],−logit(tpr2[i])}

for(i in 1:N2){b2[i],−v2[i]−u2[i]}

for(i in 1:N2){s2[i],−v2[i] + u2[i]}

# bilogistic regression test 2

for(i in 1:N2){b2[i]∼dlogis(mu2[i],tau2)

mu2[i],−beta2[1] + beta2[2]*s2[i]}

for(i in 1:2){beta2[i]∼dnorm(0.0000,0.0001)}

tau2∼dgamma(0.0001,0.0001)

#sroc test 2, assumes slope is zero

r21,−exp(−beta2[1])

for(i in 1:N2){r22[i],−(1−fpr2[i])/fpr2[i]}

for(i in 1:N2){r23[i],−1 + r21*r22[i]}

for(i in 1:N2){sroc2[i],−1/r23[i]}

P2,−1 + exp(−beta2[1]/2)

# accuracy of test 2

Q2,−1/P2

# difference in accuracy of two tests

d,−Q1−Q2

}

# below are data from DeVries et al5 for duplex and color

# duplex is test 1

# color is test 2

list(N1 = 8, fpr1 = c(0.04,.12,0.02,0.08,0.02,0.06, 

0.08, 0.03),

tpr1 = c(0.74,0.88,0.77,0.82,0.89,0.87,0.95,0.80),

N2 = 6, fpr2 = c(0.01,0.01,0.02,0.06,0.05,0.05),

tpr2 = c(0.90,0.99,0.88,0.89,0.99,0.96))

# Horsthuis et al8 study

# test 1 is ultrasound (US) and test 2 is MR

list (N1 = 9, fpr1 = c(0.10,0.01,0.06,0.12,0.07,0.07,0.01, 

0.33,0.04),

tpr1 = c(0.78,0.93,0.90,0.81,0.93,0.88,0.87,0.96,0.92),

N2 = 7, fpr2 = c(0.01,0.01,0.39,0.39,0.01,0.08,0.15),

tpr2 = c(0.99,0.99,0.91,0.87,0.82,0.95,0.89))

# the initial values

list(beta1 = c(0,0), tau1 = 1, beta2 = c(0,0), tau2 = 1).

The second list statement is the information for the 

Horsthuis et al study, where the first test is ultrasound and 

the second is MRI. The third list statement is for the initial 

values of the parameters. A Bayesian analysis is executed 

with 65,000 observations for the simulations, with a burn in 

of 5000 and a refresh of 100.

The two Q values are quite close, where for ultrasound, 

the posterior mean is 0.9098 and that for MRI is 0.9324 

and the difference d between the two has a 95% confidence 

interval of (−0.0956, 0.0991) implying that the accuracy 

of US and MRI are about the same, which is confirmed to 

some extent by a plot of the two SROC curves portrayed by 

Figure 3.

The Bayesian regression analysis indicates that the slope 

of each test is zero, thus, the SROC values for both tests 

are computed assuming beta1[2] and beta2[2] are zero. 

Also, the intercept term beta1[1] has a posterior mean of 

4.668, implying that the odds (when S
1
 = 0) of a positive 

MRI test result for those with inflammatory bowel disease 

are 4.6 times that of the odds of a positive result for those 

without the disease. Also since the two slopes are close to 

zero, the implication is that both tests are differentiating 

equally between disease and non-disease for all values of 

the threshold. See Horsthuis et al8 for additional information 

about the choice of threshold for the various studies for 

each modality.

Meta-analysis with study covariates 
and one test
Often the information in a meta-analysis contains information 

about the various studies and should be included in the meta-

analysis. Of course, patient covariates and individual study 

information do indeed affect the accuracy of the medical 

test being assessed, and need to be taken into account 

when estimating test accuracy. This will be done using the 

following bilogistic regression model for the meta-analysis 

of one test:

 B S= + +
=

=

∑β β η[ ] [ ] ,1 2
1

i i
i

i k

X  (12)

0.40.30.20.10.0

1.0

0.9

0.8

0.7

0.6

0.5

TPR2

FPR2

TPR1

FPR1

Figure 3 Summary receiver operating characteristic curve (horsthuis et al8 meta-	
analysis).
Note: The green curve corresponds to US and the red to Mri.
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where B = V − U, S = V + U, and the X
i
 are k study covariates, 

while the parameters are unknown. Thus, for a given study of the 

analysis there are k covariates such as age, the number of read-

ers, the percentage of males to females, and other information. 

Of course, it depends on the meta-analysis just what information 

is available and often the information is not available for some 

studies. The information for a particular meta-analysis will 

consist of a column for the false positive rate, the true positive 

rate, and a separate column for each study covariate. Once the 

regression is performed, the SROC ordinates can be computed 

along with the accuracy parameter Q.

The meta-analysis of Horsthuis et al8 provides an excellent 

example of using covariates to estimate the  summary 

accuracy of ultrasound in order to diagnose inflammatory 

bowel disease where the fraction of patients with Crohn’s 

disease and the fraction of males per study serve as covari-

ates. Recall in the previous example with the ultrasound 

information of Horsthuis et al,8 the accuracy of ultrasound 

was 0.9098 as measured by the posterior mean of the Q 

parameter. Will the accuracy change when study age and frac-

tion of males is included in the analysis? In order to answer 

that question the Bayesian regression (12) is executed with 

65,000 observations for the simulation, with a burn in of 

5000 and a refresh of 100. Note the first list statement of 

BUGS CODE 5 contains the necessary information to 

execute the Bayesian analysis, where the emphasis will be 

on assessing the effects of the covariates on B and using Q 

and the SROC values to assess the accuracy of ultrasound 

to detect inflammatory bowel disease.

BUGS CODE 5
# one test with covariates

model;

{

for(i in 1:N){u[i],−logit(fpr[i])}

for(i in 1:N){v[i],−logit(tpr[i])}

for(i in 1:N){b[i],−v[i]−u[i]}

for(i in 1:N){s[i],−v[i] + u[i]}

# bilogistic regression of b on s

for(i in 1:N){b[i]∼dlogis(mu[i],tau)

 mu[i],−beta[1] + beta[2]*s[i] + neta[1]*x1[i] + neta[2]*

x2[i]}

for(i in 1:2){beta[i]∼dnorm(0.0000,0.0001)}

for(i in 1:2){neta[i]∼dnorm(0.0000,0.0001)}

tau∼dgamma(0.0001,0.0001)

P,−1 + exp(−beta[1]/2)

# accuracy of test Q,−1/P

# sroc curve assumes slope is 0

r1,−exp(−beta[1])

for(i in 1:N){r2[i],−(1−fpr[i])/fpr[i]}

for(i in 1:N){r3[i],−1 + r1*r2[i]}

for(i in 1:N){sroc[i],−1/r3[i]}

}

# data from Horsthuis et al8

# x1 is fraction with Crohn’s disease

# x2 is fraction of males

# true and false positive ratios are on per patient basis

 list(N = 9, tpr = c(0.78,0.935,0.90,0.812,0.931,0.884, 

0.87,0.96,0.92),

fpr = c(0.10,0.01,0.05,0.12,0.07,0.07,0.01,0.33,0.03),

 # the f irst component of x2 is the average of the  

remaining 8

x1 = c(0.322,0.093,0.322,1,0.406,0.643,1,1,0.642),

 x2 = c(0.4088,0.097,0.457,0.571,0.423,0.465,0.366, 

0.571,0.321))

# Pakos et al

list(N = 19,

 tpr = c(0.67,0.75,0.85,0.35,0.99,0.95,0.90,0.99,0.80,0.78, 0

.95,0.61,0.90,0.89,0.88,0.93,0.93,0.43,0.38),

 fpr = c(0.15,0.26,0.11,0.17,0.22,0.33,0.33,0.01,0.33,0.6, 

0.43,0.04,0.17,0.01,0.10,0.70,0.01,0.01,0.57),

# x1 is the average age

# x2 is the percentage of males

 # components 2,3,4,14, and 17 of x1were given the age 54, 

the average of remaining

 # components 2,3,4,14, and 17 of x2 were given the value 

0.70, the average of remaining

 x1 = c(59,54,54,54,48,57,61,56,66,45,58,48,47,54,60,58,5

4,48,46),

 x2 = c(83,70,70,70,81,53,68,67,86,72,82,76,71,70,58,68,7

0,59,67))

# initial values

list(beta = c(0,0), neta = c(0,0), tau = 1))

The surprising result is that the adjusted accuracy of 

ultrasound is 0.9748 with covariates compared with 0.9098 

without covariates, even though the effect of the covariates 

is somewhat negligible. For example, the 95% confidence 

interval for neta[1], which is the effect for the proportion of 

patients with ulcerated colitis, is (−1.916, 3.858) which implies 

a small effect of that covariate on the average value of B. Also, 

it should be noted that the 95% credible interval for beta[2] 

contains zero, thus, the ordinates of the points on the SROC 

curve are computed assuming beta[2] = 0 (see formula (5)).

The effect of the covariates on the SROC curve is evident 

from Figure 4, because the SROC curve corresponding to the 
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inclusion of the two covariates dominates the SROC curve 

when the covariates are not included over the range where 

0 , fpr , 0.35.

Meta-analysis with covariates  
for several tests
A Bayesian analysis provides an incisive approach to compar-

ing two medical tests with covariates when the information is 

provided by a meta-analysis, and the Horsthuis et al8 article 

presents such an example. It consists of two modalities, ultra-

sound and MRI, to diagnose inflammatory bowel disease, 

where the two covariates are the fraction of patients with 

Crohn’s disease and the fraction of male patients. The disease 

presents as Crohn’s disease or as ulcerative colitis, while the 

disease attacks both genders with about the same frequency. 

The analysis is based on BUGS CODE 6 listed below.

BUGS CODE 6
# two tests with covariates

model;

{

for(i in 1:N1){u1[i],−logit(fpr1[i])}

for(i in 1:N1){v1[i],−logit(tpr1[i])}

for(i in 1:N1){b1[i],−v1[i]−u1[i]}

for(i in 1:N1){s1[i],−v1[i] + u1[i]}

# bilogistic regression of b on s for test 1

for(i in 1:N1){ b1[i]∼dlogis(mu1[i],tau1)

 mu1[i],−beta1[1] + beta1[2]*s1[i] + neta1[1]*x11[i] + ne

ta1[2]*x12[i]}

for(i in 1:2){ beta1[i]∼dnorm(0.0000,0.0001)}

for(i in 1:2){ neta1[i]∼dnorm(0.0000,0.0001)}

tau1∼dgamma(0.0001,0.0001)

P1,−1 + exp(−beta1[1]/2)

# accuracy of test 1

Q1,−1/P1

# sroc curve assumes slope is 0

# sroc values for test 1

r11,−exp(−beta1[1])

for(i in 1:N1){r12[i],−(1−fpr1[i])/fpr1[i]}

for(i in 1:N1){r13[i],−1 + r11*r12[i]}

for(i in 1:N1){sroc1[i],−1/r13[i]}

# for test 2

for(i in 1:N2){u2[i],−logit(fpr2[i])}

for(i in 1:N2){v2[i],−logit(tpr2[i])}

for(i in 1:N2){b2[i],−v2[i]−u2[i]}

for(i in 1:N2){s2[i],−v2[i] + u2[i]}

# bilogistic regression of b2 on s2 for test 2

for(i in 1:N2){b2[i]∼dlogis(mu2[i],tau2)

 mu2[i],−beta2[1] + beta2[2]*s2[i] + neta2[1]*x21[i] + ne

ta2[2]*x22[i]}

for(i in 1:2){beta2[i]∼dnorm(0.0000,0.0001)}

for(i in 1:2){neta2[i]∼dnorm(0.0000,0.0001)}

tau2∼dgamma(0.0001,0.0001)

P2,−1 + exp(−beta2[1]/2)

# accuracy of test 2

Q2,−1/P2

# sroc curve assumes slope is 0

r21,−exp(−beta2[1])

for(i in 1:N2){r22[i],−(1−fpr2[i])/fpr2[i]}

for(i in 1:N2){r23[i],−1 + r21*r22[i]}

for(i in 1:N2){sroc2[i],−1/r23[i]}

# difference of accuracy of two tests

d,−Q1−Q2

}

# data from Horsthuis et al8 for US and MRI

# US is test 1 and MRI is test 2

# x11 is fraction with Crohn’s disease

# x12 is fraction of males

# tpr and fpr are on a per patient basis

 list(N1 = 9,tpr1 = c(0.78,0.935,0.90,0.812,0.931,0.884,0.8

7,0.96,0.92),

fpr1 = c(0.10,0.01,0.05,0.12,0.07,0.07,0.01,0.33,0.03),

 # the first component of x12 is the average of the remaining 

8

x11 = c(0.322,0.093,0.322,1,0.406,0.643,1,1,0.642),

 x12 = c(0.4088,0.097,0.457,0.571,0.423,0.465,0.366, 

0.571,0.321),

# the following is for test 2 or MRI

N2 = 7,

x21 = c(0.6,0.54,1,1,0.34,0.36,1),

 # below 0.49 is the average of the other six components of 

x22

x22 = c(0.6,0.42,0.46,0.36,0.49,0.56,0.52),

# tpr and fpr are on a per patient basis

0.40.30.20.10.0

1.1

1.0

0.9

0.8

0.7

0.6

0.5

SROC Without
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SROC With

FPR

Figure 4 effect of covariates on Summary receiver operating characteristic 
(horsthuis et al).8
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tpr2 = c(0.99,0.99,0.913,0.87,0.818,0.956,0.889),

fpr2 = c(0.18,0.01,0.29,0.29,0.01,0.08,0.143))

# initial values

 list( beta1 = c(0,0),neta1 = c(0,0), tau1 = 1,beta2 = c(0,0), 

neta2 = c(0,0), tau2 = 1))

The analysis consists of two bilogistic regressions 

corresponding to the two tests.

 B S Xi i
i

i k

1 1 1 1 1 1
1

1 2= + +
=

=

∑β β η[ ] [ ]  (13)

for the first test and

 B S Xi i
i

i k

2 2 2 2 2 2
1

1 2= + +
=

=

∑β β η[ ] [ ]  (14)

for the second, where the same k covariates apply to both 

tests. The B and S values is defined the usual way in terms 

of U and V values, which are the logits of the false and true 

positive fractions respectively. See (1)–(3) for the definitions 

of the U, V, B, and S values used in the above regression.

Once the regressions are performed, the posterior dis-

tribution of the regression parameters induce a posterior 

distribution for the accuracy parameters, namely

 Q e1
1 2 11 1= + − −( )[ ] /β  (15)

for the first test and

 Q e2
1 2 11 2= + − −( )[ ] /β  (16)

for the second.

For the last part of the analysis, the posterior distribution 

of the SROC values is generated which allows one to compare 

SROC curves and hence to compare graphically the accuracy 

of the two tests. Formula (11) should be modified in order to 

compute the SROC values for the two tests.

The analysis is executed with 325,000 observations with 

a burn in of 5000 and a refresh of 100. Comparing US and 

MRI is based on Q1 and Q2 and indicates that (based on the 

posterior means) US has more accuracy, but this comparison 

should be made with caution because the posterior distribution 

of Q2 is highly skewed with a median for Q2 of 0.998 and 

a posterior mean of 0.866, thus if the comparison is made 

with the means there appears to be a difference, but if based 

on the medians there appears to be no difference. When the 

two SROC curves are plotted for the two tests implying that 

the US test has more accuracy than MRI.

Based on the 95% confidence interval, the slope of the 

two regressions is zero, that is, the effect of the S values on 

the B value is negligible, but note that the intercept for the 

regression of US is 8.106 which implies that the odds of a 

positive test with US for the diseased population is 8 times 

the odds of a positive US for those without inflammatory 

disease, whereas, for MRI the intercept posterior mean is 

12.15 implying the odds of a positive test with MRI for 

the diseased group is about 12 times the odds of a positive 

test for the non diseased group. Also, based on the 95% 

confidence interval, for all values of the threshold the both 

tests discriminate equally between those with inflammatory 

bowel disease and those without.

Do the covariates have any effect on the accuracy of the 

two tests? The 95% credible interval for neta1[2] is (−17.69, 

−1.522) which implies that the percentage of male patients 

has an effect on the B score for US, however, additional 

analysis is needed in order to determine if the effect is non-

negligible by calculating the Q value for US when covariates 

are not used in the regression.

One note of caution in using regression for the meta-

analysis to assess the accuracy is that the relatively small 

sample size (the number of studies) might not produce a 

model with a good fit to the data, which in turn implies that 

one may not have high confidence in one’s assessment of the 

accuracy of the medical test.

Other meta-analyses
Up to this point, the emphasis has been on summarizing 

the accuracy of various medical tests, but now the focus 

will be on estimating the complications of various medi-

cal tests. As is well-known, many tests are accompanied 

by various complications: (a) Coronary angiography can 

result in stroke and damage to the coronary arteries, and 

(b) Certain contrast media used in diagnostic imaging can 

result in damage to the kidneys. It is for the latter scenario 

that a Bayesian approach will be taken and is based on the 

meta-analysis of Heinrich et al10 who compare the nephro-

toxicity of iso-osmolar iodixanol with nonionic low-osmolar 

contrast media.

The meta-analysis included a thorough search of MED-

LINE, Embase, and BIOSIS databases, trial registries, 

conference proceedings and requests from companies. Also, 

randomized clinical trials assessing the serum creatinine 

levels before and after the intravascular administration 

of iodixanol were included. The main endpoint was the 

incidence of contrast media-induced nephropathy (kidney 

disease), which is measured by a change in serum creatinine 
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values. Their main conclusion was based on 25 trials and on 

conventional statistical procedures that showed that iodixanol 

is not associated with significantly reduced risk of contrast 

induced nephropathy.

Our approach is Bayesian, where the main endpoint is 

the incidence of kidney complications (defined as a certain 

 percent increase in serum creatinine, which is measured 

before and after the administration of the procedure). There 

are two groups, the one administered contrast media, labeled 

LOCM, and the other group of patients to which contrast 

media was not administered, referred to as the iodixanol 

group. Some of the trials were randomized, and there are 

various types of contrast media, as well as many other study 

covariates that are of interest in how they affect the compli-

cation rate.

Suppose the analysis is based on the logistic model, 

where for the control group (patients not receiving the con-

trast media)

 X
i
 ∼ binomial(n

i
, p

i
) (17)

for i = 1, 2, …, n,

and for the patients receiving the contrast agent

 Y
i
 ∼ binomial(m

i
, q

i
) (18)

with i = 1, 2, …, m.

In addition, let

 log(p
i
/(1 −	p

i
)) = θ

I
 (19)

for i = 1,2,…, n,

and

 log(q
i
/(1 −	q

i
)) = φ

I
 + θ

I
 (20)

with i = 1, 2, …, m.

Prior information for the parameters is specified as

	 θ
i
 ∼ nid(µθ , τθ) (21)

and

	 φ
i
 ∼ nid(µθ,τθ). (22)

At this stage there are several choices: One could let the 

θ
i
 and φ

i
 have noninformative normal distributions (0.0000, 

0.00001), or let the µθ and µφ have normal distributions 

(informative or non-informative) and the precisions τθ and τφ 

have gamma distributions (informative or non informative). 

It depends on the prior information available to the analyst. 

For additional information about the model, see Berry.11 The 

first part of the analysis will be based on the model defined 

by (17)–(22), then the analysis will be expanded to include 

the study covariates.

Our analysis is executed with BUGS CODE 7 with 

65,000 observations for the simulation, a burn in of 5000, 

and a refresh of 100.

BUGS CODE 7
model;

{

# binomial distributions for two tests

for(i in 1:17){x[i]∼dbin(p[i],m[i])}

for(i in 1:17){y[i]∼dbin(q[i],n[i])}

# logit models for the two complication rates

for(i in 1:17){logit(p[i]),−theta[i]}

for(i in 1:17){logit(q[i]),−phi[i]}

# prior distributions

for(i in 1:17){theta[i]∼dnorm(muth,tauth)}

for(i in 1:17){phi[i]∼dnorm(muphi,tauphi)}

muth∼dnorm(0.000,0.0001)

muphi∼dnorm(0.000,0.0001)

tauth∼dgamma(0.00001,0.00001)

tauphi∼dgamma(0.00001,0.00001)

# mean of complication rates

pee,−mean(p[])

qee,−mean(q[])

d,−pee-qee

}

# Heinrich et al10 meta analysis

 list(m = c(123,72,54,210,58,105,76,134,35,25,64,54, 

32,100,20,59,101),

 n = c(125,76,48,204,56,116,77,125,35,25,65,49,32,50,19,

60,99),

x = c(6,5,1,14,0,4,2,12,2,4,2,5,1,7,1,0,0),

y = c(7,0,5,9,1,1,0,17,9,4,17,14,0,3,0,0,2))

# initial values

# must initiate other chain with specification tool

list(muth = 0,muphi = 0,tauth = 1,tauphi = 1)

The above code is labeled with the appropriate identification 

for the Bayesian analysis, such as pee and qee are the means of 

the complication rates for the two groups of patients, and the 

data for the Heinrich et al10 meta-analysis where the components 

of the x vector are the number of complications for the control 

or iodixanol patients and the y vector contains the number of 

complications for the treatment for the patients receiving the 

contrast media. In addition the m vector is the number of patients 

in the control group and the n vector contains the number of 

patients in the treatment group. Note that only 17 of the 22 studies 

are used for the analysis because they are the ones with complete 

information on the complication rates. Table 3 portrays the 

Bayesian analysis for the Heinrich et al10 meta-analysis.
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Table 4 Bayesian analysis for meta-analysis of ultrasound for diagnosis of inflammatory bowel disease

Parameter Mean SD Error 2 1/2 Median 97 1/2

Q 0.9748 0.0394 0.0015 0.9034 0.9826 0.996
beta[1] 7.978 1.591 0.0827 4.472 8.006 11.04
beta[2] −0.0813 0.3484 0.0141 −0.8162 −0.0714 0.5889
neta[1] 0.9398 1.443 0.0598 −1.916 0.988 3.858
neta[2] −8.634 4.293 0.2369 −16.65 −8.773 0.4042
sroc[1] 0.9868 0.0528 0.0021 0.9067 0.9972 0.9999
sroc[2] 0.9262 0.1329 0.0064 0.4691 0.9698 0.9984
sroc[3] 0.9773 0.0749 0.0030 0.8216 0.9941 0.9997
sroc[4] 0.9887 0.0546 0.0019 0.9227 0.9977 0.9999
sroc[5] 0.9825 0.0662 0.0026 0.8682 0.9958 0.9998
sroc[6] 0.9825 0.0662 0.0026 0.8682 0.9958 0.9998
sroc[7] 0.9262 0.1329 0.0064 0.4691 0.9698 0.9984
sroc[8] 0.9954 0.0384 0.0012 0.9773 0.9994 1.0
sroc[9] 0.9665 0.0903 0.0039 0.7302 0.9899 0.9995
Tau 2.167 0.7886 0.0190 0.8561 2.089 3.919

Table 3 Posterior analysis for the inflammatory bowel disease meta-analysis

Parameter Mean SD Error 2 1/2 Median 97 1/2

Q1 0.9098 0.0203 ,0.0001 0.8629 0.9123 0.942
Q2 0.9324 0.0493 ,0.0001 0.8148 0.9426 0.9863
beta1[1] 4.668 0.4757 0.0048 3.679 4.683 5.575
beta1[2] −0.5686 0.3238 0.0034 −1.242 −0.5631 0.0664
beta2[1] 5.647 1.418 0.0129 2.963 5.597 8.557
beta2[2] −0.901 1.003 0.0112 −2.929 −0.8595 0.9871
d −0.02263 0.05346 ,0.0001 −0.0956 −0.03004 0.09919
sroc1[1] 0.9151 0.0409 ,0.0001 0.8148 0.9232 0.967
sroc1[2] 0.5176 0.1107 0.0011 0.2857 0.522 0.7271
sroc1[3] 0.8626 0.0594 ,0.0001 0.7165 0.8734 0.9439
sroc1[4] 0.9294 0.03521 ,0.0001 0.8438 0.9365 0.9729
sroc1[5] 0.8805 0.0535 ,0.0001 0.7488 0.8906 0.952
sroc1[6] 0.8805 0.0535 ,0.0001 0.7488 0.8906 0.952
sroc1[7] 0.5176 0.1107 0.0011 0.2857 0.522 0.7271
sroc1[8] 0.9791 0.0120 ,0.0001 0.9512 0.9816 0.9924
sroc1[9] 0.806 0.0754 ,0.0001 0.6227 0.8184 0.9166
sroc2[1] 0.6875 0.2199 0.0019 0.1636 0.7314 0.9813
sroc2[2] 0.6875 0.2199 0.0019 0.1636 0.7314 0.9813
sroc2[3] 0.986 0.0410 ,0.0001 0.9253 0.9942 0.9997
sroc2[4] 0.986 0.0410 ,0.0001 0.9253 0.9942 0.9997
sroc2[5] 0.6875 0.2199 0.0019 0.1636 0.7314 0.9813
sroc2[6] 0.926 0.1041 ,0.0001 0.6274 0.9591 0.9978
sroc2[7] 0.9581 0.0748 ,0.0001 0.7736 0.9794 0.9989
tau1 1.538 0.4736 0.0030 0.735 1.498 2.588
tau2 0.5946 0.2134 0.0015 0.2411 0.5732 1.072

Key parameters are d, the difference in the two  averages of 

the complication rates, and muphi, which is the  difference in 

the logits of the complication rates, and both imply there is a 

difference in the complication rates. The average  complication 

rate for the group not receiving the contrast agent is 0.0489, 

compared with 0.0826 for the one receiving the contrast 

agent, and their difference d has a 95% confidence interval of 

(−0.0556, −0.0125), while the 95% credible interval for muphi 

is (−4.532, −2.365). Note the large posterior mean for τθ; how-

ever, the median is 5.058, which should be used as the estimate 

of the location of the precision parameter. This example is easily 

generalized to include study covariates in the exercises.

Comments and conclusions
This paper introduces the reader to the Bayesian approach to 

meta-analysis with emphasis on the summary ROC curve, 
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that is, where one assumes that the separate studies have a 

common ROC curve. The Bayesian approach is based on a 

regression analysis and consists of computing the posterior 

distribution of the SROC values and the accuracy Q of 

the combined studies. It should be noted that Miller et al12 

gave one of the first accounts of the Bayesian approach to 

meta-analysis, including the use of the SROC curve, and 

this presentation is very similar, but goes beyond what they 

presented to include more complex study designs. The author 

presents an approach to meta-analysis based on the Miller 

method; however, there are other models that could have 

been employed. For example, the approach of Paul et al13 

is a valuable contribution and an alternative to the Miller 

method. The reader should also refer to the following studies: 

Harbord et al,14 Leeflang et al,15 Reitsma et al,16 and Rutter 

and Gatsonis.17 For the practitioner, the Leeflang et al study 

is quite informative.

This paper began by considering a meta-analysis that 

involves only one test and via a MCMC simulation determines 

the posterior distribution of the relevant parameters. A regression 

of B on S is the basis of the analysis, where the intercept and 

slope give us valuable information about the worth of the test 

in differentiating between diseased and non-diseased patients. 

B = V − U and S = V + U, where U and V are the logits of the 

FPF and TPF, respectively. It can be shown that the intercept 

is the odds ratio of a positive test result for those with and 

Table 5 Bayesian analysis for comparing US and MRI for inflammatory bowel disease

Parameter Mean SD Error 2 1/2 Median 97 1/2

Q1 0.9774 0.0335 ,0.0001 0.9318 0.9828 0.9962
Q2 0.866 0.2919 0.0109 0.00021 0.998 1
beta1[1] 8.106 1.53 0.0442 5.231 8.093 11.13
beta1[2] −0.058 0.3414 0.0075 −0.7215 −0.0595 0.6222
beta2[1] 12.15 12.58 0.4865 −16.93 12.45 35.1
beta2[2] 0.2252 0.8867 0.0199 −1.656 0.2409 1.931
d 0.1114 0.2933 0.019 −0.05664 −0.0007 0.9798
neta1[1] 1.195 1.43 0.0313 −1.568 1.172 4.005
neta1[2] −9.288 4.252 0.1304 −17.69 −9.193 −1.522
neta2[1] −6.287 5.884 0.1805 −17.61 −6.324 6.22
neta2[2] −5.574 20.13 0.7688 −42.63 −6.059 40.85
sroc1[1] 0.9903 0.0489 0.00125 0.9541 0.997 0.9999
sroc1[2] 0.9392 0.1068 0.0028 0.6538 0.9706 0.9985
sroc1[3] 0.9828 0.0609 0.0015 0.9077 0.9942 0.9997
sroc1[4] 0.9916 0.0462 0.0011 0.9623 0.9978 0.9999
sroc1[5] 0.9869 0.0547 0.0014 0.9336 0.996 0.9998
sroc1[6] 0.9869 0.0547 0.0014 0.9336 0.996 0.9998
sroc1[7] 0.9392 0.1068 0.0028 0.6538 0.9706 0.9985
sroc1[8] 0.9966 0.0338 0.000821 0.9893 0.9994 1
sroc1[9] 0.9742 0.0723 0.0019 0.8525 0.9902 0.9995
sroc2[1] 0.852 0.3289 0.01212 0 1 1
sroc2[2] 0.7841 0.377 0.0140 0 0.9996 1
sroc2[3] 0.8627 0.3192 0.0117 0 1 1
sroc2[4] 0.8627 0.3192 0.0117 0 1 1
sroc2[5] 0.7841 0.377 0.0140 0 0.9996 1
sroc2[6] 0.8344 0.3436 0.0127 0 1 1
sroc2[7] 0.847 0.3332 0.0123 0 1 1
tau1 2.174 0.7841 0.0056 0.8769 2.094 3.93
tau2 0.8198 0.3824 0.0066 0.2321 0.7694 1.699

Table 6 Bayesian analysis for the safety of contrast media study

Parameter Mean SD Error 2 1/2 Median 97 1/2

d −0.0337 0.01098 ,0.0001 −0.0556 −0.0336 −0.0125
muphi µφ −3.319 0.547 0.0033 −4.532 −3.274 −2.365
muth µθ −3.085 0.2284 0.0050 −3.617 −3.057 −2.722
pee 0.0489 0.0063 ,0.0001 0.0374 0.0486 0.0622
qee 0.0826 0.0089 ,0.00001 0.0660 0.0823 0.1009

tauphi τφ
0.3825 0.2161 0.0017 0.1003 0.3378 0.9219

tauth τθ
2596 14400 429 0.6974 5.058 28040

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Open Access Medical Statistics

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/open-access-medical-statistics-journal

Open Access Medical Statistics is an international, peer- reviewed, 
open access journal publishing original research, reports, reviews and 
commentaries on all areas of medical statistics. The manuscript manage-
ment system is completely online and includes a very quick and fair 

peer-review system. Visit http://www.dovepress.com/testimonials.php 
to read real quotes from published authors.

Open Access Medical Statistics 2011:1 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Dovepress

35

Bayesian meta-analysis

without the disease (when S = 0), and that the value of the slope 

is very informative about the accuracy. For example, if the 

slope is close to zero the implication is that the test’s ability to 

discriminate between the two groups of patients is independent 

of the threshold values used in the separate studies. Once the 

posterior distribution of the slope and intercept are determined, 

their joint posterior distribution induces a posterior distribution 

for the SROC values and the accuracy parameter Q.

Various interesting examples exemplify the Bayesian 

analysis and are taken from the medical research literature. 

For example, the Horsthuis et al8 study is especially interesting 

because it is well documented and involves several tests, namely 

US, MR, scintigraphy, and CT, to diagnose inflammatory 

bowel disease, and is one of the few meta-analyses to study 

several modalities simultaneously. If covariates are involved, 

the posterior distribution of the relevant regression coefficients 

tells one if they contribute to the analysis, and another positive 

feature of the Horsthuis et al8 analysis is the inclusion of many 

covariates to assess the inter-study variation.

The Horsthuis et al8 example is examined in three stages: 

(a) US was only considered without any covariates, (b) US and 

MR were compared, without using any covariates, and (c) US 

was used along with two covariates, the fraction of patients 

with Crohn’s disease, and the fraction of male patients. Thus, 

this example allows one to display the full complement of 

Bayesian methods in order to conduct the analysis.

As mentioned earlier, the foundation of the Bayesian 

approach is the bilogistic regression model of B on S; however, 

Zhou et al (p 403)3 describe another method based on a binary 

regression model. This was not considered, but instead the 

bilogistic regression model was employed. Also, very little 

has appeared in the literature about the meta-analysis of tests 

with continuous scores from a Bayesian viewpoint, although 

Zhou et al (p 409)3 do present such an approach, based on 

a weighted average of estimated ROC areas of the various 

studies. Note, it would be very difficult to do a Bayesian 

analysis, because most if not all such meta-analyses are not 

done in a Bayesian fashion, but instead are analyzed with non-

Bayesian methodology, that is, each individual ROC area is 

estimated by conventional methods along with an associated 

estimated standard error (standard deviation).
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