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Purpose: This study sought to characterize transcriptional phenotypes of COPD through unsupervised clustering of sputum gene
expression profiles, and further investigate mechanisms underlying the characteristics of these clusters.

Patients and methods: Induced sputum samples were collected from patients with stable COPD (n = 72) and healthy controls (n =
15). Induced sputum was collected for inflammatory cell counts, and RNA extracted. Transcriptional profiles were generated (Illumina
Humanref-8 V2) and analyzed by GeneSpring GX14.9.1. Unsupervised hierarchical clustering and differential gene expression
analysis were performed, and gene alterations validated in the ECLIPSE dataset (GSE22148).

Results: We identified 2 main clusters (Cluster 1 [n = 35] and Cluster 2 [n = 37]), which further divided into 4 sub-clusters (Sub-
clusters 1.1 [n=14], 1.2 [n=21], 2.1 [n = 20] and 2.2 [n = 17]). Compared with Cluster 1, Cluster 2 was associated with significantly
lower lung function (p = 0.014), more severe disease (p = 0.009) and breathlessness (p = 0.035), and increased sputum neutrophils (p =
0.031). Sub-cluster 1.1 had significantly higher proportion of people with comorbid cardiovascular disease compared to the other 3
sub-clusters (92.5% vs 57.1%, 50% and 52.9%, p < 0.013). Through supervised analysis we determined that degree of airflow
limitation (GOLD stage) was the predominant factor driving gene expression differences in our transcriptional clusters. There were
452 genes (adjusted p < 0.05 and >2 fold) altered in GOLD stage 3 and 4 versus 1 and 2, of which 281 (62%) were also found to be
significantly expressed between these GOLD stages in the ECLIPSE data set (GSE22148). Differentially expressed genes were largely
downregulated in GOLD stages 3 and 4 and connected in 5 networks relating to lipoprotein and cholesterol metabolism; metabolic
processes in oxidation/reduction and mitochondrial function; antigen processing and presentation; regulation of complement activation
and innate immune responses; and immune and metabolic processes.

Conclusion: Severity of lung function drives 2 distinct transcriptional phenotypes of COPD and relates to immune and metabolic
processes.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a major global health problem with a high illness burden and rising
incidence,’ and is expected to remain a challenge for health-care systems well into the 21st century.” Previously, the
disease management of COPD was mainly based on the severity of airflow obstruction, as assessed by forced expiratory
volume in 1 second (FEV,).>* However, research in the field has shown that the one-dimensional analysis of FEV fails
to adequately address the multiple dimensions of COPD.* Heterogeneity of COPD is represented in the broad spectrum
of respiratory and systemic symptoms, histopathological and radiographic findings, pulmonary physiology and likely
different underlying molecular mechanisms (endotypes). There is much recent research interest surrounding the presence
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of disease phenotypes of COPD that may have different underlying mechanisms and the need for alternative management
and treatment approaches.

The use of analytical approaches, such as cluster analysis, has advanced the study of disease phenotypes.’ Several
possible phenotypes of COPD have been identified in various studies that have used cluster analysis.”*® Some of these
COPD phenotypes include non-exacerbator, exacerbation prone, emphysematous COPD, non-smoking COPD and the
comorbidity or systemic phenotype.”’* As Barnes et al® noted, “it is likely that molecular phenotyping may lead to the
identification of distinct phenotypes linked to specific molecular processes, which can be recognized by specific
biomarkers and may be treated more precisely with new or repurposed therapies”.

Transcriptomics can provide useful information relating to disease heterogeneity, mechanisms of pathogenesis,
treatment responses and classifications of COPD, along with an opportunity for novel biomarker discovery.”'® Over
the past few years, a number of studies have examined transcriptomics in COPD cohorts using samples obtained from
lung tissue,'' "¢ blood,'®*? and spontaneous® and induced sputum.'®?°2***27 However, these studies have not
investigated unbiased clustering of whole transcriptomic profiles, how these clusters relate to clinical and inflammatory
phenotypes, and what underlying mechanisms and features are driving these transcriptional clusters. Induced sputum has
proven to be very valuable for molecular profiling of COPD, likely due to its less invasive nature compared to obtaining
lung tissue.****27 Gene expression patterns derived from induced sputum have been associated with disease severity,?’
COPD inflammatory phc&:notypes25 and treatment response.>’

Studies that utilize cluster analysis combining transcriptomic datasets with COPD-related clinical characteristics,
comorbidities and biomarker are important in helping better understand mechanisms underlying the disease as well as
strengthening the robustness of any identified COPD phenotypes.”® This study used unsupervised hierarchical clustering
of induced sputum gene expression profiles of 72 stable COPD patients from Newcastle area (Australia) to identify
distinct and clinically relevant transcriptional COPD phenotypes, and the driving factors behind these cluster phenotypes.

Materials and Methods
Study Design and Population

A cross-sectional analytical study was conducted involving 72 participants with stable COPD and 15 healthy controls.
The data for this sub study were obtained from our previously published studies.?® ! Participants with remaining stored
sputum samples available for RNA extraction, where the RNA was of appropriate quality and yield, were included in the
present study. All participants provided written informed consent, and ethics approval was obtained from the Human
Ethics Research Committees of the Hunter New England Local Health District (06/12/13/3.08, 05/12/07/3.11 and 08/08/
20/3.10) and the University of Newcastle (H-2008-0272). This study complies with the ethical principles of the
Declaration of Helsinki.

COPD diagnosis was confirmed by incompletely reversible airflow limitation (post-bronchodilator forced expiratory
volume in 1 second [FEV1] <80% predicted and FEV1 to forced vital capacity [FVC] ratio of <0.7). Stable COPD was
defined as no increase in bronchodilator use, no use of oral corticosteroids or antibiotics, no unscheduled doctor’s visit, or
no hospitalization due to COPD in the past 4 weeks. Healthy control participants were recruited by advertisement and were
eligible if they had no previous COPD diagnosis and normal lung function (FEV1 >80% predicted, FEV1/FVC >0.7).

Clinical Assessment

Adults (n = 72) with stable physician-diagnosed COPD and healthy controls (n = 15) attended the research centre, data
collection included demographic information, lung function, smoking and medical history, medication use, comorbidities
(Charlson Comorbidity index (CCI)),** dyspnea (modified Medical Research Council [mMRC] scale),”* self-reported
prior year exacerbation and hospitalization history, and health-related quality of life (St George’s Respiratory
Questionnaire [SGRQJ).** Airflow limitation was assessed using spirometry (Medgraphics, CPFS/D™ USB
Spirometer, BreezeSuite v7.1, MGC Diagnostics, Saint Paul, MN, USA) to measure pre- and post-bronchodilator
FEV1, FVC, and FEVI/FVC ratio according to the standards of the American Thoracic Society.>> Severity of COPD
was graded according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification system of
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airflow limitation based on post-bronchodilator FEV% predicted (ie, GOLD grade 1, FEV; >80%; GOLD grade 2,
50%=< FEV, <80%; GOLD grade 3, 30%=< FEV; <50%; GOLD grade 4, FEV, <30%).1 Participants were evaluated using
GOLD quadrants according to the refined GOLD “ABCD” assessment tool (using mMRC for symptom assessment).'
A 6-minute walk test was performed®® and the BODE index (Body mass index [BMI], airflow Obstruction, Dyspnoea
and Exercise capacity) calculated.’” Peripheral venous blood was collected and serum high-sensitivity C-reactive protein
(hs-CRP) was measured using enzyme-linked immunosorbent assay.

Sputum Induction and Analysis
Sputum collection and analysis were performed as previously described*®*° and detailed methods are provided in the
Methods Section of Supplementary Information.

Sputum Transcriptomics

Transcriptomic data were generated as previously described.*' Briefly, sputum RNA was extracted using the RNeasy Mini Kit
(Qiagen, Hilden, Germany) and reverse transcribed into cRNA and biotin-UTP labelled using the Illumina TotalPrep RNA
Amplification Kit (Ambion, Thermo Fisher Scientific, Scoresby, VIC, Australia) and hybridized to the Illumina Sentrix
HumanRef-8 Version 2 Expression BeadChips (Illumina, San Diego, CA, USA). Samples and gene profiling results were
included in the analysis if the sample was of suitable purity (OD 260/280 1.7-2.1) and was successfully amplified (sufficient
cRNA generated) and hybridized (95th percentile of fluorescence score >500) and the data passed quality controls in
GeneSpring GX (correlation coefficients and principle component analysis plots; Agilent Technologies, Santa Clara, Calif).

Statistical Analysis
Clinical and cell count data were analysed using Stata 15 (StataCorp, College Station, TX). Results are reported as mean
+ standard deviation (SD) for normally distributed data and as median (quartile 1, quartile 3) for nonparametric data.
Student’s ¢-test was used for 2 group comparisons of normally distributed data, and Wilcoxon rank sum test was used for
non-parametric data. Comparisons between multiple groups were assessed using Kruskal Wallis for non-parametric data.
Comparison of categorical data was done using Fisher’s exact test. P-values <0.05 were considered significant.
Sputum transcriptomic data analysis was performed as previously described,*' and is described in more detail in the
Methods Section of Supplementary Information. The data reported in this paper is deposited in the National Center for

Biotechnology Information’s Gene Expression Omnibus (GSE212331). To investigate the natural groupings created by
the similarities and differences of the sputum from participants, gene expression profiles were subjected to unsupervised
agglomerative hierarchical clustering by using the Euclidean algorithm with Ward’s linkage. Differentially expressed
genes that were found to be linked with the only significant factor driving our cluster groupings (ie, GOLD stage) were
further validated by investigating their differences in the ECLIPSE data set GSE22148%7 which consists of 148 ex-
smokers with GOLD stage 2—4 COPD (GOLD stage 2, n = 74 and GOLD stage 3 and 4, n = 74). A brief summary of the
ECLIPSE cohort®’ is provided in the Methods Section of Supplementary Information.

Results

Clinical Characteristics

Details of the study participants are provided in Table 1. Participants with COPD (n = 72) had a median age of 70 (64, 75.5)
years and mean post-bronchodilator predicted FEV, of 54 (15.8) %. There were 34 (47.2%) females. Fifty-seven (79.2%)
participants were ex-smokers, with median (Q1-Q3) pack-years of 33 (15-63). In terms of GOLD grades, 4 (5.6%) patients
were in GOLD I, 39 (54.2%) in GOLD 11, 26 (36.1%) in GOLD III, and 3 (4.2%) in GOLD IV. Almost half (45.7%) were
“prone to exacerbation”, having had two or more exacerbations in the past 12 months. Most (n = 65, 93%) of the participants
were prescribed maintenance inhaled corticosteroids (ICS) or ICS and long-acting B2 agonist (LABA) combination therapy
(ICS/LABA) with a median (Q1-Q3) daily dose of 500 (400—500) mg beclomethasone equivalents/day. Healthy controls
without COPD (n = 15) were age 25 to 65 and almost half were females (Table 1). Participants with COPD were older, had
greater history of smoking, higher body mass index (BMI), more comorbidity burden (higher Charlson Comorbidity Index
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Table | Demographics and Clinical Characteristics of the Study Population

COPD (n=72) Healthy (n=15) p-value
Age (years), median (QI, Q3) 70.0 (64.0, 75.5) 41 (25, 65) <0.001
Sex (female), n (%) 34 (47.2%) 7 (46.7%) 0.598
BMI (kg/m?), median (QI, Q3) 28.0 (24.8, 33.4) 25.6 (21.8, 26.8) 0.013
Ex-smokers, n (%) 57 (79.2%) 4 (30.8%) <0.001
Pack years, median (QI, Q3) 33 (15, 63) 5.9 (2.0, 27.0) 0.103
Post-bronchodilator FEV, (%predicted), mean * SD 54.0 + 15.8 105.1 £9.8 <0.001
Post-bronchodilator FEV/FVC ratio (%), median (QI, Q3) | 53.0 (42.7, 62.7) 82 (74, 87) <0.001
mMRC score, median (QI, Q3) 3 (1,4) n=48 NA -
GOLD stage | | Il | ] IV, n (%) 4 (5.6%) |39 (54.2%) |26 (36.1%) |3 (4.2%) NA
GOLD quadrant A|B|C|D, n (%) 7 (15.2%) |15 (32.6%) | 8 (17.4%)|16 (34.8%), n=46 | NA -
Exacerbation prone?, n (%) 32 (45.7%) n=70 NA -
BODE score, median (QI, Q3) 3 (1,6) n=47 NA -
SGRQ, meantSD 45.5 £ 20.2 n=63 NA -
CCl score, median (QI, Q3) 43,5) 0(0,2) <0.001
HADS score, median (Ql, Q3) 10 (6, 14) NA -
ICS use, n (%) 65 (93%) NA -
ICS total daily dose® (ug/d), median (QI, Q3) 500 (400, 500) NA -
Sputum total cell count (x10%/mL), median (QI, Q3) 5.3 (3.1,9.9) n=69 3.3 (1.8,4.5) n=12 0.016
Sputum neutrophil (%), median (QI, Q3) 63.9 (46, 81.5) n=70 28.9 (10.5, 44.7) n=14 | <0.001
Sputum neutrophils (x10%/mL), median (QI, Q3) 3.2 (1.1, 6.3) n=69 0.5 (0.3, 1.3) n=12 <0.001
Sputum eosinophil (%), median (QI, Q3) 1.5 (0.7, 3.3) n=70 0.4 (0.0, 0.75) n=14 <0.001
Sputum eosinophils (x10%/mL), median (QI, Q3) 0.08 (0.03, 0.20) n=69 0.005 (0.00, 0.02) n=12 | <0.001
Sputum macrophage (%), mean+SD 31.7 £ 20.6 n=69 55.6 = 21 n=10 0.001
Sputum macrophages (x10%/mL), median (QI, Q3) 1.40 (0.87, 215.9) n=68 1.59 (0.80, 2.21) n=10 | 0.811
Serum CRP (m/L), median (QI, Q3) 3.0 (1.9, 8.8) n=35 - -

Notes: *Exacerbation prone: 22 exacerbations in the previous year; °ICS dose calculated as beclomethasone equivalents where | g of beclomethasone =1 pg budesonide =0.5
g fluticasone.

Abbreviations: BMI, body mass index; FEV, forced expiratory volume in | second; FVC, forced vital capacity; mMRC, modified Medical Research Council; GOLD, Global
Initiative for Chronic Obstructive Lung Disease; BODE, body mass index, airflow obstruction, dyspnea, exercise capacity; SGRQ, St George Respiratory Questionnaire; CClI,
Charlson Comorbidity Index; HADS, Hospital Anxiety and Depression Scale; ICS, inhaled corticosteroids; CRP, C-reactive protein; SD, standard deviation.

[CCI] score) and lower lung function. Both percentage and proportion of sputum neutrophils and eosinophils as well as total
cell counts were significantly higher in COPD patients compared to healthy controls. On the contrary, percentage sputum
macrophage was significantly lower in COPD participants. Details of differences between COPD and healthy controls gene
expression profiles are provided in the Results Section Of Supplementary Material (Tables S1 and S2).

Unsupervised Hierarchical Clustering of Sputum Gene Expression Profiles in COPD
Unsupervised hierarchical clustering of gene expression profiles showed 2 clear clusters that were quite even with 35
(48.6%) participants in the first cluster and 37 participants in the second cluster (51.4%) (Figure 1). The two clusters
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Figure | Phenotypes of COPD identified from unsupervised hierarchical clustering of gene expression profiles (18,51 entities). This approach groups expression profiles
that are similar which are joined together to form this tree structure. The root of the tree consists of a single cluster containing all samples, and the leaves correspond to the

individual sample profiles, which separate into 2 main clusters and 4 sub-clusters.

further divide into two distinct sub-clusters each. There were 14 (40%) participants in sub-cluster 1.1 and 21 (60%) in

sub-cluster 1.2. Sub-clusters 2.1 and 2.2 had 20 (54%) and 17 (46%) participants, respectively.

Clinical Characteristics of Transcriptional Phenotypes of COPD
The clinical characteristics of the transcriptional COPD phenotypes are described in Table 2. Overall, the proportion of

participants in each cluster was comparable and both groups were of similar age and sex. Compared to cluster 1, cluster 2

Table 2 Clinical Characteristics and Sputum Cell Counts of the Transcriptional COPD Phenotypes

Cluster | (n=35) Cluster 2 (n=37) p-value

Age (years), median (QI, Q3) 70 (64, 75) 70 (65, 77) 0.628
Sex (female), n (%) 18 (51.4%) 16 (43.2%) 0.323
BMI (kg/m?), median (QI, Q3) 29 (27.2, 34.2) 26.3 (22.9, 324) 0.059
Ex-smokers, n (%) 25 (71.4%) 32 (86.5%) 0.151
Pack years, median (QI, Q3) 32.3 (16.0,47.0) 36 (14.5, 79) 0.368
Post-bronchodilator FEV, (%predicted), median (QI, Q3) 58 (50, 68) 47 (37, 61) 0.014
Post-bronchodilator FEV,/FVC ratio (%), median (Ql, Q3) 58.7 (49.3, 64.6) 51.3 (40.1, 55.3) 0.035
mMRC score, median (QI, Q3) 2 (1,3) 3(2,4) 0.035
GOLD stage, n (%) 0.009

I 2 (5.7%) 2 (5.4%)

I 25(71.4%) * 14(37.8%)

n 8 (22.9%) 18 (48.7%) *

v 0 3 (8.11%)
GOLD quadrant, n (%) N=24 N=22 0214

A 6 (25%) | (4.6%)

B 8(33.3%) 7 (31.8%)

Cc 4 (16.7%) 4 (18.2%)

D 6 (25%) 10 (45.4%)

(Continued)
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Table 2 (Continued).

Cluster | (n=35) Cluster 2 (n=37) p-value

Exacerbation prone®, n (%) 7 (20%) 13 (35.1%) 0.121
BODE score, n (%) 3(1, 4.5) n=24 5(2,6) n=23 0.062
SGRQ, mean * SD 43.5+21.7 n=33 47.6+18.6 n=30 0.422
CClI score, median (QI, Q3) 43,4 4(3,5) 0.606
HADS total score, median (QI, Q3) 10 (5, 12) n=25 Il (7, 18) n=23 0.219
ICS use, n (%) 30 (85.7%) 35 (94.6%) 0912
ICS total daily dose® (ug/d), median (QI, Q3) 500 (400, 500) 500 (250, 500) 0.773
Sputum total cell count (x10%mL), median (QI, Q3) 4.7 (2.5, 9.9) 6.6 (3.2, 10.9) n=34 0.269
Sputum neutrophil (%), median (QI, Q3) 54.3 (35.8, 75.3) 68.0 (52.0, 86.5) n=35 0.031
Sputum neutrophils (x10%/mL), median (QI, Q3) 2.4 (0.9, 6.2) 4.6 (1.1, 82) n=34 0.080
Sputum eosinophil (%), median (QI, Q3) 1.3 (0.50, 3.3) 1.8 (1.0, 3.3) n=35 0.381
Sputum eosinophils (x10¢/mL), median (QI, Q3) 0.07 (0.02, 0.18) 0.10 (0.03, 0.30) n=34 0.262
Sputum macrophage (%), mean * SD 374 £202 25.8 = 19.5 n=34 0.018
Sputum macrophages (x10%/mL), median (QI, Q3) 1.51 (1.00, 2.32) 1.20 (0.53, 2.09) n=33 0.259
Serum CRP, median (QI, Q3) 3.0 (1.4, 8.0) n=29 3.3 (2.5, 11.4) n=32 0.308
Comorbidities

Other respiratory diseases, n (%) 22 (62.9%) 19 (51.4%) 0.228
Cardiovascular diseases, n (%) 25 (71.4%) 19 (51.4%) 0.066
Gastrointestinal diseases, n (%) 17 (48.6%) 14 (37.8%) 0.248
Metabolic disorders, n (%) 17 (48.6%) 19 (51.4%) 0.500
Musculoskeletal diseases, n (%) 18 (51.4%) 13 (35.1%) 0.123
Cancer, n (%) 8 (22.9%) 7 (18.9%) 0.451
Psychiatric disorders, n (%) 10 (28.6%) 8 (21.6%) 0.341
Hepatobiliary and pancreatic diseases, n (%) 3 (8.6%) 2 (5.4%) 0.473
Neurological conditions, n (%) 4 (11.4%) 1 (2.7%) 0.162
Blood disorders, n (%) 5 (14.3%) 3 (8.1%) 0.324
Urological diseases, n (%) 6 (17.1%) 5 (13.5%) 0.460
Eye diseases, n (%) 6 (17.1%) 13 (35.1%) 0.071
Skin disorders, n (%) 5 (14.3%) 5 (13.5%) 0.596
Reproductive diseases, n (%) 2 (5.7%) 3 (8.1%) 0.527
Venous diseases, n (%) 0 1 (2.7%) 0514

Notes: *Exacerbation prone: 22 exacerbations in the previous year; ®ICS dose calculated as beclomethasone equivalents where | pg of beclomethasone
=1 pg budesonide = 0.5 pg fluticasone; *Fisher's exact test p = 0.008.

Abbreviations: BMI, body mass index; FEV,, forced expiratory volume in | second; FVC, forced vital capacity; mMRC, modified Medical Research
Council; GOLD, Global Initiative for Chronic Obstructive Lung Disease; BODE, body mass index, airflow obstruction, dyspnea, exercise capacity; SGRQ,
St George Respiratory Questionnaire; CCl, Charlson Comorbidity Index; HADS, Hospital Anxiety and Depression Scale; ICS, inhaled corticosteroids;
CRP, C-reactive protein; SD, standard deviation.
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Figure 2 Differences in (A) lung function (forced expiratory volume in | second [FEV,]) and (B) proportion of people with comorbid cardiovascular disease between the
four Sub-clusters I.1, 1.2, 2.1 and 2.2.
Notes: *Kwallis2 p = 0.002 vs Sub-cluster 1.2, **Fisher's exact test p < 0.013 vs Sub-clusters 1.2, 2.1 and 2.2.

exhibited worse lung function, more severe disease (higher proportion of GOLD stage 3 and 4), more severe breath-
lessness (higher mMRC score), increased proportion of sputum neutrophils, and decreased proportion of macrophages.
There were no relevant differences in health status, pack-years exposure, CCI, anxiety and depression score, ICS use and
other measured inflammatory markers between the two clusters. Although not statistically significant, participants in
Cluster 2 had slightly higher BODE score, lower BMI, and fewer proportion of people with comorbid cardiovascular
diseases compared to those in cluster 1. There were more people with comorbid eye disease in Cluster 2 compared to
Cluster 1, even though this did not reach statistical significance.

Differences in clinical characteristics and sputum cell counts between the sub-clusters are shown in Table S3 in
Supplementary Information. The parameters that were significantly different between the four sub-clusters were lung

function (FEV,) and proportion of people with cardiovascular disease (CVD) comorbidity only (Figure 2).

Differential Gene Expression Associated with Key Clinical and Inflammatory

Differences Driving Transcriptional Clusters

To further investigate the mechanisms underlying the transcriptional clusters, a supervised analysis was performed to
analyze differences in gene expression between GOLD stage groupings, GOLD quadrant groupings, BODE index
quartiles, presence of breathlessness, history of exacerbation, eosinophilic airway inflammation, neutrophilic airway
inflammation, and the presence of comorbidities and systemic inflammation. Out of these comparisons, it was only
GOLD stage that had differentially expressed genes identified based on our strict statistical criteria. Given this, worsening
lung function appears to be the main significant driver responsible for the shifts in sputum transcriptional profiles of
COPD that lead to our cluster groupings.

Clinical Features, Inflammatory Characteristics, and Differential Gene Expression
Between GOLD Stages

We performed comparisons of clinical features and inflammatory characteristics between GOLD stage 3 and 4 against
GOLD stage 1 and 2 (Table 3). GOLD stages were grouped into two groups for the comparison as there were small
number of participants in GOLD stage 1 (n = 4) and GOLD stage 4 (n = 3). As shown in Table 3, smoking history,
mMRC and BODE scores were significantly different clinical parameters between the two GOLD stage groupings.
GOLD stage 3 and 4 participants had significantly higher percentage neutrophil counts, but lower absolute number and
proportion of sputum macrophages when compared to their GOLD stage 1 and 2 counterparts.
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Table 3 Clinical Features and Inflammatory Characteristics of Study Participants Categorised by 2 GOLD Stage Groupings

GOLD Stage | and 2 (n=43) | GOLD Stage 3 and 4 (n=29) | p-value
Age (years), median (QI, Q3) 71 (64, 75) 69 (65, 76) 0.662
Sex (female), n (%) 2| (48.8) 13 (44.8) 0.812
Weight (kg), mean * SD 80.9+17.1 79.6122.5 0.784
BMI (kg/m?), median (QI, Q3) 28.9 (254, 32.9) 26.3 (23.3, 33.8) 0.370
Ex-smokers, n (%) 30 (69.8) 27 (93.1) 0.019
Pack years, median (QI, Q3) 35.2 (14.0, 63.0) n=30 33.0 (15.0, 66.5) n=27 0.755
Post-bronchodilator FEV, (%predicted), median (QI, Q3) | 62.0 (56.0, 73.0) 39.0 (32.0, 45.0) <0.001
Post-bronchodilator FEV,/FVC (%), median (QI, Q3) 60.0 (52.2, 66.4) 42.8 (36.9,51.2) <0.001
mMRC score, median (QI, Q3) 2 (I, 3) n=27 3 (2, 4) n=21 0.033
Exacerbation prone?, n (%) 18 (42.9) n=42 17 (60.7) n=28 0.222
BODE score, median (Ql, Q3) 2 (0, 3) n=27 6 (3, 6.5) n=20 <0.001
SGRQ, mean * SD 46.1%19.4 n=37 44.5+21.8 n=26 0.764
CCl score, median (QI, Q3) 4(3,5) 4(3,5) 0.763
HADS score, median (QI, Q3) 95 14) I (7, 13) 0.588
ICS use, n (%) 37 (86.1) 28 (96.6) 0.230
ICS total daily dose® (ug/d), median (QI, Q3) 500 (250, 500) n=37 500 (500, 500) n=28 0.629
Sputum total cell count (x10°cells/mL), median (QI, Q3) 4.9 (3.0, 9.5) n=42 5.7 (3.1, 11.0) n=27 0.547
Sputum neutrophil (%), median (QI, Q3) 54.8 (43.5, 71.0) n=42 76.8 (50.8, 86.1) n=28 0.036
Sputum neutrophil (x10¢/mL), median (QI, Q3) 2.7 (1.0, 6.0) n=42 34 (1.2, 82) n=27 0.357
Sputum eosinophil (%), median (QI, Q3) 1.5 (0.8, 3.3) n=42 1.5 (0.5, 3.0) n=28 0.848
Sputum eosinophil (x10%/mL), median (QI, Q3) 0.07 (0.04, 0.22) n=42 0.09 (0.02, 0.29) n=27 0917
Sputum macrophage (%), mean * SD 33.3 (17.8, 49.3) n=4I 17.1 (11.5, 29.9) n=28 0.015
Sputum macrophage (x10%/mL), median (Ql, Q3) 1.54 (1.11, 2.32) n=41 1.00 (0.52, 2.09) n=27 0.044
Serum CRP, median (QI, Q3) 3.0 (1.4, 8.0) n=37 3.3 (23, 182) n=24 0.209
Notes: *Exacerbation prone: 22 exacerbations in the previous year; °ICS dose calculated as beclomethasone equivalents where | pig of beclomethasone = | g budesonide

= 0.5 pg fluticasone.

Abbreviations: GOLD, Global Initiative for Chronic Obstructive Lung Disease; BMI, body mass index; FEV/, forced expiratory volume in | second; FVC, forced vital capacity;
mMRC, modified Medical Research Council; BODE, body mass index, airflow obstruction, dyspnea, exercise capacity; SGRQ, St George Respiratory Questionnaire; CCl, Charlson
Comorbidity Index; HADS, Hospital Anxiety and Depression Scale; ICS, inhaled corticosteroids; CRP, C-reactive protein; SD, standard deviation.

There were 4507 out of 23,337 entities significantly differentially expressed between the two GOLD stage groups,
with 758 entities that were >2-fold change (452 genes after removing duplicates and predicted, 189 genes upregulated
and 263 genes downregulated, Table S4 in Supplementary information). A heat map cluster showing the patterns of the

genes significantly differentially expressed between the two GOLD stage groupings can be seen in Figure 3, with healthy
control levels of expression added as a reference. Figure 3 shows the patterns in the gene expression profiles across the 3
groups, with the GOLD stages 3 and 4 being vastly different to the healthy controls and GOLD stage 1 and 2 groupings.

To validate our differentially expressed genes, we further investigated these changes in the ECLIPSE data set
(GSE22148).>” We confirmed that out of the 452 genes with >2-fold change in our data set, 281 genes (62.2%) were
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Figure 3 Heat map cluster showing the pattern of genes differentially expressed in the two GOLD stage groupings and healthy controls with red resembling high expression
and blue showing lower expression.

also found to be significantly differentially expressed (adjusted p < 0.05) between these GOLD stages in the ECLIPSE
data set (Table S4 in Supplementary information). These 281 validated genes, related to 40 GO biological processes

(Table 4) and 5 interaction networks (Figure 4). Biological processes represented by the differentially expressed genes
predominantly related to (i) immune and metabolic processes, (ii) metabolic processes in oxidation/reduction and
mitochondrial function, (iii) antigen processing and presentation, regulation of immune responses, (iv) lipoprotein and
cholesterol metabolism and (v) regulation of complement activation and innate immune responses.

Table 4 Gene Ontology Categories Significantly Overrepresented in the 281 Overlapping Genes

GO Accession Gene Ontology Number of Entities Adjusted p-value
GO:0019884 Antigen processing and presentation of exogenous antigen 14 9.33E-05
G0O:0002478 Antigen processing and presentation of exogenous peptide antigen 14 6.23E-05
GO:0009056 Catabolic process 64 3.36E-07
GO:0001775 Cell activation 45 1.80E-08
GO:0002263 Cell activation involved in immune response 37 1.00E-10
GO:0044248 Cellular catabolic process 55 8.61E-06
GO:0044255 Cellular lipid metabolic process 35 7.14E-05
GO:0045333 Cellular respiration 14 3.52E-05
GO:0051186 Cofactor metabolic process 24 6.21E-06
G0:0022900 Electron transport chain 14 8.36E-05
GO:0051234 Establishment of localization 11 2.98E-07
GO:0006887 Exocytosis 44 0.00E+00
(Continued)
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Table 4 (Continued).

GO Accession Gene Ontology Number of Entities Adjusted p-value
GO:0140352 Export from cell 48 1.00E-10
GO:0006091 Generation of precursor metabolites and energy 23 1.06E-05
GO:0036230 Granulocyte activation 36 0.00E+00
GO:0002252 Immune effector process 49 2.00E-10
GO:0006955 Immune response 64 6.50E-09
G0:0002376 Immune system process 78 3.39E-07
GO:0045321 Leukocyte activation 42 7.50E-09
G0O:0002366 Leukocyte activation involved in immune response 37 1.00E-10
GO:0043299 Leukocyte degranulation 36 0.00E+00
GO:0002443 Leukocyte mediated immunity 42 0.00E+00
GO:0006629 Lipid metabolic process 42 1.76E-05
GO:0051179 Localization 121 4.97E-05
GO:0008152 Metabolic process 162 4.29E-05
G0:0002275 Myeloid cell activation involved in immune response 36 0.00E+00
G0:0002274 Myeloid leukocyte activation 37 0.00E+00
GO:0002444 Myeloid leukocyte mediated immunity 36 0.00E+00
GO:0042119 Neutrophil activation 36 0.00E+00
G0O:0002283 Neutrophil activation involved in immune response 36 0.00E+00
GO:0043312 Neutrophil degranulation 36 0.00E+00
G0O:0002446 Neutrophil mediated immunity 36 0.00E+00
GO:1901575 Organic substance catabolic process 55 5.45E-06
GO:0055114 Oxidation-reduction process 37 1.06E-05
GO:0045055 Regulated exocytosis 44 0.00E+00
GO:0046903 Secretion 48 1.60E-09
G0:0032940 Secretion by cell 46 5.00E-10
GO:0044281 Small molecule metabolic process 59 8.11E-08
GO:0006810 Transport 11 5.64E-08
GO:0016192 Vesicle-mediated transport 64 3.88E-08
Discussion

This study demonstrates the use of unsupervised hierarchical clustering of induced sputum gene expression profiles to
identify 2 main clusters and 4 sub-clusters in the studied population. The 2 distinct transcriptional COPD phenotypes
relate to both clinical characteristics (lung function and breathlessness) and the type of airway inflammation present
(sputum neutrophils). Cluster 1 was characterized by less severe lung function and breathlessness. Cluster 2, on the other
hand, was neutrophil-enriched group with worsened airflow obstruction, more severe disease and breathlessness, and
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Figure 4 Five protein—protein interaction networks (A-E) among the 281 overlapping differentially expressed genes between our data and the ECLIPSE data set. Network
A contains |10 genes relating to lipoprotein and cholesterol metabolism. Network B containing |6 genes relates to metabolic processes in oxidation/reduction and
mitochondrial function. Network C contains 10 genes relating to antigen processing and presentation, regulation of immune responses (including T cells, neutrophils).
Network D, with 5 genes, shows a network relating to regulation of complement activation and innate immune responses. Network E is the largest containing 25 genes
relating to immune and metabolic responses.

lower proportion of macrophages. With regard to the sub-clusters, interestingly, sub-cluster 1.1 had significantly higher
proportion of people with comorbid cardiovascular disease compared to the remaining 3 sub-clusters. Through super-
vised analysis we determined that the predominant factor driving gene expression differences in our transcriptional
clusters was lung function (GOLD stage). There were 452 genes (adjusted p < 0.05 and >2 fold) altered in GOLD stage 3
and 4 versus 1 and 2. Out of the 452 genes, 281 (62%) were also significantly differentially expressed between the two
GOLD groupings in the ECLIPSE data set. Of importance, the validated differentially expressed genes connected in 5
networks and related to the following themes (i) lipoprotein and cholesterol mechanism (including APOE, APOC1 and
SCD), (ii) metabolic processes in oxidation/reduction and mitochondrial function (NDUFs), (iii) antigen processing and
presentation (including HLA complexes (MHC class II)), (iv) regulation of complement activation and innate immune
responses (C1Qs) and (v) immune and metabolic processes (including PSMAS, PSMC2 and PSMDB6).

The past decade in the COPD arena has seen an enormous interest in personalized, precision medicine. To this end,
the use of techniques such as cluster analysis to identify groups of COPD patients with similar clinical or physiological
characteristics has been the focus of studies.®® For instance, in a study that utilized hierarchical cluster analysis of
clinical, functional and imaging data of stable COPD patients, Burgel et al*? identified 3 distinct phenotypes of COPD
with varying COPD severity and risk of mortality. Garcia-Aymerich et al* also identified three clusters of COPD,
namely moderate, severe and systemic COPD. Studies that have utilized cluster analysis integrating genetic** or

154547 in COPD cohorts, like ours, have great benefit in that they provide the opportunity to

transcriptomic data
analytically and jointly assess COPD-related clinical characteristics, comorbidities, and biomarker data to strengthen
the robustness of the COPD phenotypes as well as to better understand the underlying biological mechanisms of the
condition.”® Our study has linked transcriptomic profiles underlying 2 main COPD clusters, and with thorough
investigations we identified the main driving factor to these differences in airway gene expression patterns being the

degree of lung function impairment. A better understanding of phenotypes of COPD on a deep cellular and molecular
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level will lead to the development of more targeted strategies for personalized COPD treatment and management. This
study has increased the knowledge base on potential mechanistic themes further underlying lung function impairment
that warrant further investigation as targets for potential intervention.

In our study, there were several mechanistic themes uncovered through network analysis associated with potential
importance to lung function impairment in COPD. These themes were largely related to immune (ie, antigen presentation,
complement and innate immune responses) and metabolic processes (ie, lipoprotein and cholesterol metabolism, oxidation/
reduction and mitochondrial function). Of interest, all genes in the networks were downregulated in GOLD stages 3 and 4
compared with GOLD stages 1 and 2. This implies that as COPD worsens, there is a shift in gene expression that is
downregulation of some important immune and metabolic functions within the cells of the airway lumen.

Antigen presentation serves to ensure adaptive immune responses are initiated to invading microorganisms.*®
Dysfunction of this vital immune response may lead to increased susceptibility to viral infection and bacterial coloniza-
tion, which would lead to increased inflammation. HLA-complexes corresponding to MHC Class II were one of the top
downregulated class of genes with worsening of GOLD stage. MHC Class II receptors are involved in the presentation of
antigens to CD4(+) T-lymphocytes, and thereby are critical for the initiation of the antigen-specific immune response.*’
Previously we have reported the association of low-dose azithromycin treatment with the downregulation of several
human HLA molecules in the airways of neutrophilic COPD patients, resulting in suppression of inflammatory response
most likely by limiting the immune system’s capacity to identify and respond to antigen.?>

Our analysis also shows that genes in the complement pathway including C1Q are highly altered. C1Q is a pattern
recognition protein that is involved in the recognition and clearance of apoptotic cells. C1Q also directs macrophage
polarization and limits inflammasome activity during the uptake of apoptotic cells.”® Defect in these key macrophage
functions contribute to dysregulated resolution of the downstream inflammatory responses and impaired tissue repair.”'
Recently, Akata et al’' have shown reduced gene expression of the complement components CIQA and C1QB in non-
polarized macrophage cells isolated from BAL liquids of stable COPD patients. An earlier study by Yuan et al’” has
shown that cigarette smoke downregulates C1Q produced by antigen-presenting cells isolated from emphysematous
humans, and that it relates with the severity of lung obstruction, which is in line with our findings.

Macrophages constitute a heterogeneous cell population, and pro-inflammatory M1 and anti-inflammatory M2 and
M2-like cells represent the extremities of a pattern of macrophage polarization.>® Studies in the literature have shown that
both of these macrophage functions are altered in COPD.> In relation to this, our analysis demonstrated that genes
previously shown to be involved in macrophage polarization, either in COPD or other inflammatory diseases, were
downregulated, along with a lower proportion of sputum macrophages. These genes included peroxisome proliferator
activated receptor gamma (PPARG)* and the CD74 molecule. The PPARs are known to be involved in the regulation of
inflammation and lipid metabolism, important in asthma and COPD.>> A recent transcriptomic study of asthma-COPD
overlap (ACO) has reported a cluster of ACO that had features of mitochondria and peroxisome dysfunction.’® Certainly,
the relationship between mitochondrial function, peroxisomes, oxidative stress and inflammation in COPD warrants
further investigation in its role in lung function decline.

Another interesting finding within our 4 identified subclusters was the increased rate of cardiovascular comorbidities
in sub-cluster 1.1, with 93% of participants within this cluster having cardiovascular conditions. Garcia-Aymerich et al*®
also identified a systemic COPD cluster that exhibited high rates of cardiovascular comorbidities, in keeping with our
sub-cluster 1.1. COPD and cardiovascular disease frequently occur together, and the coexistence of these conditions may
impact disease risk and prognosis.”” On differential gene expression analysis between GOLD stages, we also note that
genes related to lipoprotein and cholesterol metabolism are higher in the GOLD stage 1 and 2 group compared with the
more severe GOLD stage 3 and 4. One of the differentially expressed genes in this network was apolipoprotein
E (APOE). APOE plays a critical role in lipid metabolism and has been linked to cardiovascular diseases.”® Of note,
in our string-network (Figure 4A), APOE is connected with ABCG1. ABCG1 is a member of the superfamily of ATP-
binding cassette (ABC) transporter, which is expressed in a number of tissues including lung and involved in movement
of cholesterol and phospholipids.>® Results obtained from mouse models have shown that ABCG1 plays a critical role in

maintaining cellular lipid homeostasis and controlling pulmonary inflammation. As such, understanding the relationship
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between cholesterol and inflammation in the lung, and the role that ABC transporters like ABCGI play in this may lead
to the identification of new treatment targets.®

Our study does have limitations, including a small sample size which will need to be further explored in a larger
COPD cohort. However, our lung function differential gene expression findings were validated in a second cohort of
COPD and led to identification of key immune and metabolic themes for future investigation. The smaller sample size
limited the analysis for the comparison of sub-clusters may have been underpowered. RNA was extracted from mixed
cell populations in sputum with bulk RNA-transcriptomic profiles generated, and thus groupings may reflect cell
populations present, and signals from rare cell populations will potentially be missed. The majority of our population
was taking inhaled corticosteroids, which may impact cell activity and transcription, and may limit the extension of the
findings to patients with COPD that are not taking these medications.

Conclusion

In summary, this study has found that gene expression profiling provides a means to investigate the molecular
mechanisms and classifications of COPD phenotypes. We identified 2 main clusters and 4 sub-clusters of COPD that
relate to important differences in clinical characteristics, inflammatory cells, gene expression, and metabolic and immune
function pathways. We found one cluster that was neutrophil-enriched with more severe disease and breathlessness. In
our studied population, we have also found a sub-cluster of COPD that had high rates of cardiovascular comorbidity. The
most significant characteristics that was driving the transcriptional phenotypes of our study population was the degree of
lung function impairment, classified by GOLD stage. Differences between GOLD stages were largely related to genes
involved in lipoprotein and cholesterol mechanism, metabolic processes in oxidation/reduction and mitochondrial
function, antigen processing and presentation, regulation of complement activation and innate immune responses and
immune and metabolic processes. The clinical relevance of our work lies in the fact that it has the potential to assist in
clinical investigations of the underlying aetiology of COPD and in guiding effective treatment strategies given that it
incorporates not only clinical, inflammatory cell, and comorbidity data but also molecular aspects of COPD.
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