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Abstract: Collagens constitute a family of triple-helical proteins with a high level of structural polymorphism and a broad diversity of 
structural and chemical characteristics. Collagens are designed to form supporting aggregates in the extracellular spaces of our body, but they can 
be isolated from animal sources and processed to become available as biomaterials with wide applications in biomedicine and bioengineering. 
Collagens can be conveniently modified chemically, and their propensity for participating in crosslinking reactions is an important feature. While 
the crosslinking promoted by a variety of agents provides a range of collagen-based products, there has been minor interest for therapies based on 
the crosslinking of collagen while located within living connective tissues, known as exogenous crosslinking. Currently, there is only one such 
treatment in ocular therapeutics (for keratoconus), and another two in development, all based on mechanical augmentation of tissues due to 
ultraviolet (UV)-induced crosslinking. As seen in this review, there was some interest to employ exogenous crosslinking in order to reinforce 
mechanically the lax tendons with an aim to arrest tear propagation, stabilize the tissue, and facilitate the healing. Here we reviewed in details 
both the early stages and the actual status of the experimental research dedicated to the topic. Many results have not been encouraging, however 
there is sufficient evidence that tendons can be mechanically reinforced by chemical or photochemical exogenous crosslinking. We also compare 
the exogenous crosslinking using chemical agents, which was predominant in the literature reviewed, to that promoted by UV radiation, which 
was rather neglected but might have some advantages. 
Keywords: collagen, crosslinking, tendon, chemical agents, ultraviolet radiation, mechanical properties

Introduction
Natural collagen, as a non-living material from human or animal sources, is a biomaterial prominently employed in tissue 
engineering, regenerative medicine, dentistry, and pharmaceutical applications. The formation of covalent crosslinks 
between structural moieties at various hierarchical levels in collagen induces additional molecular stability leading to 
augmentation of mechanical properties of the collagen-based materials. As discussed in some recent reviews,1–4 chemical 
or physical crosslinking techniques have become a common tool for reinforcing mechanically the engineered collagen 
scaffolds, implants, or devices and enhancing their resistance to enzymatic degradation.

The crosslinking of native collagen while located in the body is a completely different issue, which purports two types of 
processes, endogenous and exogenous. The endogenous natural enzyme-driven crosslinking of living collagen is fundamental to 
the maturation and healing processes in our organism, and to the development and function of connective tissues. Lysyl oxidase 
(LOX) is the enzyme responsible for this fundamental process that is basically outside our control. The endogenous nonenzymatic 
crosslinking between adjacent collagen fibrils stabilizes the network and is believed to be mediated by macromolecules such as 
proteoglycans and fibronectin. Another endogenous nonenzymatic crosslinking is due to aging, and is driven by a process 
triggered by the advanced glycation end-products (known as AGEs). It induces brittleness, less resistance to damage, and impaired 
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matrix remodelling of the connective tissues, and is therefore considered deleterious, despite leading to enhanced stiffness of 
tissular collagen.

The exogenous crosslinking of native collagen has likely been inspired from the crosslinking of engineered collagen-based 
materials, and is becoming a potentially therapeutic strategy for treating disorders of the connective tissue. It implies the direct 
exposure at specific anatomic locations of the living collagenous tissues to suitable chemical, photochemical, enzymatic, or 
thermal processes, resulting in structural modifications of the collagen macromolecules, which are accompanied by the expected 
or intended changes in properties. In other words, the crosslinks are introduced on purpose in order to modulate favorably the 
mechanical and physiological properties of the native tissue. However, it is essential to identify and overcome the biological and 
technical challenges to the translation of crosslinking methodology into a practicable clinical treatment.

To date, a successful application of an exogenous crosslinking process has been the photochemical crosslinking of the corneal 
collagen in the eye,5–7 which is currently the routine treatment for keratoconus, an ophthalmic condition that can lead to severe 
visual disability if left untreated. By irradiating the cornea with ultraviolet (UV)-A rays (wavelengths 315–400 nm, photon 
energies ~3 to ~ 4 eV), in the presence of a photoinitiator, the progression of keratoconus is arrested due to the stiffening of corneal 
collagen induced by a radiation-induced crosslinking reaction. We have proposed to extend the method to the treatment of eyelid 
laxity (eg, floppy eyelid syndrome), and have shown8,9 in ex-vivo animal (ovine) tissue that the UV-A-induced crosslinking of 
tarsal collagen led to increased mechanical strength and stiffening of the tissue. We also demonstrated that the mechanical 
properties of ex-vivo porcine aortic peripheral collagen (residing in tunica adventitia of the vessel) were significantly enhanced 
following irradiation with UV-A rays, and proposed the process as a potential method for preventing the rupture of abdominal 
aortic aneurysms.10 In a subsequent study,11 the aortic specimens were subjected to in-vitro collagenolysis and then subjected to 
mechanical evaluation, with or without irradiation. We found not only that crosslinking would be beneficial to the degenerated 
wall, but also that the earlier the irradiation the more resistant to rupture will be the wall.

In this overview, we analyzed the literature published on the use of exogenous collagen crosslinking in tendons. We 
expound on the ability of crosslinking to arrest propagation of partial tears by augmenting mechanical properties, to 
impart stabilization to the tissue, and thus to contribute to the healing of injured or lax tendons. The crosslinking 
technologies applied for the fabrication of collagen-based tissue-engineered scaffolds and devices to repair torn tendons 
or ligaments are not a topic of the present review.

Chemical Crosslinking of Tendons
Some decades ago, Haut12 reported that the quantitative reduction of natural crosslinks in the collagen of experimental 
animals subjected to a lathyritic diet was associated with the decrease of mechanical strength and elastic modulus of the 
rat-tail tendons. Dietary lathyrogens (eg, β-aminopropionitrile) are known to inhibit the activity of LOX,13,14 such as 
impairing the covalent crosslinking, but not the biosynthesis of collagen, in the body. Notwithstanding this relevant 
finding, the idea to crosslink the tendinous tissue in order to make it stronger took another two decades to emerge.

The first study attempting to establish the importance of exogenous collagen crosslinking related to tendons was published by 
Zhao et al15 at the Mayo Clinic in Rochester, MN. Considering the problems associated with the suture–tendon interface (recurrent 
tissue rupture, suture rupture, or suture failure due to low pullout resistance), the investigators suggested the injection of 1-ethyl- 
3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC, see structure in Figure 1) as a crosslinking agent into the interface 
of 24 ex-vivo canine flexor digitorum tendons. A tendon specimen that was pliable became a rigid rod after 1 h in 10% aqueous 
EDC. Mechanical evaluation showed an increase in ultimate strength but no significant change in stiffness. All samples failed the 
suture pullout tests, which did not hamper the investigators’ optimism. In experiments reported later by the same group,16 the 
sutures were impregnated with EDC, such avoiding injection but using the same tendon model. However, the results were similar 
to those reported previously.15 All specimens failed the suture cutting tests. The assessment of cell viability indicated a favorable 
effect on the numbers of viable cells (cultured tenocytes). It is not clear whether EDC was first adsorbed onto the suture and after 
that released into the tendon’s interfacial region. As the chemical nature of the sutures was not disclosed, it is difficult to ascertain 
which of the physisorption or chemisorption processes governed formation of a coating.

Another pioneering work was carried out by Magnusson’s group,17 then at the Institute of Sports Medicine in 
Copenhagen, who investigated the mechanical effects induced by the crosslinking of rat-tail tendon with glutaraldehyde 
(GA, Figure 1) at two structural levels of the tendon hierarchy, the fascicles and the fibrils. The reaction was conducted at 
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4°C in diluted aqueous medium for 24 h. Mechanical evaluation was performed using atomic force microscopy (AFM) in 
three different procedures for tendon fibrils, and uniaxial tensile test for fascicles. In fibrils, the crosslinking induced 
a substantial increase of mechanical characteristics, especially of Young’s modulus (YM), an indirect measure of 
stiffness. Significant increases in YM, yield stress, and yield strain were also measured for the tendon fascicles. The 
authors concluded that crosslinking is important in providing additional strength to tendons. They also noted that fibril 
strength induced by crosslinking appears to surpass that induced in fascicles, which is important considering that the 
fibril is the primary load-bearing unit of a tendon, although the fascicles are hierarchically the largest.

To our knowledge, the next relevant body of work on tendon crosslinking has been carried out at ETH Zürich, in Snedeker’s 
Orthopedic Biomechanics Laboratory.18–23 The investigators’ aim was to modulate in situ collagen crosslinks in order to improve 
tendon healing by arresting progression of tearing. More precisely, they envisaged that the mechanical enhancement of tendons by 
exogenous collagen crosslinking may have such results as:18 (a) an improvement of suture retention; (b) reinforcing shoulder joint 
stability by stabilization of capsular ligaments; (c) to arrest progression of partial rotator cuff tendon tears; or (d) to reinforce the 
marginal regions of partial tears, such restoring a favorable strain distribution and rendering smaller tears manageable surgically. 
In their first experiments, genipin (GP, Figure 1) was used as a crosslinking agent, which is a non-toxic natural substance isolated 
from plants of genera Genipa and Gardenia. Samples of both rat-tail tendon and equine digital flexor tendon that were treated with 
GP showed an increase in their YM (stiffness), maximal tensile stress, and toughness. Genipin treatment was also applied in an 
in vitro model (equine tendon) of partial tendon tear/injury, when specimens of intact tendon, partially torn tendon, and GP- 
crosslinked tendon (3-day incubation) were compared. The crosslinked tendon recovered much of the mechanical integrity lost in 
the torn specimens. In a subsequent study,19 the effects of two different chemical crosslinkers, GP and methylglyoxal (MG, 
Figure 1), were compared in rat-tail tendon fascicles (RTTF) and equine superficial digital flexor tendon (ESDFT) specimens by 
evaluation in a uniaxial mechanical tester. Beside direct measurements, two in-vitro models were also employed for evaluation 
(ESDFT load-bearing model, and tear propagation under cyclic loading to failure model). It was found that GP enhanced the 
strength and stiffness in both tendons, while MG detrimentally affected the ESDFT, which was tentatively attributed to a certain 
hierarchical order of crosslink formation. Some other parameters (toughness, yield force, hysteresis, and cyclic relaxation) 
displayed conflicting values. In the investigators’ conclusion, GP showed the most potential for arresting tear progression and 
improving mechanical performance of treated tendons.

To further promote GP as a suitable chemical agent for exogenous crosslinking of the tendinous tissue, the ETH group 
performed extensive quantitative evaluation of putative associated cytotoxicity.20 Based on cell viability, metabolic activity and 
motility assays, gene expression analysis, differential scanning calorimetry, and uniaxial mechanical testing, they have concluded 

Figure 1 Chemical structures of agents commonly used for crosslinking the collagenous tissues.
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that the mechanical augmentation through GP-induced crosslinking can be implemented at the compromise of allowing some 
level of cytotoxicity, a situation that can be improved post-crosslinking by cell survival techniques. GP was further evaluated in the 
fresh ovine shoulder infraspinatus tendon, an established ex-vivo model for rotator cuff tendon tears.21 The objective of the study 
was to see whether crosslinking can improve the suture pullout strength in the case of either simple single-loop sutures or modified 
Mason-Allen suture bridge technique stitch patterns. A total of 32 tendons were used and 142 suture pullout tests were carried out 
for both suture techniques. Two sets of tendons were incubated in a buffer containing 20 mmol/L GP at 36°C, for 4 h or 24 h, and 
following the treatment all specimens (including untreated controls) were evaluated uniaxially in a mechanical tester. For single- 
loop sutures, only the 24-h treatment with GP led to an increase of the maximum pullout force (73 N vs 56 N), while the shorter 
treatment did not have any effect. For the Mason-Allen stitch patterns, crosslinking did not show any benefit. It was concluded 
that, in the case of single-loop sutures, the exogenous crosslinking with GP presents clinical relevance at the suture–tendon 
interface by improving the resistance to pullout, which may help with the repair of rotator cuff tears. Publication of this study 
attracted both interest and some criticism.22 Thus, the study did not discuss why the stitching configuration has an effect on the 
crosslinking outcome. It neither provided an indication on the clinical utility, safety and efficacy, or level of healing. Perhaps the 
most useful suggestion22 was to implement a delivery system for GP at the crosslinking site.

The relevance of suture–tendon interface was further investigated in a more recent study from the ETH group.23 Twenty-five 
ex-vivo bovine superficial digital flexor tendons were processed into the following sets: (a) healthy tendons stitched with 
polyethylene sutures (single loop); (b) healthy tendons stitched with GP-coated sutures; (c) specimens degraded by in-vitro 
collagenolysis and stitched with normal sutures; and (d) degraded tendons stitched with GP-coated sutures. Mechanical evaluation 
was performed 24 h after suturing. The coating with GP improved with statistical significance the suture pullout parameters, both 
force to failure (N) and work to failure (mJ), in the healthy tendons, while in those degraded it was only the force to failure that 
improved. Clearly the presence of genipin in the coating enhanced regionally the crosslinking of surrounding tendinous tissue 
where the sutures were confined. As acknowledged by ETH investigators, the coating used for sutures in this study was actually 
developed24 by Hedman et al at the University of Kentucky, as a sustained release system for the crosslinking agent. It consists of 
a complex mixture of GP, poly(lactic-co-glycolic acid), and poly(ethylene glycol) dissolved in acetone and dimethyl sulfoxide. It 
was shown that the resulting layer is a diffusion type system for the controlled release of an active agent (GP) from a biodegradable 
polymer matrix, and this was checked both in vitro and ex vivo (equine tendons).24 The tendons coming in contact with the GP that 
resides on, or is released from the sutures, displayed enhanced ultimate tensile stress, load to failure, and stiffness. In a later 
study,25 the group investigated the intratendinous injection of GP in ex-vivo bovine superficial digital flexor tendons, either 
healthy or degenerated (by in-vitro collagenolysis). The injectable solution consisted of 80 mmol/L GP in a solution of buffer and 
dimethyl sulfoxide. The specimens were cyclically loaded for 500 cycles and then loaded to failure. While no significant benefit of 
injection was noticed in the healthy tendons, the degraded specimens showed significant increases in ultimate force, ultimate 
stress, elastic modulus, work to failure, and strain to failure. It was concluded that a degenerated tendon can be mechanically 
recovered by injection with GP and the procedure was suggested to treat tendinopathies. In their most recent work,26 the ETH team 
investigated the benefit of GP-coated sutures in human tendons. Human biceps long head tendons were harvested at operation 
from 25 patients. Polyethylene sutures, either normal or GP-coated, were inserted in two sets of tendons. Mechanical testing 
showed that the coated sutures were associated with higher forces to failure, but the other properties were not affected. Cell 
viability was a function of the distance from the suture, with cytotoxicity manifested up to about 3 mm to suture, and diminishing 
farther to normality.

Benefits of crosslinking tendons with GP were also contemplated for a different reason. Maher’s group at the Hospital 
for Special Surgery in New York have investigated the protective effects against damage to tendon grafts caused by 
gamma-ray sterilization.27 The use of donor tendon allografts to repair the rupture of anterior cruciate ligament requires 
their exposure to high doses of gamma radiation resulting in damage to the graft material. As the damage is mainly 
mechanical (about 50% loss of properties) the enhancement of mechanical properties will offer an indirect protection. In 
the study,27 bovine and human patella tendons were incubated with GP for durations up to 12 h. While YM increased 
2.4-fold in the bovine tendons, there was no significant effect of crosslinking in the human tendons. The increase in 
elastic moduli in the gamma-irradiated tendons were statistically insignificant both in animal and human specimens. It 
was surmised that the benefits of GP in human allografts may depend on specific aging aspects.
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Currently, the exogenous crosslinking of connective tissues using chemical crosslinking agents is regarded as 
a promising method to treat injured tissues, tendons among them, and GP as a preferred agent thanks mainly to its 
low cytotoxicity and effective performance. Very recently, a system for the sustained local delivery of GP has been 
developed28 by von Recum et al at Case Western Reserve University. They proposed cyclodextrins as carriers, and 
compared them with non-cyclic dextran. The cyclodextrins are molecules that possess cavities, and it was expected that 
the relatively small molecule of GP may display molecular affinity for certain cavity sizes. The investigators demon-
strated the sustained release of GP from β-cyclodextrin, and its active participation to the crosslinking reaction in the rat- 
tail tendons. Mechanical testing showed statistically significant enhancements of certain ultimate properties (strength, 
energy, and strain to failure) following incubation with GP-cyclodextrin composites. The tendons treated with GP-dextrin 
(no cavities) showed less mechanical augmentation, but still superior to the controls (empty β-cyclodextrin cavities, no 
GP). It was also found that GP improved resistance to collagenase. A cytotoxicity assay indicated that the protective 
effects must be balanced with a certain level of acceptable cytotoxicity.

Results of Chemical Crosslinking
Table 1 contains a synopsis of the results published so far on the exogenous crosslinking of tendons using chemical 
crosslinking agents. Only data supported by statistical significance are included, and only those results are presented that 

Table 1 Exogenous Crosslinking of Tendons Using Chemical Agents: a Selective Summary of 
Published Results

Tendon Crosslinking 
Agent

Crosslinking 
Technique

Percentage 
Mechanical 
Enhancement

Ref

Canine flexor digitorum EDC Injection UTS: 40% [15]
Canine flexor digitorum EDC Suture UTS: 35% [16]

Impregnation UE: 17%

Rat tail GA Incubation UTS: 385% [17]
UE: 187%

YM: 49%

Equine digital flexor GP Incubation UTS: 12% [18]
YM: 21%

Toughness: 67%

Equine digital flexor GP Incubation UTS: 17% [19]
YM: 17%

Sheep rotator cuff GP Incubation s.p.f.: 30% [21]

Bovine digital flexor (healthy) GP Suture coating UTS: 45% [23]
w.t.f.: 86%

Equine digital flexor GP Suture coating UTS: 67% [24]

Stiffness: 21%
Toughness: 135%

Bovine digital flexor 

(degenerated)

GP Injection UTS: 23% [25]

Stiffness: 27%

w.t.f. 42%

Human biceps long head GP Suture coating UTS: 55% [26]
w.t.f.: 86%

Bovine patella GP Incubation YM: 140% [27]

Rat tail GP Controlled 
delivery

UTS: 92% [28]

UE: 91%

w.t.f.: 214%

Abbreviations: UTS, ultimate tensile stress; UE, ultimate elongation; YM, Young’s modulus; s.p.f., suture pullout force; w.t. 
f., work to failure; EDC, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride; GA, glutaraldehyde; GP, genipin.
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showed actual mechanical augmentation of the tendinous tissue subjected to crosslinking. For uniformity, the results were 
re-calculated into percentage enhancement of the respective mechanical property.

Photochemical Crosslinking of Tendons
An ideal and safe procedure to achieve exogenous crosslinking in living connective tissues shall avoid the use of 
chemicals. Even GP itself displays a certain level of toxicity, and a compromise has to be usually secured. As shown in 
our introduction, the UV-A radiation proved to be effective and safe in treating corneal disorders and in other medical 
procedures currently at various investigative stages of development. UV-A radiation can be delivered conveniently and 
the only chemicals involved are innocuous photoinitiators such as vitamin B2 (riboflavin). The generation of crosslinks 
by photochemistry is mediated by free radicals, which are sufficiently reactive as to directly involve the amino residues 
of collagen chains, and therefore no extraneous chemical structures are incorporated in the crosslinkages.

Interestingly, there are recent reports on the reinforcement of musculoskeletal tissues different from tendons using 
photochemically induced exogenous crosslinking. Vasilikos et al at Ulm University in Germany have investigated the 
photochemical crosslinking of intervertebral disc (IVD) employing the system UV-A radiation/riboflavin, at an irradiance 
of 3 mW/cm2. They have shown29 that the photocrosslinking of IVD led to reduced annular delamination, increase of the 
peel strength, and a significant increase of Young’s modulus. In another study,30 the subject was the shoulder’s 
glenohumeral joint capsule; its laxity is one of the main lesions leading to shoulder instability. Human capsular 
specimens (~1 mm3 each) were harvested during shoulder surgery, and exposed to UV-A (365 nm) for 30 minutes 
after incubation in riboflavin. There was a clear enhancement of the Young’s modulus. Due to very small sample size, the 
authors had to use AFM in order to measure the moduli. UV-A irradiation increased capsule stiffness without affecting 
structural organization or inducing cell death.

The use of UV regions different from UV-A have been reported for crosslinking a tendon, however. For reasons not 
clearly explained, collagen isolated from the rat-tail tendon was exposed to UV-C radiation (wavelength 254 nm, energy 
4.9 eV) at an irradiance of 4.4 mW/cm2 for very long durations (2–8 hours).31 Such radiation is associated with a photon 
energy higher than that of UV-A (365 nm, energy 3.4 eV), and is known to be harmful to biological matter, especially 
over a lengthy exposure. We suppose that the study was related to the sterilization with UV-C of collagen-based implant 
materials. As expected, the effects of irradiation on mechanical properties were detrimental, as the ultimate strength, 
ultimate strain, and YM all decreased. Considering the hazard of irradiating living tissue with UV-C rays, such studies 
are irrelevant for our review, even if some have episodically reported mechanical augmentation.32

In an earlier study,33 rat-tail tendon specimens were irradiated with either visible light (> 370 nm) or UV (> 295 nm) 
regions in the presence of methylene blue as a photosensitizer. Chemical analysis of the products suggested that collagen 
crosslinking processes took place. Diffraction studies showed that the photo-induced crosslinking did not affect the 
molecular packing arrangement of the native collagen. However, this study did not investigate the effect on the 
mechanical properties.

To date, Snedeker’s group have published19 the only report on investigating the exogenous crosslinking of tendinous 
collagen by exposure to UV-A radiation aiming at a medical application, in a study where two chemical crosslinking 
agents (MG and GP) were also included for comparison, as aforementioned. Strips of either RTTF or ESDFT have been 
soaked in diluted aqueous riboflavin for 5 minutes and then each exposed to UV-A radiation (wavelength 375 nm) at an 
irradiance of 4.4 mW/cm2 for 30 minutes. The radiation was generated by a UV diode source and delivered at a distance 
of 2.5 cm from the samples. While the irradiated rat-tail tendon specimens showed enhanced mechanical properties 
(yield/ultimate strength and strain, stiffness, and toughness), similar to or even higher than those induced by GP, the UV 
irradiation did not have any effect of the properties of the equine tendon strips. GP was the only agent that induced 
mechanical enhancement in both kinds of tendons. It is probable that for irradiation of the equine tendon a higher 
irradiance should have been employed.

Discussion
Tendons can become lax (loose) in two situations: over time due to repetitive or excessive force (associated with overuse, 
or with poor biomechanics), or suddenly due to trauma. Part of their elasticity is lost when stretched beyond their normal 

https://doi.org/10.2147/ORR.S421106                                                                                                                                                                                                                                  

DovePress                                                                                                                                              

Orthopedic Research and Reviews 2023:15 170

Fofiu et al                                                                                                                                                             Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


capacity, therefore the lax tendons do not recoil to the initial length after the application of force is stopped. Perhaps 
a more suitable term for a lax tendon would be stretched or elongated. Together with ligamentous laxity, the tendinous 
laxity contributes to instability in the joints, which increases the risk for permanent functional impairment.

It is disputable whether the artificial exogenous crosslinking could be effective in regenerating an overstretched and 
permanently elongated tendon, while not yet ruptured. In principle, the mechanical stabilization of the tissue can be 
achieved by crosslinking, which may arrest the ability for further stretching. The crosslinking cannot achieve, however, 
the recovery of the initial contractility level, ie, the shortening back to the initial length. This can happen only in two 
situations: (a) through the actin-mediated activity of the tenocytes that can generate traction forces against an extra-
cellular matrix able to contract the lax tendons; and (b) if the collagen crosslinking reaction as such has a contractile 
effect (shrinkage) on the collagen. The former issue (a) is related with the tendon laxity resulting from loss of collagen 
tension and disrupting cytoskeletal tensional homeostasis in tenocytes, and also inducing catabolic changes such as 
upregulation of collagenase expression and apoptosis. However, an actin-based cell contraction mechanism can re- 
establish the tensional homeostasis in the lax tendons. This mechanism has been extensively studied by Arnoczky’s group 
at Michigan State University.34–36 However, we do not know whether it will be active in a tendon previously subjected to 
the process of chemical or photochemical exogenous crosslinking, and therefore affected by certain structural 
modifications.

When considering the latter issue (b), we are not aware of any reported evidence that the crosslinking of collagen is 
associated with the shrinkage of its matrix, which would enable a contractile effect on stretched connective tissues. 
Otherwise, it is well known that the exposure of collagen in general, and tendinous collagen in particular, to temperatures 
exceeding ~60°C, leads to its shrinkage,37–41 a process that has actually been suggested as a therapy for glenohumeral 
instability, based on experiments with human joint capsule or bovine extensor tendons at temperatures over 60°C.42,43 On 
another note, the hyperthermic treatment for tendinopathies, which is carried out at temperatures around 42°C, results in 
enhanced contraction rates in the lax tendons, but seems to be based on a shrinking mechanism not yet elucidated.44,45 

Such thermal shrinking processes are physical in nature and are not related to chemical reactions leading to crosslinking.
Looking at existing and proposed methods of treatment for tendinopathies, and at the repair strategies based on 

bioengineering (eg, biomaterials, tissue engineering, and cell-based therapies), as presented in a number of seminal 
reviews,46–51 one can see that a methodology based on collagen crosslinking has never been mentioned as a viable 
alternative. This clearly implies that there is a need for more experimental work to be done for raising the legitimate 
interest of orthopedic specialists.

Conclusion
There is not much interest currently in developing therapies for tendinopathies based on the exogenous crosslinking of 
tendon collagen, although topical reports emerge episodically from some research centers. Certain reports have provided 
evidence for the mechanical augmentation of crosslinked tendons, but in many cases the results may be seen as tenuous. 
Further research work is obviously needed in order to develop such therapies. With regards to safety, it is worth 
considering the replacement of chemical crosslinking with UV radiation-induced crosslinking.
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