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Abstract: Hypervirulent Klebsiella pneumoniae (hvKP), especially multidrug-resistant hvKP (MDR-hvKP) infections, are distributed 
globally, and lead to several outbreaks with high pathogenicity and mortality in immunocompetent individuals. This is usually 
characterized by a rapidly metastatic spread resulting in multiple pyogenic tissue abscesses. To date, even though the explanation of 
hypervirulent factors of hvKP has been identified, it still remains to be fully understood. The most common key virulence agents of 
hvKP included (1) siderophore systems for iron acquisition, (2) increased capsule production, (3) the colibactin toxin, (4) hypermu-
coviscosity, and so on. Several hypervirulence factors have been renewed, and the evolution of MDR-hvKP has been deeply explored 
recently. We aim to describe a chain of key virulence agents attributed to the lethality of hvKP and MDR-hvKP. In this review, recent 
advances in renewed factors in hypervirulence were summarized, and potential therapeutic targets are explored. Novel co-existence of 
hypervirulence agents and multidrug-resistant elements, even the superplasmid, was screened. Superplasmid simultaneously harbours 
hypervirulence and multidrug-resistant genes and can mobile autonomously by its complete conjugative elements. Research into 
related immunity has also gained traction, which may cause multiple invasive infections with higher mortality rates than classical ones, 
such as neutrophil- and complement-mediated activity. The evolution of virulence and multidrug resistance is accelerating. More 
reliable methods for identifying hvKP or MDR-hvKP must be investigated. Furthermore, it is critical to investigate innovative 
treatment targets in the future. 
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Plain Language Summary
The evolution of hypervirulence and multidrug resistance in hypervirulent Klebsiella pneumoniae (hvKP) is aggressive, which greatly 
threatens public health and poses a grand challenge to existing therapeutic strategies. Therefore, we summarize the advances in novel 
ideas for hypervirulence agents and explore potential therapeutic targets. Moreover, the novel co-existence of hypervirulent agents and 
multidrug-resistant elements and related immune reactions were screened in this review.

Introduction
The acute, fatal clinical syndrome of Friedlander’s pneumonia was first reported in 1882.1 Initially, the offending 
pathogen, which could cause infection at multiple sites, was recognized as Friedlander’s bacillus. Eventually, it was 
defined as Klebsiella pneumoniae (K. pneumoniae), classified under the Enterobacteriaceae family. Presently, classical 
K. pneumoniae (cKP) and hypervirulent K. pneumoniae (hvKP) are the two main pathotypes of K. pneumoniae spreading 
globally. The main features of the two pathogenic bacteria are shown in Table 1.

HvKP was initially identified in 1986, affecting individuals with a series of episodes of liver abscesses linked to 
severe endophthalmitis.2 Although the symptoms of hvKP are nonspecific, hvKP strains can cause serious infections, 
even mortality in immunocompetent individuals, which is characterized by a rapid metastatic spread resulting in multiple 
invasive infections, especially, pyogenic tissue abscesses.3 HvKP infections are geographically widely distributed, 
particularly in East and Southeast Asia, and pose an emerging threat to Europe. Moreover, the incidence of carbapenem- 
resistant hvKP (CR-hvKP) infection has steadily increased since it was first reported in 2015.4 By exploring 13,178 
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K. pneumoniae strains worldwide, 7.8% of the strains were found to be CR-hvKP, which can cause outbreaks globally.5 

According to a major study in China, 36% of the screened carbapenem-resistant K. pneumoniae (CR-KP) carried 
hypervirulence factors.6

HvKP strains, especially the multidrug-resistant hvKP (MDR-hvKP) clones, threaten public health seriously and 
make infection control very challenging. Even though the explanation of hypervirulent factors of hvKP has been 
identified, responsible agents are still not specific enough. Therefore, we review the advances in renewed agents of 
hypervirulence, summarize the novel co-existence of hypervirulent and multidrug-resistant elements, and explore the 
potential therapeutic targets in this article.

Hypervirulent Factors of hvKP
Typical K. pneumoniae genomes primarily included core and accessory genes. The core genes, conserved in all the 
members of this species, harbour a subset of basic factors for pathogenicity, including siderophore enterobactin, fimbriae, 
multifarious capsular polysaccharide (K antigen), and lipopolysaccharide (LPS) (O antigen). However, the accessory 
genes encoded several virulence factors.7

A chain of virulent agents has been studied which may be attributed to the pathogenicity of hvKP, such as capsules, 
siderophores, and LPS.8 Genetic elements on chromosomes, large virulence plasmids, or both, are responsible for 
encoding the determinants of hypervirulence.9 Clinicians can use these biomarkers to identify hvKP or MDR-hvKP 
strains. The evolution of hvKP is always triggered by some important factors, such as (1) the enhanced ability to acquire 
iron and (2) the increased production of capsule or colibactin toxin.

Siderophore Systems for Iron Acquisition
It is hard for bacteria to metabolize without iron. When encountering a low iron environment, siderophores are 
synthesized to acquire iron for the growth of bacteria.10 Siderophores play a key role as pathogenicity agents in bacteria, 
such as Pseudomonas aeruginosa, Staphylococcus aureus, and Yersinia pestis.11–13 Furthermore, several new hvKP 
factors promote siderophore synthesis to obtain more iron, which may increase the lethality of hvKP.14 Multiple hvKP 
strains are shaped by isogenic mutants in different siderophore biosynthetic pathways.

The core gene of siderophore in K. pneumoniae was ent, translating enterobactin and the accessory or acquired genes 
included ybt, iuc, and iro, which interpret the yersiniabactin, aerobactin, and salmochelin, respectively.8 In murine 
models, the above three accessory systems enhance virulence. Specifically, the iuc and iro genes are highly expressed in 
hvKP but scarcely exist in cKP.

The iuc and iro genes are located on plasmids, which are frequently accompanied by other regulators, such as rmpA, 
rmpA2, and rmpC.5 Takashi Matono et al, by analyzing 17 hvKP strains, revealed that most of the capsular polysacchar-
ide types of hvKP were K1 genotypes and highly expressed rmpA and aerobactin.15 Four proteins, encoded by the 
iucABCD operon, take charge of aerobactin biosynthesis. Among them, the iucB gene plays a dominant role in 
augmenting the virulence of K. pneumoniae.16 Aerobactin accounts for more than 90% of the siderophore production. 

Table 1 Primary Features of cKP and hvKP

Characteristics hvKP cKP

Hypervirulence-encoding genes iro, iuc, iut, irp, fyu, clb, rmp, etc.
HMV Always (+) (-)

Age of patients All ages Often older

Immune status of patients Immunocompetent or immunocompromised Immunocompromised
Infection Community Nosocomial

Polymicrobial Monomicrobial

Often multiple sites Usually single sites
Metastasis Common Uncommon

Abbreviations: cKP, classical Klebsiella pneumoniae; hvKP, hypervirulent Klebsiella pneumoniae; HMV, hypermucoviscosity.
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A mutant strain can grow well without the other three siderophores. To date, aerobactin synthesis proteins have been 
identified as the most promising antivirulence target of hvKP.17

Capsule Production
The capsules are encoded by wzi, wza, wzb, wzc, wzx, and wzy.18 There are a variety of capsule types in the 
K. pneumoniae family. K1 and K2 are the main capsule types in hvKP strains. Also, over-expression of the capsule is 
closely related to virulence. The number, architecture, serum resistance, and virulence of capsules in K. pneumoniae are 
complex and involve a net of regulatory factors (such as MprA/KvrB, SlyA/KvrA, and the Sap ABC transporter)19 and 
environmental cues, such as, glucose as an environmental signal, which increases capsule production20 and decreases the 
cytokine production of PBMCs in patients with type 2 diabetes, which may weaken the clearance of infection.21

Hypermucoviscosity (HMV) was a key virulent factor and has been used to identify hvKP. Compared to non-HMV 
strains, the HMV strains encountered more immune tolerance to neutrophil extracellular traps.21 Two novel regulators, 
the RmpD gene, as a capsule chain length regulator with the help of Wzc22 and the OmpR, involved in energy production 
and metabolism,23 are essential for HMV and hypervirulence. However, in a murine pneumonia model, the hypermu-
coviscous phenotype remained well when capsule gene expression was impeded by its regulator RmpC. That is to say, 
capsule synthesis and the hypermucoviscosity phenotype are two distinct biosynthetic pathways.24 Also, the pathogenic 
functions for hvKP of HMV and capsular polysaccharide (CPS) are different.25 Hypermucoviscosity does not fully 
dependent on capsule overproduction. HMV production also depends on other factors, such as rmpAC, 7 iron-acquisition 
-related genes, and pagO.26

Dunstan et al characterized the phage RAD2 to lead capsule depolymerase of K2 strains, which inhibits the growth of 
bacteria in the presence of serum.27 HvKP strains with high expression of CPS can escape from harmful antimicrobial 
compounds or bacteriophages (phages). The capsule depolymerase of the hvKP strains may be a potential anti-infective 
target. The capsular polysaccharide synthesis gene, wcaJ, of K. pneumoniae plays a great part in polysaccharide synthesis. 
As initiating enzyme of CPS synthesis, WcaJ regulates the capsule production directly.28 Using insertion sequence elements 
to interrupt wcaJ in ST23-K1 hvKP resulted in minimal capsule synthesis, which may potentially compromise virulence 
and a high conjugation capacity with respect to the blaKPC gene, promoting the evolution of CR-hvKP.29

Colibactin
Colibactin is another notable feature of hvKP, which is expressed by the gene of clb (also referred to as pks). Colibactin 
could crosslink DNA and break the double-stranded DNA of the host cell.30 Recently, surveys from different areas 
indicated that the infection of colibactin-producing K. pneumoniae (pks-positive K. pneumoniae) was scaled up rapidly.31 

A patient encountered recurrent infections with CG23-I hvKP. The isolates all have colibactin genes; one of the isolates, 
with duplication of the initiator tRNAfMet gene, grew faster in a poor nutritional environment and exhibited enhanced 
virulence.32 The deletion of the clbA gene of hvKP abolished colibactin production, which substantially hindered key 
hypervirulence in meningitis development.33

Other Relevant Virulence Factors
There are still many unknown factors regarding the specific characteristics or critical features responsible for hyperviru-
lence factors. The above-mentioned biomarkers are important but have limitations when distinguishing hvKP strains 
from cKP. Through analysis of 291 ESBL-producing K. pneumoniae strains, researchers revealed that the expression of 
uge, wabG, rmpA, iucA, fimH, iroB, and peg-344 was much more frequent in HMV strains compared to non-HMV 
strains.34 Moreover, a cohort study including 85 hvKP and 90 cKP strains reported similar results that support peg-344, 
iroB, iucA, plasmid-borne rmpA (prmpA), and prmpA2 genes that are special for identifying hvKP strains. The 
identification of virulence genes of hvKP remains incomplete, particularly the combination of different genes required 
for maximal virulence.8 Evaluating the ybt, clb, and iuc expression, the virulence score system (range from 0 to 5) was 
used to evaluate the virulence of hvKP.

The exploitation of highly susceptible and specific violent factors for hvKP is still ongoing. Many factors are found to 
increase the lethality of hvKP through different processes. Novel potential factors, including QseBC35 and the type VI 
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system (T6SS)36 in biofilm formation, Peg-344 acts as a role of an inner-membrane transporter,37,38 may be involved in 
hypervirulence roles with worse prognosis.

Evolution of Multidrug Resistance
The initial hvKP isolates were antimicrobial sensitive. However, since the first case was reported in 2015, the prevalence 
of the multidrug resistance hvKP has increased. Clinicians face greater challenges in treating such infections. The 
evolution of MDR K. pneumoniae, hvKP, and multidrug-resistant MDR-hvKP are shaped by gaining relevant resistance 
or virulence elements, including conjugative plasmids, integrative conjugative elements (ICE), integrons, insertion 
sequences, and transposons.39,40

Conjugative and Non-Conjugative Virulence Plasmids in hvKP
As for lacking transfer genes, the early virulent plasmids of hvKP are non-conjugative elements.41 HvKP strains can 
transfer non-conjugative plasmids by utilizing conjugative plasmids, such as KPC-producing plasmids.42 Xu et al found 
that ST11 carbapenem-resistant Klebsiella pneumoniae (CRKP) and E. coli strains can get the virulence element from 
hvKP by taking advantage of a conjugative IncF plasmid. The transition of virulence plasmid includes four ways in the 
study: mobile alone, transfer together with conjugative plasmid, format of hybrid plasmid, and homologous 
recombination.43 Additionally, a self-transferable plasmid can mobilize the resistance and nonconjugative virulence 
plasmids, which facilitate the formation of hv-CRKP (CR-KP gained virulence plasmid) and CR-hvKP (hvKP gained 
resistance plasmid).44

Acquisition of Antimicrobial Resistance Genes
There are several mechanisms by which hvKP strains acquire genes encoding antimicrobial resistance genes. The most 
common method is to acquire resistance plasmids. Among these, blaKPC-2 and blaNDM-1 were the most prevalent.4 

Another method is integration of resistance genes into the virulence plasmids of the hvKP strains.
Furthermore, during therapy, gene mutations contribute to the evolution of CR-hvKP resistance. A series of CR-hvKP 

strains were isolated from a male patient with systemic metastatic infections.45 Tigecycline or colistin resistance was 
finally developed under the treatment of the two drugs. Mutations of ramR and lon may account for tigecycline resistance 
and the pmrB, phoQ, and mgrB genes mutation for colistin resistance. In a similar mechanism, mutations in pmrB and 
phoQ genes and insertion mutations in mgrB could result in polymyxin B-resistant hvKP.46

Acquisition of Virulence-Associated Genes
Another evolutionary path is that multidrug-resistant cKP captures hypervirulence genes from hvKP, which may develop 
into hv-MDRKP.47 Through homologous recombination, multidrug-resistant cKP can obtain a virulence plasmid by 
cointegration with a helper conjugative plasmid or an acquired conjugative plasmid containing virulence genes. An 
important mechanism is that ICE elements containing virulence factors integrate into chromosomes; also, the acquisition 
of plasmid containing both virulence and resistance genes is also promising as well.

The interaction between virulent plasmids and MDR plasmids plays a key role in the evolution of MDR-hvKP. The 
formation of ST11-KL64 hv-CPKP showed that bla (KPC-2) plasmids could facilitate the virulence of plasmids into 
CRKP.48 By analyzing 890 K. pneumoniae genomes, Tian et al42 revealed that hv-CRKP strains behaved stronger in 
vitality in hospital surroundings than did CR-hvKP strains. The transformation of conjugative KPC-producing plasmids 
promotes the emergence and prevalence of hv-CRKP strains.

Another novel and potential evolution of the coexistence of multidrug-resistance and hypervirulence could be 
mediated by an outer membrane vesicle, which horizontally conveyed virulence genes from hvKP to MDR.49

Superplasmid, found in ST11 (sequence type 11)-K64 CR-HvKP strain, carries both hypervirulence and MDR genes. 
The complete conjugative elements in the superplasmid created the power of self-transmissibility. The emergence of 
a superplasmid seriously threatens public health, and control measures are urgently required.50

The coexistence of hypervirulence and multidrug resistance components in the same conjugative plasmid has become 
increasingly common in the evolution of CR-hvKP. A CR-hvKP strain was reported carrying virulence-related 
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iucABCD-iutA operon for aerobactin and elements for MDR simultaneously.51 Co-existence of blaOXA-232, rmtF- 
encoding plasmids, and pLVPK-like virulence plasmid was found in ST15-KL112 K. pneumoniae.52

MDR-hvKP strains are undergoing wide dissemination, even resistant to last-line antibiotics. The evolution of MDR- 
hvKP is complex and harmful to public health. It is critical to explore more potential and comprehensive mechanisms.

Immune Response
Compared to cKP strains, hvKP strains are more immune tolerant.53 CPS, a distinctive virulence feature of hvKP, allows 
the bacteria to avoid being killed by phagocytosis or serum factors.54 Also, reducing or terminating the biosynthesis of 
CPS may weaken the virulence of K. pneumoniae and expose the bacteria to immune activities.55

The basic feature of hvKP strains is infection at several locations. It is unclear whether systemic lesions that appear at 
the time of infection or are caused by subsequent bacterial metastasis. The hvKP can survive in neutrophils, and the 
lifespan of hvKP-infected neutrophils is up to 24 h.56 In a mouse CR-hvKP infected model, low-virulence strains were 
more susceptible to neutrophil-induced killing than the CR-hvKP isolates. Compared to healthy animals, there is more 
infiltration of neutrophils assembled in spleens and lungs.57 After hvKP infection, macrophage replication plays an 
important role in abscess formation. In the hvKP-infected mice model, Wanford et al found that hvKP escaped from 
phagocyte-induced killing and spawned in macrophages 6 h after hvKP infection. The presence of neutrophil recruitment 
at infected sites contributes to the formation of abscesses at an early stage of infection.58

Conclusion
The fast emergence of hvKP hypervirulence and multi-drug resistance poses a significant threat to public health. The 
developments in new and reliable ideas of hypervirulence agents, possible therapeutic targets, and novel forms of 
coexistence of hypervirulent agents and multidrug-resistant elements were discussed in this paper. With the rapid 
evolution of hvKP, new reliable agents of hypervirulence and multi-drug resistance must be identified, as well as more 
reliable targets for therapeutic intervention.

Abbreviations
K. pneumoniae, Klebsiella pneumoniae; cKP, classical K. pneumoniae; hvKP, hypervirulent Klebsiella pneumoniae; CR- 
KP, carbapenem-resistant K. pneumoniae; CR-hvKP, carbapenem-resistant hvKP; MDR-hvKP, multidrug-resistant hvKP; 
LPS, lipopolysaccharide; HMV, hypermucoviscosity; CPS, capsular polysaccharide; ICE, integrative conjugative 
elements.
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