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Abstract: Obstructive sleep apnea (OSA) is a highly preventable disease accompanied by multiple comorbid conditions. Despite the 
well-established cardiovascular and neurocognitive sequelae with OSA, the optimal metric for assessing the OSA severity and 
response to therapy remains controversial. Although overnight polysomnography (PSG) is the golden standard for OSA diagnosis, 
the abundant information is not fully exploited. With the development of deep learning and the era of big data, new metrics derived 
from PSG have been validated in some OSA consequences and personalized treatment. In this review, these metrics are introduced 
based on the pathophysiological mechanisms of OSA and new technologies. Emphasis is laid on the advantages and the prognostic 
value against apnea-hypopnea index. New classification criteria should be established based on these metrics and other clinical 
characters for precision medicine. 
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Introduction
Obstructive sleep apnea (OSA) is a chronic disease affecting almost one billion people around the world.1 It is 
characterized by partial or complete upper airway collapse during sleep, leading to sleep fragmentation and intermittent 
hypoxemia. The consequences brought by OSA include disturbance of sleep structure, daytime sleepiness, various 
complications and decreased quality of life. Studies have revealed that the economic burden of OSA is substantial.2

The metric used for evaluating OSA severity is the apnea-hypopnea index (AHI), which mainly describes the 
frequency of respiratory events. Despite its convenience and wide acceptance, several defects remain which oversimplify 
the complexity of OSA and lead to the poor correlation with OSA consequences. First, the definition of AHI treats apnea 
and hypopnea equivalently. The severity of airway obstruction is associated with degree of desaturation and arousals. 
Studies have demonstrated that OSA patients with different respiratory patterns presented different disease severity.3 The 
predominance of apnea or hypopnea could be a potential subtype correlated with certain OSA comorbidity. Second, the 
different rules for hypopnea definition in clinical practice may bring inconsistencies to the diagnosis and severity 
evaluation of OSA, leaving some asymptomatic OSA patients untreated.4 The association of OSA with comorbidities 
using different criteria could be discrepant.5 Another nonnegligible issue is that AHI does not directly reflect the 
pathogenesis of OSA. Other auxiliary metrics like lowest pulse oxygen saturation (LSpO2), percentage time below 
90% oxygen saturation (T90) and oxygen desaturation index (ODI) evaluate event-related desaturation from a single 
aspect but have not been recommended as the diagnostic criteria. Degree, duration of desaturation, respiratory event 
duration, and intensity of arousals could all represent certain aspects of OSA pathophysiology, yet none of them are 
integrated in AHI. These defects could be the reasons for poor relationship between OSA and relevant comorbidities.6,7 

Furthermore, the adherence of continuous positive airway pressure (CPAP), the primary therapy, is relatively low. In 
some cases, CPAP showed an insignificant effect on OSA comorbidities while CPAP tends to be the one-size-fits-all 
therapy for OSA.8,9
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Since the term of polysomnography (PSG) was first created in 1974,10 it has been applied as the golden standard 
diagnostic examination for OSA. A typical overnight PSG examination contains plenty of biological signals such as 
electroencephalogram (EEG), electrooculogram, nasal airflow, electromyogram, electrocardiogram (ECG), respiratory 
effort and blood oxygen. These simultaneously recorded signals can provide a great deal of information on patients’ 
sleeping, respiratory and cardiovascular status. Apart from the original signals, data generated by advanced technologies 
like machine learning can further identify certain subgroups of patients who may benefit from personalized treatment. 
Moreover, efforts have been made to establish large data sets for researchers. Online resources like the National Sleep 
Research Resource11 and PhysioNet12 have thousands of PSG recordings which offer the opportunity for data training 
and algorithm validation. While automated signal processing algorithms have been proposed for decades and some were 
verified by large samples, these algorithms have not been widely accepted or commercialized for clinical practice. The 
reality urges reformation in clinical evaluation and treatment of OSA.

This paper aims to review recent advances in PSG analysis. In particular, the prognostic value of novel metrics 
towards OSA comorbidities and personalized treatment is discussed (Figure 1). The review will be organized in the 
following way: (1) the pathophysiological association of OSA and each comorbidity; (2) the association of these 
comorbidities with new metrics that reflect certain pathophysiological mechanisms; (3) new metrics validated for 
personalized treatment; (4) limitations and future directions of these metrics for precision medicine. Importance is laid 
on the role of OSA pathophysiological mechanisms for discovering clinically oriented PSG metrics.

Pathogenesis of OSA with Related Comorbidities
Cardiovascular Disease
Many clinic-based case control and longitudinal studies have demonstrated that OSA patients have a two- to five- 
fold increase in cardiovascular disease (CVD) risk after multivariate adjustment including body mass index.13 

Although exact causal association is still unclear, both animal and human studies suggest that sympathetic 
neurohormonal activation, oxidative stress and systemic inflammation induced by sleep fragmentation and inter-
mittent hypoxemia, which is similar to reperfusion injury, may play an important pathophysiological role.14 These 
molecular level changes lead to dysfunction of vascular endothelium, atherosclerosis and hypercoagulability, which 

PSG 
signals

New 
metrics

OSA 
evaluation

• Cerebral: EEG
• Respiratory: nasal airflow, respiratory effort, pulse oximeter
• Cardiac: ECG, pulse oximeter

• From raw PSG signals: arousal intensity, odds ratio product,
hypoxic burden, pulse arrival time, etc.

• From advanced methods: cluster analysis, machine
learning

• Assessment of OSA comorbidities
• Personalized treatment choice

Figure 1 Summary of PSG physiological signals, new metrics and utilization of these metrics towards precision medicine. 
Abbreviations: ECG, electrocardiogram; EEG, electroencephalogram; OSA, obstructive sleep apnea; PSG, polysomnography.
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are the fundamental reasons for hypertension, coronary artery disease and cerebrovascular disease. Apart from these 
common mechanisms, alteration in intrathoracic pressure also brings adverse outcomes to certain disease. For 
example, in atrial fibrillation, recurrent and abrupt negative changes in intrathoracic pressure during apnea may 
lead to structural and functional atrial remodeling and electrophysiological alterations. The same changes in 
intrathoracic pressure may also increase left ventricular transmural pressure and related afterload, causing reduced 
stroke volume and coronary blood supply. These mechanisms may precipitate myocardial ischemia and remodeling 
and lead to heart failure.

Hyperglycemia and Type 2 Diabetes
Cross-sectional and retrospective studies proved bilateral relationship between OSA and type 2 diabetes.15 Like 
cardiovascular diseases, intermittent hypoxemia and sleep fragmentation are also the cardinal pathways towards 
dysregulation of glucose metabolism and type 2 diabetes. Besides sympathetic activation, oxidative stress and systemic 
inflammation, these pathophysiological mechanisms also result in activation of hypothalamic–pituitary–adrenal axis and 
induction of adipocytokines. Such changes further precipitate attenuation of glucose-induced insulin secretion from 
pancreatic β cells and insulin resistance in peripheral tissues and organs.16,17

Cognitive Impairment and Alzheimer’s Disease
Considering the importance of sleep continuity, slow wave sleep and sleep spindles in neurogenesis, alertness, memory 
formation and consolidation, sleep fragmentation caused by repeated micro-arousals may continuously influence the 
sleep structure. Studies have found that long term OSA alters white matter integrity and aggregation of β-amyloid and tau 
pathology. Related pathophysiological changes include inflammation, oxidative stress, cerebral edema and endothelial 
dysfunction.18 Moreover, negative intrathoracic pressure caused by OSA could influence hemodynamics and glymphatic 
system. The latter has been recognized as the key pathway for brain fluid clearance and waste removal via glia-supported 
perivascular channels which is more active during sleep.19

Taken together, the primary mechanisms of OSA towards its related comorbidities include intermittent hypoxemia, 
sleep fragmentation and intrathoracic pressure oscillation. The corresponding changes such as oxidative stress, inflam-
mation and sympathetic neurohormonal activation further cause alterations of the micro-environment and damage of 
target organs. Metrics representing these pathophysiological mechanisms could, in theory, have more prognostic value 
than AHI. Given the advantages of PSG mentioned above, it is time for clinicians and manufacturers to evaluate and 
promote proper PSG metrics for better clinical practice. New metrics that have been validated in clinical utility of OSA 
comorbidity and treatment are introduced in the next section.

Metrics for OSA Comorbidities
Arousal Intensity
Arousal index is routinely used to evaluate arousals in sleep. However, like AHI, the arousal index only captures 
frequency of arousals during sleep. The extent of each arousal varies a lot during a respiratory event which could lead to 
different degrees of autonomic activation. Azarbarzin et al created an automatic algorithm to assess the extent of arousal. 
Wavelet transform analysis was used to capture EEG signals’ time and frequency characteristics. A scale from zero 
(barely perceptible) to nine (most intense), named arousal intensity, was applied during the evaluation.20 Despite its 
variability among subjects, arousal intensity has been proved to be reproducible21 and heritable.22 In a sample of 20 
PSGs from patients receiving sleep monitoring, they found a strong relationship between arousal intensity and the heart 
rate change associated with respiratory events (average r: 0.95 ± 0.04). The latter was proved to be associated with an 
increased risk of both fatal (HR 1.68, 95% CI 1.22–2.30) and non-fatal (HR 1.60, 95% CI 1.28–2.00) cardiovascular 
disease events in the Sleep Heart Health Study (SHHS).23 However, arousal intensity may not be the only factor which 
affects events related heart rate change.24 No studies have been performed to evaluate the association of arousal intensity 
directly with OSA comorbid conditions.
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Odds Ratio Product
Conventionally, sleep stages are scored based on recommended criteria in each 30s epoch. This criterion has not been 
changed in the digital era. In fact, sleep state changes continuously rather than an intermittent 30s epoch. Details about 
variation of EEG signals indicating sleep depth or sleep quality could be neglected within sleep stages. An automated 
algorithm for estimating sleep depth was developed by Younes et al.25 Fast Fourier transform was used for power 
spectrum analysis in each 3s EEG consecutive epochs. Odds ratio product (ORP) was calculated with a range from 0 to 
2.5. In the validation test, an ORP less than 1.0 predicted sleep and an ORP larger than 2.0 predicted wakefulness in more 
than 95% of 30s epochs. This high consistency indicated an adequate measure of sleep depth. A recent study has found 
that the correlation between the right and left hemisphere ORP measures (interhemispheric sleep depth coherence) 
predicted occurrence of car accidents 2 years after the sleep study in patients with OSA. Higher sleep depth coherence 
was associated with lower risk of accidents after multivariate adjustments.26 ORP could be a measure of susceptibility to 
adverse neurocognitive outcomes. However, no significance was observed between ORP and hypertension in the Multi- 
Ethnic Study of Atherosclerosis.27 Associations with other metabolic outcomes remain untested.

The same EEG processing method was used by Mullins et al, EEG power spectra was obtained using fast Fourier 
transform. EEG slowing (a ratio of slow frequencies to fast frequencies) and sleep spindle density (spindle events 
per minute) were calculated. They found greater EEG slowing during REM and lower sleep spindle density during 
NREM were associated with worse psychomotor vigilance and simulated driving performance in OSA patients.28 

However, the results need to be interpreted cautiously due to the small sample of 8 patients and limited statistical 
power. Confirmation in a larger sample is required.

Hypoxic Burden and Related Metrics
Since AHI cannot fully represent event related desaturation and other traditional metrics only capture certain aspects of 
hypoxemia, metrics with combined characteristics have been proposed in recent years. The most validated metric is 
hypoxic burden, which encapsulates the frequency, duration, and depth of the respiratory event related desaturation. The 
total hypoxic burden is defined as the sum of individual burdens divided by total sleep time. The prognostic value of 
hypoxic burden has been proved in many studies. Azarbarzin et al reported significant association between hypoxic 
burden and cardiovascular disease related mortality in the Osteoporotic Fractures in Men Study (MrOS) and the SHHS.29 

Patients with the highest hypoxic burden had increased risk of mortality after adjusting multiple factors including AHI, 
T90 and LSpO2 (HR 2.73, 95% CI 1.71–4.36 in MrOS and HR 1.96, 95% CI 1.11–3.43 in SHHS). In contrast, AHI could 
not predict mortality risk in the MrOS. Similar results were found when considering the risk of incident heart failure. 
Increased hypoxic burden per 1 SD were associated with incident heart failure (HR 1.22, 95% CI 1.02–1.45 in MrOS and 
HR 1.18, 95% CI 1.02–1.37 in SHHS), while AHI was insignificant.30 Other positive findings including hypertension,27 

stroke31 and chronic kidney disease.32 These significant results suggest that hypoxic burden is an important metric for 
OSA evaluation.

Similar to hypoxic burden, other studies combined information of event related desaturation in different ways and 
also found significant associations with OSA comorbidities. Cao et al invented a new metric named sleep breathing 
impairment index (SBII), which was the product of area under desaturation curve and respiratory event duration. In 
a cross-sectional study with 140 male OSA patients, higher SBII was associated with moderate-to-high Framingham 
CVD risk.33 The incorporation of respiratory event duration may have advantages over hypoxic burden. Wang et al 
evaluated prognostic value of the change in the percentage of SpO2 per second after obstructive apnea, expressed as 
oxygen desaturation rate (ODR). Participants with faster ODR demonstrated a stronger association with the elevation of 
both awake and sleep blood pressure (BP) levels and short-term BP variability.34 ODR might be a marker for sympathetic 
activation.

Photoplethysmography and Pulse Wave Amplitude Drops
Photoplethysmography (PPG) is another signal derived from pulse oximetry, which assesses the blood volume changes in 
the microcirculation of the fingertip. Various conditions like cardiovascular disease, hypertension, diabetes and mental 
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health were proved to be effectively assessed by PPG in previous studies.35 However, the relatively low accuracy with 
raw signals and inadequate validation limited its clinical application.

Pulse wave amplitude (PWA) drops are derived from the variance of PPG signal amplitude. PWA is calculated as the 
difference between the peak and nadir values of PPG waveform. PWA drops with an amplitude >30% compared to 
baseline and a duration >4 heartbeats are considered clinically significant. A former study showed that PWA drops reflect 
peripheral vasoconstriction resulting from sympathetic activation.36 Respiratory events related PWA drops were asso-
ciated with cortical activity and could serve as a marker of cerebral response to respiratory events.37 Hirotsu et al found 
that certain PWA drop features (lower PWA-drop index, longer duration and greater area under the curve) increased odds 
of hypertension, diabetes, or CV event after multivariate adjustment. An independent association of PWA drops index 
with AHI and total arousal index was also found in this study.38

Pulse Arrival Time
Apart from creating new metrics with single signals, metrics generated from multi-signals may contain more pathophy-
siological information. Pulse arrival time (PAT) is such a composite metric acquired from ECG and oximeter. It is 
a widely accepted surrogate of pulse transit time, which correlates well with systolic BP and has been used in monitoring 
BP during sleep.39 PAT is defined as the time interval between the EEG R wave and pulse arrival by PPG. Kwon et al 
evaluated prognostic value of PAT response to obstructive respiratory events, which was defined as the area under the 
PAT waveform following respiratory events. They found that PAT response was associated with key subclinical CVD 
markers (left ventricle mass, carotid plaque burden and coronary artery calcium) as well as with incident CVD (adjusted 
HR 1.18, 95% CI 0.99–1.40).40 These findings suggested average PAT response to respiratory events, a reflection of 
dynamic sympathetic activity, could be valuable for risk stratification of patients with sleep apnea.

Conventional Metrics with New Clinical Significance
Apart from the new metrics mentioned above, other traditional metrics, once neglected, were also evaluated in recent 
years. The prognostic value of fast sleep spindles (13–15 Hz) on Alzheimer’s disease (AD) and Mild Cognitive 
Impairment (MCI) was evaluated by Gorgoni et al. A significant parietal fast spindle density decrease was found 
in AD and MCI patients, positively correlated with Mini-mental State Examination scores (r = 0.33, p = 0.03).41 The 
results showed that spindle density changes are specific for frequency and location in MCI and AD. Certain spindle 
changes are related to the severity of cognitive impairment and early onset of MCI. Butler et al tested whether apnea- 
hypopnea event duration predicted all-cause mortality in SHHS. They found that shorter respiratory event duration was 
associated with all-cause mortality (adjusted HR 1.31, 95% CI 1.11–1.54).42 While it seems contradictory with the idea 
that longer event duration associates with heavier hypoxemia, shorter event duration may be a marker for low arousal 
threshold and autonomic nervous augmentation. Baumert et al measured mean nocturnal respiratory rate during sleep in 
the MrOS sleep study and the Study of Osteoporotic Fractures (SOF). After adjusting multiple covariates, patients with 
respiratory rate ≥16 breaths per minute were independently associated with CVD mortality (HR 1.57, 95% CI 1.14–2.15 
in MrOS and HR 2.58, 95% CI 1.41–4.76 in SOF) and all-cause mortality (HR 1.18, 95% CI 1.04–1.32 in MrOS and HR 
1.50, 95% CI 1.02–2.20 in SOF).43 Elevated respiratory rate may reflect dysfunctional central respiratory control and 
lead to hypocapnia related electrolyte abnormalities.

Cluster Analysis
Since OSA is recognized as a heterogeneous disease, efforts have been made to discriminate different subtypes for 
clinical practice. A widely applied method for OSA is cluster analysis. It is an unsupervised machine learning method 
with potential to find undiscovered patterns of diseases. Zinchuk et al used principal components-based cluster analysis to 
identify polysomnographic features. Based on OSA pathophysiological domains, seven clusters were identified in the US 
Veteran cohort. They further evaluated prognostic value of these PSG based subtypes. Patients labeled as certain OSA 
subtypes had significant risk of CVD outcomes and incident diabetes. The addition of these subtypes further improved 
diabetes risk prediction. Meanwhile, categorized AHI was not associated with increased CVD risk.44,45 These subtypes 
may represent certain pathophysiological characteristics including hypoxemia and sympathetic activation and were 
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superior in predicting OSA comorbidities comparing to AHI. The utility of unsupervised learning method with abundant 
PSG information could serve as an important clinical guidance towards OSA evaluation.

Endotypes for Personalized OSA Treatment
Despite the first line treatment recommended by the American Academy of Sleep Medicine, the effect and adherence of 
CPAP vary a lot in OSA patients. Other treatment options have been proved to have a modest improvement. This 
situation urges the need for personalized treatment. Endotypes based on OSA pathophysiology (PALM scale) were 
proposed, aiming at identifying subgroups of patients responding to specific OSA treatments.46 However, this classifica-
tion required invasive examinations like epiglottic pressure catheter which limited the clinical application. Novel 
approaches using PSG signals to determine OSA pathophysiology have been developed. Terrill et al quantified the 
loop gain, a part of ventilatory control, using PSG signals in 28 OSA patients. The method was compared with the 
standard procedure (CPAP drop method) and showed good agreement (r = 0.63, p < 0.001). It further predicted reduction 
in loop gain with oxygen and acetazolamide therapy.47 Similar to loop gain, other OSA endotypes including low arousal 
threshold, poor pharyngeal dilator muscle effectiveness was also identified by PSG monitoring.48,49 These non- 
anatomical endotypes have also demonstrated the clinical value of guidance for non-CPAP treatment. Patients with 
less upper airway collapsibility and low loop gain could benefit from an oral appliance and upper airway surgery.50 OSA 
due to poor muscle compensation could be improved from the upper airway muscle stimuli like desipramine.51 Hypnotics 
may be effective in patients with low arousal threshold.52,53 Details can be obtained from this former excellent review.54 

These brand-new algorithms provided insights into personalized treatment. Due to the limited study samples, single night 
PSG data and multiple potential confounders, these endotypes need more evidence for clinical utility.

Another possible solution to discriminate OSA endotypes is the application of supervised machine learning. Unlike 
unsupervised machine learning, supervised learning uses labeled data to predict patterns for unforeseen data. Edwards 
et al used regression models to find predictors for arousal threshold in 127 participants. An epiglottic pressure catheter 
was applied for the gold standard arousal threshold. Three PSG variables including AHI < 30, oxygen saturation nadir > 
82.5%, and fraction of hypopneas >58.3% were used to predict low arousal threshold with a sensitivity of 82.2% and 
specificity of 84.0%.55 The algorithm was further applied to predict the effect of drugs for OSA treatment and CPAP 
adherence.56,57

Conclusions and Future Directions
Based on the pathogenesis of OSA and related comorbidities, this review discussed new metrics and methods aiming at 
OSA evaluation and treatment. Advantages of these metrics over AHI have been proved in some OSA comorbidities. 
PSG-oriented personalized treatments for specific OSA endotypes have been validated in some randomized control 
studies. This exciting scenario shows the great value of data-driven medicine. These new metrics excavated from 
abundant information in PSG will greatly enhance our ability to identify subtypes of OSA, explore disease pathogenesis 
towards certain comorbidities and discover better OSA treatment.

Despite these findings, more work is needed in future studies. First, metrics for OSA evaluation should be closely 
focused on pathophysiological mechanisms. For example, limitations exist in traditional indexes of hypoxemia. ODI with 
lowest oxygen saturation of more than 95% could be a physiological variation. Meanwhile, T90 does not consider the 
percentage oxygen saturation time between 90% to 95%. These defects might be contributors to negative results. Nasal 
flow or respiratory effort could represent the fluctuation of intrathoracic pressure yet few studies aiming at this important 
mechanism are carried out. Second, more validation tests towards clinical demands are required. With large cohort 
datasets available nowadays, PSG based new metrics could be validated easily across different ages, ethnicities and OSA 
comorbidities. However, most studies focus on the CVD and CVD related mortality. Associations of promising metrics 
like hypoxic burden with diabetes or cognitive impairment should be tested in future research. Other metrics related to 
certain pathophysiology of OSA like cardiopulmonary coupling58 and cyclic alternating pattern59 should also be taken 
into consideration. Third, due to the complex mechanisms of OSA and related comorbidities, assessing OSA severity by 
a single metric seems unrealistic. A scoring system combined with demographics, symptoms, genetics, molecular 
biomarkers and PSG signals may mostly satisfy the clinical practice. Such system could serve as the classification 
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criteria for OSA subtypes and endotypes. This is particularly feasible with the development of big data and artificial 
intelligence. Last, new technologies like wearables could provide longitudinal data which is important for night-to-night, 
sleep stage or position related variability of these new metrics. Devices with new signals could also be introduced in 
OSA evaluation.

In conclusion, novel metrics derived from PSG could provide insights into OSA pathogenesis and instructions for 
disease assessment and treatment. More strict studies with high quality requirements for validation are needed in the 
future. These metrics, together with concepts of subtypes and endotypes, will facilitate better management of OSA and 
provide great help to the precision medicine.

Abbreviations
AD, Alzheimer’s disease; AHI, apnea-hypopnea index; BP, blood pressure; CVD, cardiovascular disease; CPAP, 
continuous positive airway pressure; ECG, electrocardiogram; EEG, electroencephalogram; LSpO2, lowest pulse oxygen 
saturation; MCI, mild cognitive impairment; ODI, oxygen desaturation index; ODR, oxygen desaturation rate; ORP, odds 
ratio product; OSA, obstructive sleep apnea; PAT, pulse arrival time; PPG, photoplethysmography; PSG, polysomno-
graphy; PWA, pulse wave amplitude; SBII, sleep breathing impairment index; T90, percentage time below 90% oxygen 
saturation.
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