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Objective: To develop a radiomics nomogram model based on time-of-flight magnetic resonance angiography (TOF-MRA) images 
for preoperative prediction of true microaneurysms.
Methods: 118 patients with Intracranial Aneurysm Sac (40 positive and 78 negative) were enrolled and allocated to training and 
validation groups (8:2 ratio). Findings of clinical characteristics and MRA features were analyzed. A radiomics signature was built on 
the basis of reproducible features by using the least absolute shrinkage and selection operator (LASSO) regression algorithm in the 
training group. The radiomics nomogram model was constructed by combining clinical risk factors and radiomics signature. In order to 
compare the classification performance of clinical models, radiomics model and radiomics nomogram model, AUC was used to 
evaluate them. The performance of the radiomics nomogram model was evaluated by calibration curve and decision curve analysis.
Results: Eleven features were selected to develop radiomics model with AUC of 0.875 (95% CI 0.78–0.97), sensitivity of 0.84, and 
specificity of 0.68. The radiomics model achieved a better diagnostic performance than the clinic model (AUC = 0.75, 95% CI: 0.53– 
0.97) and even radiologists. The radiomics nomogram model, which combines radiomics signature and clinical risk factors, is effective 
too (AUC = 0.913, 95% CI: 0.87–0.96). Furthermore, the decision curve analysis demonstrated significantly better net benefit in the 
radiomics nomogram model.
Conclusion: Radiomics features derived from TOF-MRA can reliably be used to build a radiomics nomogram model for effectively 
differentiating between pseudo microaneurysms and true microaneurysms, and it can provide an objective basis for the selection of 
clinical treatment plans.
Keywords: machine learning, radiomics, microaneurysms, nomogram

Introduction
Intracranial aneurysm (IA) is an acquired cerebrovascular disorder characterized by thinning and localized dilation of the wall 
of the intracranial artery due to weakness of the inner cortex. The incidence of intracranial aneurysm is 2–5%.1 The etiology of 
intracranial aneurysms is still unclear. A large number of clinical studies have found that this may be related to an increase in 
local intraluminal pressure of intracranial arterial walls or congenital defects, as well as the occurrence and development of 
cerebral arteriosclerosis, hypertension, aneurysm and vasculitis. The prevalence of unruptured cerebral aneurysms in the adult 
population is about 1–6%, and in the asymptomatic population with the average age of 50, the prevalence of unruptured 
cerebral aneurysms is about 3%.1 There is no obvious discomfort when the intracranial aneurysm is not ruptured in its early 
stages. It is easy to be ignored by the patient and will lead to missed diagnosis or misdiagnosis. Once the intracranial aneurysm 
ruptures, it will cause death, disability and other serious consequences, which will seriously threaten the patients’ life. The 
incidence of intracranial aneurysm rupture is 25–50%, with high mortality and disability rate.
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The concept of tiny intracranial aneurysms (TIA) was first proposed by Yasargil and Fox,2 which refers to aneurysms 
with diameter ≤3 mm, also known as infant aneurysms, accounting for 13.2–15.1% of all intracranial aneurysms.3,4 RTIA 
(ruptured tiny intracranial aneurysms) account for 6–7% of all ruptured intracranial aneurysms.5,6

A prospective study in China shows that there is a high incidence rate and risk of rupture of intracranial micro-
aneurysms. And there are more common anterior communicating artery aneurysms of ruptured microaneurysms, 
indicating that tiny anterior communicating artery aneurysms have a high risk of rupture.

Therefore, even microaneurysms have a high risk of rupture (especially anterior communicating microaneurysms). So 
early and accurate diagnosis of intracranial aneurysms (including microaneurysms) and guidance of clinical treatment are 
particularly important for improving the prognosis of patients.

At present, the clinical diagnostic methods for intracranial aneurysms are computed tomography (CT), magnetic 
resonance (MR) and digital subtraction angiography (DSA). DSA is the most reliable method for the diagnosis of 
intracranial aneurysms as the gold standard. However, its clinical application is limited due to its high technical 
requirements, relatively complex operation, high cost and invasive examination.

MRA is safer and simpler because it does not need to inject contrast agents, so it becomes the first choice for most 
patients. However, microaneurysms are difficult to detect in general MRA examination not only because of the tiny 
diameter and different shape and size of microaneurysms but also because they are located on intracranial vessels with 
complex vascular morphology, which will be prone to lead to missed diagnosis and misdiagnosis. Therefore, there is an 
urgent need for an accurate, comprehensive and non-invasive analysis method for the early differential diagnosis of 
intracranial microaneurysms. Time-of-flight magnetic resonance angiography (TOF-MRA) technology has become one 
of the most commonly used image modes in routine physical examination and outpatient screening due to its character-
istics of non-invasive imaging and without contrast agent.

However, the traditional artificial feature design cannot fully reflect the focus characteristics of intracranial micro-
aneurysms. In recent years, the emerging artificial intelligence methods, including imaging omics and deep learning 
technology, can accurately detect and segment the focus area and extract the high-throughput features contained in the 
image and describe the heterogeneity of aneurysms. Compared with traditional medical images, it has the advantages of 
high-throughput, quantification, fast calculation speed and high precision, which makes it possible for accurate quanti-
tative analysis of intracranial microaneurysm images.

In this study, non-invasive TOF-MRA images were used as the basic input information, and imaging omics 
technology was used as a new auxiliary analysis method to conduct standardized in-depth mining and dynamic 
quantitative analyses of image features for small intracranial aneurysms, so as to reveal the relationship of lesion 
properties corresponding to different imaging manifestations. We explored the dominant features highly correlated with 
intracranial microaneurysms and built a differential diagnosis model for intracranial microaneurysm based on imaging 
features. We established and compared the predictive effects of clinical risk factors, radiomics characteristics, and 
radiomics nomogram models, and selected the best method for predicting microaneurysms to help develop treatment 
strategies and prolong patient survival.

Materials and Methods
Patient Population and Data Acquisition
A retrospective analysis was performed on the data of patients who met the following inclusion and exclusion criteria and were 
enrolled between June 2019 and December 2020. Inclusion criteria: (1) Chemotherapy, radiotherapy, surgical resection and 
aneurysm embolization were not performed before MRA examination of intracranial aneurysms. (2) Digital silhouette 
angiography (DSA) is performed. (3) Image quality, shooting angle and environment are in line with diagnostic standards. 
Exclusion criteria: (1) No DSA examination; (2) The image quality is poor, and the shooting is unqualified.

Based on the inclusion and exclusion criteria, a total of 118 patients (46 men and 72 women; mean age: 60.2 years ± 
11.5; range: 46–82 years) were included in this study. According to the results of DSA, 118 microaneurysms were 
divided into 40 true microaneurysms and 78 pseudo microaneurysms. The patient recruitment workflow is shown in 
Figure 1.
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Data Acqusition and Image Segmentation
3.0T MR equipment was used for examination, including T1, T2, DWI, T2 dark fluid and TOF MRA sequences. The 
TOF MRA sequence was included as basic input information, and its parameters were as follows: tr:22ms, te:3.69ms, 
td:0ms, fa:20, voxel size: 0.3*0.3*0.6ms.

All the images were exported from the PACS system and imported into a radiomics cloud platform V.3.1.0. Only one typical 
microaneurysm lesion was labeled for each patient. The lesions were manually delineated on the reconstructed images with 
a slice of 1mm by two independent radiologists (approximately 3 and 5 years of experience in radiology, respectively). Regions 
of interest (ROIs) were manually depicted along the margin of lesion on MRA sequence by two radiologists independently 
(Figure 2). Inter- and intra-class correlation coefficients (ICCs) were used to assess the intra-observer reproducibility and inter- 
observer reliability of feature extraction. There was a good agreement with the feature extraction if the ICC value >0.8.

Figure 1 Patient recruitment workflow. In total, 118 out of 147 patients were included according to the inclusion and exclusion criteria. The included patients had complete 
clinical information needed for the study.

Figure 2 Regions of interest (ROIs) manually depicted along the margin of lesion on MRA sequence by two radiologists independently. The case is a 54-year-old woman with 
true microaneurysms. ROIs manually depicted along the margin of tumor on MRA sequences by two different radiologists with 3 years’ (A) and 5 years’ experiences (B) in 
radiology diagnosis independently.
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Radiomics Feature Extraction and Feature Selection
Radiomics feature extraction was performed on the Radcloud platform for the lesion ROI. The radiomics features were 
divided into four groups: (a) Shape features, (b) first-order statistics features, (c) texture-based features, and (d) high- 
order features.

Radiomics features in the training group were selected using the subsequent process. Variance is used to evaluate the 
divergence of features. The larger the variance, the more dispersed a feature is, and the more useful it is for sample 
classification. First, according to the threshold value, features with a variance value of >0.8 were selected. In SelectKBest 
analysis, Chi-square test was used for categorical variables, and variance analysis (f_classif) was used for continuous 
variables. Then, since features were continuous variables, we selected features with a P value less than 0.05 based on 
variance analysis method. Finally, the least absolute shrinkage and selection operator (LASSO) method was used to identify 
the best alpha (α) and obtain the most useful radiomics features for the differentiation of true microaneurysms from pseudo 
microaneurysms. The LASSO method was used to obtain useful radiomics features for developing radiomics models. The 
useful radiomics signatures and their corresponding coefficients were used to calculate the radiomics score (Rad-score) for 
each patient. The formula can be seen in Supplementary Formula 1.

After feature selection, considering the correlation between features, since our features did not obey binary normal 
distribution, so spearman feature correlation analysis was used to conduct the correlation analysis of the last radiomics 
features, and the optimal image radiomics features were selected to construct the radiomics model.

Construction of the Radiomics Signature
The cases were randomly assigned to the training group and the validation group at a ratio of 8:2. The training group was 
used to establish the diagnostic model, and the validation group was used to verify the efficacy of the model in the 
diagnosis of true and pseudo microaneurysms. Two classification models based on Support Vector Machine (SVM) and 
Logistic Regression (LR) classifiers were constructed to assess the multivariate performance of the optimal features in 
the training of validation group. The Receiver Operating Curve (ROC) analysis was used to illustrate the classification 
performance. The area under the ROC curve (AUC), accuracy, sensitivity, and specificity were calculated. The workflow 
for radiomics analysis included tumor segmentation, feature extraction, feature selection, model construction, model 
analysis, and evaluation (Figure 3).

Development of a Radiomics Nomogram Model and Assessment of the Performance 
of Different Models
The significant variables of both the clinical risk factors and the Rad-score were employed to develop a radiomics nomogram 
model. A calibration plot was performed to assess the calibration and goodness-of-fit of the radiomics nomogram model. The 
prediction performance of the clinical model, radiomics model and the radiomics nomogram for prognosis was estimated based 

Figure 3 Study flowchart of the radiomics analysis.
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on the C-index in both the training and validation groups. The decision curve analysis (DCA) was conducted to assess the net 
benefits for a range of threshold probabilities in the training and validation groups.

Statistical Analysis
Statistical tests were performed using SPSS (version 25.0, IBM) and R statistical software (version 4.1.2, https://www. 
r-project.org). The R script can be seen in Supplementary Formula 1. The Kolmogorov–Smirnov statistical test was used 
to test for the normality in all continuous variables. Analysis of variance was used for normally distributed variables, and 
the Mann Whitney test was used for non-normally distributed variables. To evaluate associations between clinical 
characteristics and malignant risk of tumors, univariate analysis was applied to compare the differences of the clinical 
risk factors between training and validation groups by using the chi-square test or Fisher's exact test for categorical 
variables, and the independent sample T-test Mann–Whitney U-test for continuous variables, were appropriate. The 
“glmnet” package was used to perform the LASSO regression model analysis. Radiomics nomogram development and 
calibration plots were performed using the “rms” package, and the Hosmer-Leme show test was performed using the 
“generalhoslem” package. The DCA was performed using the “dca.R.” package. All tests were two-tailed tests, and P < 
0.05 was considered statistically significant.

Results
Participant Characteristics
Totally 40 pseudomicroaneuysm patients and 78 true microaneurysm patients were included in this study. There was no 
significant difference in age and sex between the training and validation groups (p = 0.431), which indicated that the data 
was randomly distributed. The difference in sex between pseudo microaneuysms and true microaneuysms was no distinct 
(p = 0.732). There was a significant difference in age between pseudomicroaneurysm group and true microaneurysm 
group (Training goup: p < 0.001, Validation goup: p < 0.001), but sex was not significantly different between 
pseudomicroaneurysm group and true microaneurysm group (Training goup: p = 0.230. Validation goup: p = 0.140) 
whether in the training groups or the validation groups. Table 1 shows values of clinical factors between different groups.

Optimal Radiomics Features in the Training Group
We initially extracted 1409 radiomics features from the MRA sequence, and then inter- and intra-class correlation 
coefficients (ICCs) were used to assess the intra-observer reproducibility and inter-observer reliability of feature 
extraction. There was a good agreement with the feature extraction if the ICC value >0.8. We selected 118 features 
with the select K best methods after 1185 radiomics features were saved. Finally, we selected 11 optimal features. Table 2 
shows descriptions of the selected radiomics features with their associated feature group and filter.

Figure 4A shows the mean square error (MSE) of the LASSO algorithm in the feature screening process.

Table 1 Clinical Factors of the Training Groups and Validation Groups

Characteristics Training Group (N = 94) Validation Group (N = 24) P-value

True 
Microaneurysms 

(N = 32)

Pseudo- 
Microaneurysms 

(N = 62)

P-value True 
Microaneurysms 

(N = 8)

Pseudo- 
Microaneurysms 

(N = 16)

P-value

Age, mean [s.d.] 57.3 [17.1] 48.8 [18.6] <0.001a 58.2 [11.9] 51.3 [16.7] <0.001c 0.431e

Sex 0.23b 0.14d 0.732f

Male, N (%) 14 (43.8%) 23 (37.1%) 3 (37.5%) 6 (37.5%)
Female, N (%) 18 (56.2%) 39 (62.9%) 5 (62.5%) 10 (62.5%)

Notes: aTrue microaneurysms vs pseudo microaneurysms (age). bTrue microaneurysms vs pseudo microaneurysms (sex). cTrue microaneurysms vs pseudo microaneurysms 
(age). dTrue microaneurysms vs pseudo microaneurysms (sex). eTraining groups and validation groups (age). fTraining groups and validation groups (sex). There was no 
significant difference in age and sex between training and validation groups (p > 0.05). The difference in sex between pseudo microaneurysms and true microaneurysms was 
not distinct (p > 0.05). There was a significant difference in age between pseudo microaneurysm group and true microaneurysm group (p < 0.05), but sex was not 
significantly different between pseudo microaneurysm group and true microaneurysm group (p > 0.05) whether in the training groups or the validation groups.
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The LASSO regression model adopted 10x cross validation to select the best tuning parameter alpha. Figure 4B 
shows that 11 non-zero coefficient features were obtained by the optimal tuning parameter alpha, and each color line 
represented the change trajectory of each characteristic coefficient. The weight of each feature was provided by LASSO, 

Table 2 Description of the Selected Radiomics Features with Their Associated Feature Group and Filter

Radiomics Feature Radiomics Class Filter Coefficients

Large dependence high gray level emphasis gldm Wavelet-LHL 0.00753352

Large dependence high gray level emphasis gldm Wavelet-HLL 0.01455997

Large dependence high gray level emphasis gldm Wavelet-LLH 0.01285327

Large dependence low gray level emphasis gldm Wavelet-LLL 0.09303980

Kurtosis First order Wavelet-HHH 0.03843786

Kurtosis First order Wavelet-LHH 0.0265117

Gray level nonuniformity glszm Wavelet-LHH −0.0810048

Mean absolute deviation First order Exponential 0.0430440

90 Percentile First order Wavelet-LHL 0.06894337

Kurtosis First order Wavelet-LHL 0.07393454

Small area high gray level emphasis glszm Wavelet-LHH −0.0071280

Notes:118 features with the select K best methods were selected after 1185 radiomics features were saved. Finally, 11 optimal features were 
selected.

Figure 4 The LASSO algorithm on feature select. (A) MSE path; (B) LASSO path; (C) Coefficients in LASSO model. Using LASSO model, 11 features which are correspond 
to the optimal alpha value were selected. (D) Correlation analysis heat map.
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and the coefficient weight of 11 features is shown in Figure 4C and Table 2. The radiomics heat maps for the final 
selected features from the MRA sequence are displayed in Figure 4D.

Classification Models Performance in the Training Group and the Validation Group
The machine learning (ML) classifiers used in this study are LR and SVM. For each classifier, MRA images were 
constructed based on their selected imaging features. Table 3 summarizes the results of the ML-based MRA radiomics 
analysis for discriminating true microaneurysms findings in the training and validation groups. Compared to the SVM 
model, the LR classifier achieved a satisfying performance. The AUC of LR model for diagnose microaneurysm 
accuracy ranged from 0.78 to 0.97 in the validation group compared with 0.42 to 0.86 based on SVM model (AUC: 
0.875 vs 0.641, respectively, p = 0.02). The ROC curves between SVM and LR are shown in Figure 5.

Correlations Between Radiomics Features and Clinical Risk Factors
The logistic regression model was constructed based on the age and Rad-score, after which these two factors from the 
logistic regression model were integrated into the radiomics nomogram. (Figure 6A). The calibration curves for radiomics 
nomogram are shown in Figure 6B and C. Hosmer-Leme show tests indicating good agreement between predicted 
probability and actual occurrence in both the training and validation groups. The decision curve (Figure 6D and E) analysis 
showed that the radiomics nomogram (M3) had a higher overall net benefit in differentiating true microaneurysm from 
pseudo microaneurysm than the clinical model (M1) and the radiomics signature (M2) across the majority of the range of 
reasonable threshold probabilities. There were significant differences among the clinical, radiomics and nomograms models 
in validation group (P = 0.025 and 0.014 for M1 vs M2 and M1 vs M3, respectively).

Table 3 Performance of the SVM and LR Classifiers for the Differential Diagnosis of Microaneurysms

Classification AUC (95% CI) Sensitivity Specificity

Train Val Train Val Train Val

SVM 0.843 (0.75–0.93) 0.641 (0.42–0.86) 0.72 0.56 0.74 0.63

LR 0.929 (0.85–1.00) 0.875 (0.78–0.97) 0.89 0.84 0.75 0.68

Notes: Compared to the SVM model, LR classifier achieved a satisfying performance. The AUC of LR model for diagnose microaneurysm 
accuracy ranged from 0.78 to 0.97 in the validation group compared with 0.42 to 0.86 based on SVM model (AUC: 0.875 vs 0.641, respectively, 
p = 0.02).

Figure 5 ROC curves. (A) ROC curves based on SVM; (B) ROC curves based on LR.
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Diagnostic Performance Compared with Radiologists
In the validation group, the M1, M2 and M3 were used to compare with one radiologists with 3 years of experience. The 
radiologists’ diagnostic performance is listed in Table 4. The radiomics model was better than the simple clinical model 
(p = 0.014), and the nomogram model was better than the single clinical model (p = 0.025), too. There was no significant 
difference between the radiomics model and the radiomics nomogram model in differentiating true and pseudomicroa-
neurysms (p = 0.33). However, the AUC of the nomogram model and the radiomics nomogram model was 0.875 and 
0.913, respectively.

Discussion
In this study, the MRA images of 40 cases of true microaneurysms and 78 cases of pseudo microaneurysms confirmed by 
DSA results were collected. The features were extracted from the images. The LASSO method was used to select and 
reduce the dimensions of 1409 image omics feature groups, and three groups of models were constructed. The first is to 
use a logistic regression classifier to build the rad score model, and the second is to build the clinical model. The third is 
to construct a radiomics nomogram model which combines the clinical risk factors and radiomics signature. AUC was 

Figure 6 The radiomics nomogram and calibration curves for the radiomics nomogram. (A)The radiomics nomogram, combining age and Rad-score, developed in the 
training group. Calibration curves for the radiomics nomogram between training group (B) and validation group (C). Decision curve for the nomogram in the training (D) 
and validation group (E).

Table 4 Diagnostic Performance of Models and Radiologists in Validation Group

Model AUC (95% CI) Sensitivity Specificity P-value

Clinic (M1) 0.750 (0.53–0.97) 0.62 0.63 0.014a

Radiomics (M2) 0.875 (0.78–0.97) 0.84 0.68 0.025b

Radiomics nomogram (M3) 0.913 (0.87–0.96) 0.89 0.78 0.33c

Radiologists (3 year) – 0.72 0.64 –

Notes: aClinic versus Radiomics nomogram, bClinic versus Radiomics, cRadiomics versus Radiomics nomogram. The radiomics model was 
better than the simple clinical model (p = 0.014), and the nomogram model was better than the single clinical model (p = 0.025), too. There 
was no significant difference between the radiomics model and radiomics nomogram model in differentiating true and pseudomicroaneur-
ysms (p = 0.33). But the AUC of nomogram model and radiomics nomogram model was 0.875 and 0.913, respectively.
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used to evaluate the classification performance of the three models: clinical model, radiomics model and radiomics 
nomogram model. The results showed that the model constructed by the features extracted from the radiomics was better 
than the simple clinical model (p = 0.014), and the nomogram model (combining the radiomics signature and clinical risk 
factors) was better than the single clinical model (p = 0.025). However, there was no significant difference between the 
radiomics model (AUC = 0.875) and nomogram model (AUC = 0.913) in differentiating true and pseudo microaneur-
ysms (p = 0.33) when we compared with AUC of the two groups, but the decision curve analysis demonstrated 
significantly better net benefit in the radiomics nomogram model than the radiomics model, which indicated that 
radiomics nomogram model was more effectively in differentiating pseudo microaneurysms and complicated true 
microaneurysms than radiomics model, so it has better clinical practicability in identifying patients with true 
microaneurysms.

The sensitivity of TOR-MRA in detecting aneurysms is considered to be related to the size of aneurysms. Some 
studies have shown that for intracranial aneurysms with a diameter greater than 3 mm, the sensitivity can reach 89.0%7 

under the interpretation of experienced doctors, while for aneurysms with a diameter less than 3 mm, the sensitivity of 
MRA is only 74.1%.8 Imaging omics is a new analytical technique, which has been applied to the detection, risk 
management and treatment planning of intracranial aneurysms. At present, a number of experiments have shown that the 
model constructed by imaging omics can successfully automatically segment cystic aneurysms and peripheral vessels in 
DSA images,9 which can significantly improve the prediction performance of aneurysm rupture.10 At the same time, the 
imaging omics features based on HR-MRI can be used to establish an imaging omics model reliably that can effectively 
distinguish DA (Dissecting Aneurysm) from complex SA (Saccular Aneurysm).11

There are some deficiencies in this study. First of all, fewer experimental cases were enrolled. And these cases 
are all from the same equipment, so there is a certain sampling error. Second, we only evaluated the performance of 
radiologic features in microaneurysms, which may lead to poor recognition ability of radiologic features compared 
with semantic features. Future studies should evaluate whether peritumoral radiomics should be added to further 
improve diagnostic performance. Thirdly, with regard to clinical factors, only age and gender were included. The 
past disease history of patients (such as hypertension, diabetes, hyperlipidemia, coronary heart disease, smoking 
and drinking history, etc.) should be included in future studies to increase the identification performance of the 
model.

In this study, TOF-MRA images were used as the basic input information, DSA results were used as the gold standard 
for the existence of aneurysms, and image omics technology was used as a new auxiliary analysis method to carry out 
standardized in-depth mining and dynamic quantitative analysis of image features of intracranial microaneurysms. The 
predictive effects of radiomics model, radiomics nomogram model and clinical model were established and compared. 
The results showed that radiomics (AUC = 0.875) and radiomics nomogram model (AUC = 0.913) had good clinical 
practicability in differentiating true microaneurysms, and radiomics nomogram model was more effective compared with 
the radiomics model. By providing a second assessment of the images, our model could not only help radiologists to 
detect intracranial microaneurysms but also help clinicians formulate treatment strategies for patients, thereby prolonging 
their survival time.
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