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Abstract: Breast cancer is the most common cancer among women, accounting for about 30% 

of all cancers. In contrast, breast cancer is a rare disease in men, accounting for less than 1% of 

all cancers. Up to 10% of all breast cancers are hereditary forms, caused by inherited germ-line 

mutations in “high-penetrance,” “moderate-penetrance,” and “low-penetrance” breast cancer 

susceptibility genes. The remaining 90% of breast cancers are due to acquired somatic genetic 

and epigenetic alterations. A heterogeneous set of somatic alterations, including mutations 

and gene amplification, are reported to be involved in the etiology of breast cancer. Promoter 

hypermethylation of genes involved in DNA repair and hormone-mediated cell signaling, as 

well as altered expression of micro RNAs predicted to regulate key breast cancer genes, play 

an equally important role as genetic factors in development of breast cancer. Elucidation of the 

inherited and acquired genetic and epigenetic alterations involved in breast cancer may not only 

clarify molecular pathways involved in the development and progression of breast cancer itself, 

but may also have an important clinical and therapeutic impact on improving the management 

of patients with the disease.
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Introduction
Breast cancer is currently the most common cancer among women, accounting for 

about 30% of all cancers.1 In contrast, breast cancer is a rare disease in men, account-

ing for less than 1% of all cancers.2 The age-specific incidence rates for breast cancer 

in women increase rapidly until the age of 50 years, and then increase at a slower 

rate for older women, while incidence rates for breast cancer in men increase linearly 

and steadily with age. Overall, current epidemiologic and pathologic data, such as 

age-frequency distribution, age-specific incidence rate patterns, and prognostic fac-

tor profiles, suggest that male breast cancer is similar to postmenopausal female 

breast cancer.2 It is generally accepted that breast cancer may represent the same 

disease entity in both genders, and common hormonal, genetic, and environmental 

risk factors are involved in the pathogenesis of breast cancer in women and men. 

Hormonal changes, such as increased estrogen exposure due to diabetes, obesity or 

liver disease, and environmental and lifestyle factors, such as carcinogen exposure 

or alcohol intake, are associated with risk of developing breast cancer.3 However, the 

major predisposition factor for breast cancer is a positive family history of the disease. 

Patients of both genders with a positive first-degree family history have a twofold 

increased risk, which increases to more than fivefold with the number of affected 

relatives and early onset relatives, thus suggesting a relevant genetic  component in 
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breast cancer risk.4 It is estimated that up to 10% of all breast 

cancers are hereditary forms, caused by inherited germ-line 

mutations in breast cancer susceptibility genes. Commonly, 

inherited mutations are loss-of-function mutations that occur 

in tumor suppressor genes involved in DNA repair and cell 

cycle checkpoint activation.1 The remaining 90% of breast 

cancers are due to acquired somatic, genetic, and epigenetic 

alterations.5 Genetic alterations include gain-of-function 

mutations, amplification, deletions, and rearrangements 

occurring in genes which stimulate cell growth, division, and 

survival.6 Epigenetic deregulation, mainly due to promoter 

methylation, may also contribute to the abnormal expression 

of these genes.7 In addition, the involvement of micro RNAs 

(miRNAs) in modulating gene expression in the develop-

ment of breast cancer has been recently reported.8 The focus 

of this review will be on the most relevant inherited and 

acquired alterations in the development of breast cancer in 

both genders. We did a systematic literature search using 

PubMed to provide a synopsis of the current understanding 

and future directions of research in this field. We selected 

original articles and reviews published up to April 2011. The 

following search key terms were used to query the PubMed 

website: “inherited breast cancer,” “breast cancer AND sus-

ceptibility,” “breast cancer AND somatic alterations,” “breast 

cancer AND epigenetic,” “breast cancer AND miRNA.” 

The abstracts resulting from these queries were individually 

analyzed for relevance.

Inherited susceptibility to breast 
cancer
To date, 5%–10% of all breast cancers are caused by inher-

ited germ-line mutations in well identified breast cancer 

susceptibility genes.1 According to their mutation frequency 

and the magnitude of their impact in breast cancer suscep-

tibility, these genes can be divided into “high-penetrance,” 

“moderate-penetrance,” and “low-penetrance” genes 

 (Figure 1).9 Variants in the two major high-risk breast 

cancer genes, ie, BRCA1 and BRCA2, occur rarely in the 

population, but confer a high risk of breast cancer to the 

 individual.1 P53 and PTEN, two genes involved in rare 

syndromes (Li-Fraumeni and Cowden syndromes, respec-

tively), also confer a high risk of breast cancer.1 However, 

P53 and PTEN germ-line mutations are very rare, and it is 

unlikely that these mutations would account for a propor-

tion of breast cancers in the absence of their respective 

syndromes.10,11

Overall, high-risk genes account for about 25% of inher-

ited breast cancers (Figure 1).12 Variants in genes function-

ally related to BRCA1/2 in DNA repair pathways confer an 

intermediate risk of breast cancer. These variants are rare, 

occurring in less than 1% of the population, and their contri-

bution to the risk of breast cancer is less than 5% (Figure 1).13 

Recently, a third class of low-penetrance susceptibility alleles 

has been identified. These alleles, which may occur in genic 

or nongenic regions, confer a lower risk but are very com-

mon in the population.13 Due to their low penetrance, the real 

contribution of these common variants to breast cancer risk is 

not entirely clear (Figure 1). Overall, this scenario suggests 

that the majority of genetic factors involved in breast cancer 

susceptibility are still unknown.

High-penetrance breast cancer 
genes
BRCA1 and BRCA2 are the most important breast cancer 

susceptibility genes in high-risk families (Table 1). BRCA1/2 

mutations are considered to be responsible for approximately 

30% of breast cancer cases with a family history of breast/

ovarian cancer, and it has been estimated that inherited 

BRCA1 and BRCA2 mutations account for 5%–10% of the 

total percentage of breast cancer.14–16

In women, germ-line BRCA1 and BRCA2 mutations 

confer a high risk for developing breast cancer by age 

70 years. Initial studies based on multiple-case families, 

reported a female breast cancer risk at age 70 years in 

BRCA1 and BRCA2 mutation carriers of 85% and 84%, 

respectively.17 Later meta-analyses showed that the average 

cumulative female breast cancer risk in BRCA1 mutation 

carriers by 70 years of age, unselected for family history, 

was 46%–65% and the corresponding estimates for BRCA2 

were 43%–45%.18,19

In male breast cancer cases, BRCA2 mutations are 

much more common than BRCA1. Mutations in the BRCA2 

gene are estimated to be responsible for 60%–76% of male 

breast cancers occurring in high-risk breast cancer families, 

whereas the BRCA1 mutation frequency ranges from 10% 

to 16%.17,20 In a large population-based male breast cancer 

series, we reported a mutation frequency of about 7% and 

2% for BRCA2 and BRCA1, respectively.21 Interestingly, 

a founder effect was observed in BRCA1-associated male 

breast cancer cases.22

All known BRCA1/2 mutations are recorded in the 

Breast Information Core database (http://www.nhgri.nih.

gov/ Intramural_research/Lab_transfer/Bic/). To date, 1643 

distinct germ-line BRCA1 mutations and 2015 BRCA2 muta-

tions have been reported in the database. The great majority of 

BRCA1/2 mutations in breast cancer are predicted to truncate 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com
http://www.nhgri.nih.gov/Intramural_research/Lab_transfer/Bic/
http://www.nhgri.nih.gov/Intramural_research/Lab_transfer/Bic/


The Application of Clinical Genetics 2011:4 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

147

inherited and acquired alterations in breast cancer

High-penetrance genes

Moderate-penetrance genes
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Figure 1 Genetic susceptibility in hereditary breast cancer. Up to 10% of all breast cancers are caused by inherited germ-line mutations in breast cancer susceptibility genes. 
High-penetrance genes (BRCA1 and BRCA2) contribute to 25% of hereditary breast cancer, moderate-penetrance genes (CHEK2, ATM, PALB2, BRIP1, RAD51C) contribute less 
than 5% to the risk of breast cancer. The great majority of hereditary breast cancer may be due to common low-penetrance alleles or other still unknown genetic factors.
Abbreviation: BC, breast cancer.

Table 1 Classes of genetic susceptibility and comparison of their different features

High-penetrance Moderate-penetrance Low-penetrance

Genes BRCA1, BRCA2 CHEK2, ATM, PALB2, BRIP1,  
RAD51C

10q26.13 (FGFR2), 2q33 (CASP8), 5q11.2  
(MAP3K1), 11p15.5 (LSP1), 16q12.1 (TNRC9),  
6q25 (eSR1), 14q24 (RAD51L1), 2q35,  
8q24, 5p12, 1p11

Population frequency ,0.1% MAF , 2% MAF . 10%
Cancer risk (odds ratio) .10.0 .2.0 1.1–1.6
Population attributable risk Small individually small High
Functional effect Direct effect of mutation Direct effect of variant Linkage disequilibrium with causal variants
Strategy for identification Linkage and positional cloning;  

resequencing of candidate genes
Resequencing of candidate  
genes

Case-control studies; genome-wide  
association study

the protein product. The most common type of  mutations are 

small frameshift insertions or deletions, nonsense mutations, 

or mutations affecting splice sites resulting in a deletion of 

complete or partial exons or insertion of intronic sequences. 

The Breast Cancer Linkage Consortium has reported that 

approximately 70% of BRCA1 mutations and 90% of BRCA2 

mutations in linked families are truncating mutations.4 In 

addition to truncating mutations, an elevated number of 

missense variants has been identified. The most frequent are 

the BRCA1 G61C in the RING-finger codon and the BRCA2 

I2490T in exon 15.

Some studies also indicate that BRCA1/2 polymor-

phic variants could be associated with an increased risk 

of breast and ovarian cancer.23,24 Association between the 

BRCA2 N372H variant and increased breast cancer risk in 

particular has been reported from population-based stud-

ies.25  Interestingly, we observed an association between the 

BRCA2 N372H variant and risk of male breast cancer in 

young patients.26 Breast cancer risk in women is influenced 

by the position of the mutation within the gene sequence. 

Women with a mutation in the central region of BRCA1 were 

shown to have a lower breast cancer risk than women with 

mutations outside this region. BRCA2 mutations located in 

the central region, referred to as the ovarian cancer cluster 

region, also appear to be associated with a lower breast can-

cer risk and a higher ovarian cancer risk than other BRCA2 

mutations.27,28

Specific BRCA1 and BRCA2 mutations show a high 

frequency in specific countries or ethnic groups, particularly 

in genetically isolated populations. These mutations descend 

from a single founder. For example, two founder mutations 

in BRCA1 (185delAG and 5382insC) and one in BRCA2 

(6174delT) account for the majority of all BRCA1/2 muta-

tions (.90%) in the Ashkenazi Jewish population.29 BRCA1 

185delAG is present in about 1% of Ashkenazi Jews and in 

20% of Ashkenazi women affected by breast cancer before 
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the age of 50 years.18,30 A single BRCA2 mutation (999del5) 

has been found in the majority of multiple-case breast cancer 

families in the Icelandic population.31,32 The BRCA2 999del5 

accounts for about 8% of female breast cancer, rising to 24% 

of female breast cancers before the age of 40 years, and for 

about 38% of male breast cancers.32,33 In Italy, a historically 

and genetically heterogeneous country, BRCA1/2 founder 

mutations are found in small isolated geographic areas. The 

BRCA1 5083del19 was found in a geographically homoge-

neous population from Calabria, a region of Southern Italy, 

where it accounts for 33% of overall gene mutations.34 A high 

frequency of BRCA1 5083del19 mutation has also been iden-

tified in the population of Sicily, a region near to Calabria.35 

Other regional founder mutations have been reported in 

Tuscany (BRCA1 1499insA, BRCA1 3347delAG), a region 

in Central Italy of ancient settlement.21,22,36

In addition to point mutations, small deletions and 

insertions, large-scale BRCA1/2 rearrangements, including 

insertions, deletions, or duplications of more than 500 kb of 

DNA, have been identified in both male and female breast 

cancer.37–40 Large genomic rearrangements may account for 

3%–15% of all BRCA1 and BRCA2 mutations.38 The higher 

density of Alu repeat sequences in BRCA1 and both Alu and 

non-Alu repetitive DNA in BRCA2 are thought to contribute 

to the large number of deletions and duplications observed 

in these genes.37,40–43 The frequency of large BRCA1 genomic 

rearrangements in families with a strong family history of 

breast and/or ovarian cancer, varies greatly (0%–36%) in 

different populations.37–39 The frequency of large BRCA2 

genomic rearrangements seems to be lower (1%–2%) in 

comparison with BRCA1.41,44 Interestingly, large genomic 

rearrangements in BRCA2 are more frequent in families with 

male breast cancer.38,43

Moderate-penetrance breast  
cancer genes
Overall, fewer than 10% of breast cancers are attributable 

to known mutations in the breast cancer susceptibility 

genes, BRCA1 and BRCA2.13 Recently, direct interroga-

tion of candidate genes involved in BRCA1/2-associated 

DNA damage repair pathway has led to the identification 

of other breast cancer susceptibility genes, classified as 

moderate-penetrance genes (Table 1). Variants found in this 

class of genes confer a smaller risk of breast cancer than 

BRCA1/2 and, because of their rarity, are very difficult to 

detect in the population. Overall, mutations in moderate-

penetrance genes account for less than 3% of the familial 

risk of breast cancer.13

CHEK2 1100delC was the first moderate breast cancer 

risk allele identified and was associated with a twofold 

risk among breast cancer cases unselected for family history 

and fivefold among familial breast cancer cases.45,46 The 

CHEK2 1100delC mutation has also been shown to confer 

approximately a tenfold increase in breast cancer risk in 

men lacking BRCA1/2 mutations, and was estimated to 

account for 9% of familial high-risk male breast cancer 

cases.45 However, this association is not so evident in 

male breast cancer series unselected for family history, 

in which it was reported that the CHEK2 1100delC is 

unlikely to account for a significant proportion of male 

breast cancer cases.47–50 The contribution of the CHEK2 

1100delC mutation to breast cancer predisposition in both 

genders varies by ethnic group and from country to country. 

A decreased frequency of the 1100delC allele in North to 

South orientation has been observed in Europe both for 

male and female breast cancer.50–53 Identification of the 

CHEK2 1100delC mutation as a breast cancer-associated 

allele induced mutational screening of the whole CHEK2 

gene sequence. However, at present, only a small number of 

rare truncating mutations and missense variants have been 

reported in breast cancer cases.54,55

ATM was first proposed as a breast cancer predisposition 

gene by epidemiological studies that reported an increased 

breast cancer risk in relatives of patients with ataxia 

telangiectasia, a recessive syndrome caused by mutation 

in the ATM gene.56,57 However, molecular data corroborat-

ing this observation were provided after 20 years.58 To 

date, many truncating splice site mutations and missense 

variants for ATM have been found and associated with a 

relative risk of breast cancer of about 2.4.58 Currently there 

are no data about the role of ATM in men predisposed to 

breast cancer.

The involvement of BRCA2 in the Fanconi anemia 

pathway promoted mutation screening of other Fanconi 

anemia genes functionally linked to BRCA2, such as PALB2, 

BRIP1, and, more recently, RAD51C.59 PALB2 truncating 

mutations were estimated to be associated with a 2.3-fold 

increased risk.60 PALB2 mutations have now been identified 

in many countries, with frequencies varying from 0.6% to 

2.7% in familial breast cancer cases.61–69 Two founder PALB2 

mutations, 1592delT and 2323C . T, were respectively 

identified in 1% of Finnish and 0.5% of French-Canadian 

breast cancers unselected for family history.70,71 Interestingly, 

PALB2 mutations were found in families with both female 

and male breast cancer cases, suggesting that PALB2 may be 

involved in male breast cancer risk.60,67 To date, five  studies 
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have reported on the frequency of PALB2 mutations in male 

breast cancer.70,72–75 Overall, PALB2 seems to have a role 

as a moderate-penetrance gene in male breast cancer to a 

comparable extent as for female breast cancer. Recently, it 

has been reported that PALB2 heterozygote mutation carri-

ers were four times more likely to have a male relative with 

breast cancer.76

Deleterious BRIP1 mutations were initially estimated to 

confer a twofold increased breast cancer risk and to account 

for about 1% of BRCA1/2 negative familial/early-onset breast 

cancer cases, but further studies suggested that the BRIP1 

contribution to breast cancer susceptibility might be more 

limited than initially reported.77–80 Indeed, a total of only 

eight BRIP1 truncating mutations in 11 BRCA1/2 mutation-

negative breast cancer cases from three independent studies 

have been identified worldwide.77,81,82 Several studies in 

diverse populations failed to detect truncating mutations.78–80 

To date, only one study has investigated the role of BRIP1 

in male breast cancer susceptibility, and no evidence was 

found that germ-line variants in BRIP1 might contribute to 

male breast cancer predisposition.83 Taken together, these 

data suggest that the contribution of BRIP1 to breast cancer 

predisposition in both females and males is less consistent 

compared with other moderate breast cancer susceptibility 

genes, such as CHEK2 and PALB2.

Recently, mutations in RAD51C, another gene associ-

ated with Fanconi anemia, were identified as breast cancer 

susceptibility alleles, accounting for 1.3% of female patients 

from families with at least one case each of breast and ovar-

ian cancer.84 However, further studies did not confirm this 

frequency.85,86 At present, there is no evidence that RAD51C 

mutations contribute to male breast cancer susceptibility.87

Low-penetrance breast cancer 
genes
A polygenic model, in which many genes that confer low 

risk individually act in combination to confer much larger 

risk in the population, has been suggested for susceptibility 

to breast cancer and other common cancers.88 Breast cancers 

unaccounted for by currently known high-penetrance and 

moderate-penetrance breast cancer susceptibility genes can 

be explained by this model. This hypothesis, speculated 

for years, has only recently been confirmed by multigroup 

collaborations working in genome-wide association studies 

performed in a very large series of cases and controls from 

different countries, in order to increase the power to detect 

small effects on risk.89,90 Common low-penetrance breast 

cancer susceptibility single nucleotide polymorphisms have 

thus far been reported in regions that cover known protein-

coding genes, including CASP8, FGFR2, TNRC9, MAP3K1, 

LSP1, RAD51L1, and ESR1 and in regions such as 8q24, 

2q35, 5p12, and 1p11 with no known protein-coding genes 

(Table 1).90–95 The relative risk conferred by these alleles 

ranges from 1.07 to 1.26. Overall, these single nucleotide 

polymorphisms are estimated to account for less than 4% of 

the familial risk of breast cancer in women.90 Interestingly, 

many of the alleles are in intronic portions of genes, and 

often are noncoding regions that may confer  susceptibility. 

This might be explained by the observation that some 

of these loci are located in regions of linkage disequilib-

rium that cover different genes, but it is very difficult to 

establish which of a set of variants in linkage disequilibrium 

is the most functionally relevant.96 Furthermore, some of 

these single nucleotide polymorphisms, including CASP8, 

FGFR2, TOX3, and MAP3K1, could act as modulators of the 

risk conferred by mutations in the high-penetrance breast 

cancer susceptibility genes, BRCA1 and BRCA2.97 Recently, 

a subtle regulatory effect of one allele in the prostate/breast 

cancer-associated 8q24 block was also demonstrated, which 

acts as a cis enhancer of the MYC promoter.98 Interestingly, 

different haplotype blocks within 8q24 were specifically 

associated with risk of different cancers.99 In particular, four 

blocks were site-specific (one for breast cancer and three for 

prostate cancer), and a fifth was a multicancer susceptibil-

ity marker because it was associated with a risk of various 

cancers, including prostate, colon, ovarian, kidney, thyroid, 

and laryngeal cancer, but not breast cancer.99–101 None of 

the presently identified loci is directly linked to the DNA 

repair pathway. Instead, many of the coding loci are in genes 

somatically mutated in diverse cancers, including breast 

cancer. Recently, it was observed that genetic germ-line 

variations in genes encoding for “driver kinases” may influ-

ence breast cancer risk, thus suggesting that low-penetrance 

alleles might be a link between germ-line and somatic altera-

tions in breast cancer.102

Specific single nucleotide polymorphisms seem to be 

associated with specific clinicopathological features. In 

particular, loci at FGFR2, MAP3K1, and 2q35 were found to 

associate specifically with estrogen receptor-positive breast 

cancer.92,103,104 Data are still limited for less common tumor 

subtypes, such as estrogen receptor-negative or basal-like 

breast tumors. Whether these loci are associated with the 

risk of breast cancer in males has not yet been investigated, 

but an involvement of low-penetrance alleles in male breast 

cancer susceptibility cannot be excluded and warrants ad 

hoc studies.
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Acquired alterations in breast 
cancer
Breast cancer development and progression is a multistep 

process resulting from the accumulation of genetic altera-

tions, such as mutations and copy number variations, and 

also epigenetic alterations, such as promoter methylation, 

resulting in aberrant gene expression. The increasing number 

of deregulated genes subsequently affects important cellular 

networks, such as cell cycle control, DNA repair, cell adhe-

sion or migration, and differentiation, driving normal breast 

cells into highly malignant derivatives with metastatic poten-

tial. Such alterations can result either in inactivation of tumor 

suppressor genes (eg, TP53, BRCA1) or activation of proton-

cogenes (eg, PIK3CA, MYC), both of which contribute to the 

malignant state of a transformed cell. Recent landmark stud-

ies have shed new light on the genomic landscape of breast 

cancer. Within a breast tumor there are many infrequently 

mutated genes and a few frequently mutated genes, resulting 

in incredible genetic heterogeneity.105,106 The great majority 

of somatic mutations frequently lie in hotspot regions that 

might represent targets in cancer therapy. Both genetic and 

epigenetic alterations are also frequently associated to spe-

cific biological and clinicopathological tumor characteristics, 

allowing the identification of personalized therapies targeting 

the associated molecular pathways.107–116

Genetic alterations in breast cancer
A number of gene and chromosome alterations have been 

identified in sporadic breast carcinomas. Indeed, the great 

majority of breast cancer cases are due to solely somatic 

genetic alterations without germ-line ones.117,118 A heteroge-

neous set of somatic alterations, including gene amplification, 

deletion, mutations, and rearrangements, were reported to 

be involved in the etiology of breast cancer.6 The amount 

of information on these alterations has been dramatically 

increased by the introduction of high-throughput molecular 

cytogenetic approaches. Using large-scale approaches, the 

sequence of about 18,000 genes has been analyzed in breast 

cancer cases, and it has been reported that about 10% of 

these had at least one nonsilent mutation.105 The great major-

ity of alterations are single base substitutions (about 90%), 

with a prevalence of missense changes (60%, Figure 2). The 

remainder are somatic mutations resulting in stop codon or 

splice site alterations, and only a few of these are insertions, 

deletions, or duplications105 (Figure 2). Somatic mutations 

found in cancers can be subdivided mainly into two biologi-

cal classes, ie, “driver” and “passenger” mutations. Driver 

mutations confer proliferative advantage to tumor cells and 

are positively selected during cancer development. Passenger 

mutations are present in the tumor progenitor cells, are bio-

logically neutral, and do not confer a growth advantage.105

Several studies have shown a bimodal distribution of 

mutations in breast cancer. It has been proposed that the 

genomic landscape of breast cancer consists of “mountains” 

and “hills,” where the mountains correspond to the most fre-

quently mutated genes, specifically PIK3CA and TP53, and 

the hills consist of a much larger number of less frequently 

mutated cancer-associated genes (,5%).105,106 Additional to 

mutations in PIK3CA and P53, alterations in several genes 

implicated in pathways involved in breast tumorigenesis, 

including the phosphatidylinositol 3-kinase/Akt and NF-kB 

pathways, have been also identified (eg, IKBKB, IRS4, 

NFKBIA, NFKBIE, NFKB1, PIK3R1, PIK3R4, RPS6KA3, 

MAP3K1, AKT1, and GATA3 genes).105,119,120 These genes 

could be considered the hills of the mutational landscape of 

breast cancer, because their mutation frequencies are lower 

than for genes considered to be the mountains.

Mutations of the PIK3CA gene are observed in 16%–40% 

of female breast cancers and in about 18% of male breast 

cancers.109,121–124 PIK3CA mutations are associated with a 

positive estrogen receptor and progesterone receptor status, 

nodal involvement, and high histological grade, suggest-

ing that they could be strong prognostic factors in breast 

cancer.107–110 The great majority (85%) of PIK3CA muta-

tions are in exons 9 and 20, encoding the helical and kinase 

Insertions/
Duplications
0.6%Splice site

Synonymous
26%

Missense
60%

Nonsense
5.1%

5.5%

2.8%

Deletions

Figure 2 Somatic mutations in breast cancer. The great majority of somatic mutations 
are single base substitutions, mainly missense mutations; missense changes account 
for about 60% of somatic alterations; the remaining somatic mutations result in stop 
codon (5.1%) or in alterations of splice site (2.8%) and only a few percentages of 
these are insertions, deletions, or duplications (5.6%).
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domains, respectively. The majority of mutations are located 

in two hot spot regions, including the central helical domain 

and the COOH terminal kinase domain. The three most com-

mon hot spot mutations lead to amino acid changes in the 

helical domain (E542K and E545K) and in the kinase domain 

(H1047R).125 In particular E542K, E545K, and H1047R rep-

resent 3.6%, 6.2%, and 14.8% of the total PIK3CA mutations 

in breast cancer, respectively.125

Mutations of the TP53 gene in breast cancer range from 

15% to 71% among different populations.126 More than 90% 

of TP53 mutations reported in breast cancer are located in 

conservative regions within exons 5 to 8.126,127 More than 

2% of all TP53 mutations are represented by three TP53 hot 

spot mutations, ie, 273 (CGT . CAT), 158 (CGC . CTC), 

and 248 (CGG . CAG).128 However, an overrepresentation 

of codon 163 (TAC . TGC) mutation has been observed 

in breast cancer. Indeed, this codon, rarely mutated in most 

cancers, accounts for over 2% of all breast cancer mutations. 

Interestingly, codon 163 is a hot spot for TP53 mutation in 

breast cancer among BRCA1/2 carriers.127 Overall, TP53 

mutations are strongly associated with high histological 

grade, negative estrogen receptor status, increased global 

genomic instability, and germ-line BRCA1 mutations.111–113 

At least 14 different common polymorphisms have been 

described in the TP53 gene (IARC p53 data base www.p53.

iarc.fr/p53main.html). The most common TP53 polymorphic 

variants are the16 bp duplication in intron 3 (TP53PIN3) and 

the TP53 G215C (Arg72Pro). There is some evidence of an 

association between TP53PIN3 and Arg72Pro variants and 

elevated breast cancer risk, although some studies suggest 

a neutral or protective effect for these polymorphisms.129–131 

Genotype and haplotype analyses of these two TP53 poly-

morphisms also revealed that the presence of a specific 

haplotype carrying the consensus sequence for TP53PIN3 

(allele without the 16 bp insertion), and the variant allele for 

Arg72Pro (72Pro) is associated with an earlier age at onset 

of breast cancer in BRCA2 mutation carriers.132,133

In addition to nonsynonymous mutations arising from 

single nucleotide substitutions, several splice variants spe-

cific to breast cancer have been reported.134,135 Interestingly, 

breast cancer-specific alternative splicing is not restricted 

to splicing defects resulting in loss of protein functions, and 

may also include modifications that generate proteins with 

new functions.134

Alternative splicing events can involve breast cancer-

specific genes, such as BRCA1, ESR2, and HER2, or genes 

involved in cell cycle progression, DNA damage response, 

and spliceosome assembly.134,136–138 The number of known 

BRCA1 mRNA variants representing aberrant splicing 

products is relatively high.136 The four predominant mRNA 

variants with a molecular weight lower than full length 

BRCA1 are ∆(9,10), ∆(9,10,11q), ∆(11q), and ∆(11). The 

variants that would be expected to differ the greatest at the 

functional level from the full length species are those lacking 

the largest exon 11, containing many functional domains 

involved in protein–protein interaction.136

Different ESR2 (estrogen receptor β) splice variants have 

been identified, and studies on the function of some of these 

suggested that they might act as a dominant negative receptor 

in the estrogen receptor α and β pathways.135,139

A specific splicing variant of HER2 (∆HER2), which 

causes lack of exon 16 encoding the extracellular domain, 

has been identified in 9% of breast cancers overexpressing 

HER2 protein, suggesting that HER2 proteins carrying 

splicing variants may represent the oncogenic receptor 

population.137,140

Different alternative splicing events have been identified, 

in which changes in splicing correlate with estrogen recep-

tor status and histological tumor grade.134 Thus, analysis of 

alternative splicing might provide information about the 

biology of the tumor.

Genomic instability, such as gene copy number altera-

tions and DNA amplifications, has also been observed 

frequently in breast cancer. The most commonly amplified 

regions in breast cancer include 8q24, 11q13, 12q14, 17q11, 

17q24, and 20q13, with amplification of genes such as HER2 

(15%–20%), EGFR (14%), MYC (15%–20%), CCND1 

(15%–20%), ESR1 (20%), and EMSY (7%–13%).114,141,142 

Amplification of these regions increases genetic instabil-

ity in breast cancer and is generally associated with poor 

prognosis.114

HER2 and EGFR are members of the epidermal growth 

factor receptor family, and both genes are targets for copy 

number amplification in breast cancer.143 Amplification of 

the HER2 gene causes HER2 protein levels that are 10–100 

times greater than normal. HER2-positive breast cancers 

are associated with a worse prognosis and resistance to 

hormonal therapy.144,145 EGFR upregulation in breast cancer 

is not only due to gene amplification but often results from 

either high polysomy of chromosome 7 or transcriptional 

induction by the transcription factor YBX1 (Y box binding 

protein 1).146 EGFR amplification is frequently associated 

with poor prognosis parameters in breast cancer patients, 

such as large tumor size, high histological grade, high pro-

liferative index, and negative estrogen receptor status.147,148 

Moreover, increased EGFR gene copy numbers are observed 
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in triple-negative (estrogen receptor, progesterone receptor, 

and HER2 negative) breast cancers together with decreased 

BRCA1 mRNA expression.149

MYC functions as a transcription factor, regulating up to 

15% of all human genes. Although the relationship between 

amplification and overexpression is not clearly delineated, 

MYC amplification is significantly correlated with aggressive 

tumor phenotypes and poor clinical outcomes. MYC amplifi-

cation is emerging as an important predictor of response to 

HER2-targeted therapies, and its role in BRCA1-associated 

breast cancers makes it an important target in basal-like/

triple-negative breast cancers.150

Other two genes frequently amplified in breast cancer 

are ESR1 and CCND1. Amplification of ESR1 is associ-

ated with the expression of the estrogen receptor in breast 

cancer.151 Overall, higher ESR1 gene amplification is found 

in tumors with CCND1 gene amplification in comparison 

with tumors without CCND1 gene amplification.151 CCND1 

amplification occurred preferentially in estrogen receptor-

positive breast cancer and is associated with reduced overall 

survival.152–155 Tumors which are sufficiently genetically 

unstable to develop one gene amplification have increased 

probability of  developing multiple gene amplifications. The 

coamplification of one or several oncogenes, such as EGFR, 

ErbB2, CCND1, or ESR1, occurs commonly in breast cancer, 

and is reported in up to 30% of CCND1-amplified and up to 

40% of ErbB2-amplified tumors.114

EMSY amplification in sporadic breast tumors has been 

shown to be associated with a poor prognosis.141 Amplifica-

tion of EMSY has been reported in sporadic breast cancer 

but not in BRCA2-associated breast cancer, suggesting that 

BRCA2 mutations and EMSY gene amplification may be 

mutually exclusive.156 Indeed, EMSY protein interacts with 

the transactivation domain of BRCA2, reducing its activity, 

and it has been suggested that amplification of EMSY can 

explain somatic BRCA2 inactivation.156

Recently it has been reported that male breast cancers 

have a lower frequency of gene copy number alterations 

than female breast cancers.157 Moreover, different chromo-

somal regions were found to be altered in male and female 

breast cancer. Male breast cancer alterations targeted 

Xp11.23 and 14q13.1 regions in more than 50% of cases. 

Shared amplified regions between male and female breast 

cancers are 8q24 (53%), 11q13 (50%), and 17q24 (30%), 

mapping for MYC, EMSY, and HER2, respectively.117,157 

Furthermore, HER2 and CCND1 gene amplification is 

observed in about 8% and 12% of male breast cancer cases, 

respectively.158,159

Epigenetic alterations
Epigenetic changes, in particular DNA methylation, are 

emerging as one of the most important events involved in 

breast cancer initiation and progression, and there is evidence 

that DNA methylation may serve as a link between genome 

and environment. Interestingly, factors that can be modulated 

by the environment, such as estrogens, elicit epigenetic 

changes (such as DNA methylation) and this could contrib-

ute to breast cancer risk. Furthermore, tumor-specific CpG 

island hypermethylation profiles are now emerging in breast 

cancer.7 Tumor-related genes that become hypermethylated 

may play a significant role in breast cancer, including BRCA1 

and hormone response genes, such as estrogen, progesterone, 

androgen, and prolactin receptors.160 Epigenetic silencing 

is one of the mechanisms by which mammary epithelial 

cells repress estrogen receptor expression, leading to the 

estrogen receptor-negative molecular subtypes of breast 

cancer.161 ESR1 methylation is more common in estrogen 

receptor-negative than in estrogen receptor-positive tumors, 

but there is no clear link between ESR1 methylation and 

estrogen receptor status. It has been suggested that a het-

erogeneous ESR1 gene methylation pattern may evolve 

during breast cancer progression and play a role in estrogen 

receptor-negative recurrences or metastases in patients with 

estrogen receptor-positive tumors.162 Interestingly, breast 

tumors with BRCA1 methylation show a high frequency of 

ESR1 promoter methylation. BRCA1 somatic mutations are 

extremely rare in sporadic breast cancer, but 9%–13% of 

these tumors reveal aberrant BRCA1 methylation, especially 

when loss of heterozygosity occurs at the BRCA1 locus.160 

BRCA1-associated breast cancers are generally basal-like 

tumors, and promoter methylation is one mechanism of 

BRCA1 gene silencing in sporadic basal-like breast cancers. 

However, there is no significant difference in BRCA1 methy-

lation between sporadic basal-like breast cancers (14%) 

and matched sporadic nonbasal-like breast cancers (11%). 

BRCA1 methylation also appears to be similar across distinct 

breast cancer molecular subtypes (14%–17%) including 

ductal, mucinous, and lobular breast cancers.163,164

Tumor-specific CpG island hypermethylation profiles 

are emerging, and the growing list of genes inactivated by 

promoter hypermethylation in breast cancer include genes 

involved in evasion of apoptosis (RASSF1A, HOXA5, 

TWIST1), in cell cycle control (CCND2, p16, RARβ), and 

tissue invasion and metastasis (CDH1). Tumor suppres-

sor genes, such as GSTP1, RIL, HIN-1, CDH13, APC, 

and RUNX3, are frequently methylated in breast cancer 

tissues.115,161,165 These genes are not only hypermethylated 
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in tumor cells, but show increased epigenetic silencing 

in normal epithelium surrounding the tumor site. Thus, 

methylation frequently represents an early event in breast 

cancer tumorigenesis. For example, CCND2, an important 

regulator of the cell cycle, has been frequently found to 

be methylated in breast cancer and is also methylated in 

ductal carcinoma in situ, suggesting that it may represent 

an early event in tumorigenesis.161 Another gene frequently 

hypermethylated in breast cancer is RASSF1A. RASSF1A 

methylation is also an early epigenetic event in breast can-

cer and is found in ductal carcinoma in situ and in lobular 

carcinoma in situ.160 Its diverse functions include regulation 

of apoptosis, growth regulation, and microtubule dynamics 

during mitotic progression.161

There is some evidence that DNA hypermethylation 

patterns can identify breast cancer subgroups having 

distinctive biological properties that could be used for prog-

nostication and for prediction of response to therapy.115,166,167 

An association between methylation in five genes, including 

RARb, CDH1, CCND2, p16, and ESR1, and poor histological 

differentiation of breast cancer is frequently reported.115,161 

Furthermore, distinct epigenetic profiles can be identified 

when dividing breast tumors into groups based on hormone 

receptor status.166,168 Differences in methylation status of 

the promoter region CpG islands of major breast cancer 

tumor-related genes, such as RASSF1, CCND2, GSTP1, 

TWIST, RARb, and CDH1, have been found relating to 

estrogen receptor and HER2 status.115 In particular, methy-

lation of these tumor-related genes resulted in significantly 

higher estrogen receptor-positive and HER2-positive breast 

tumors.115,161 On the other hand, double-negative (estrogen 

receptor-negative, HER2-negative) breast cancers have 

significantly lower frequencies of RASSF1, GSTP, and APC 

methylation. Interestingly, epigenetic differences between 

estrogen receptor-positive and estrogen receptor-negative 

breast cancer arise early in cancer development and persist 

during cancer progression.115

Micro RNA
miRNAs are small noncoding, double-stranded RNA mol-

ecules involved in post-transcriptional regulation of target 

genes. Aberrant expressions of miRNA are associated with 

cancer progression, by acting either as tumor suppressor 

genes or oncogenes.8,169 Much attention has been paid to 

deregulation of gene expression through the action of specific 

miRNA in breast cancer. Microarray studies demonstrated 

that overall miRNA expression could clearly separate normal 

versus cancerous breast tissue, with the most significantly 

deregulated miRNAs being mir-125b, mir-145, mir-21, 

mir-155, and mir−335.170–172 Interestingly, a large number of 

miRNAs, overexpressed or underexpressed in breast cancer, 

are predicted to regulate expression of key breast cancer 

proteins, such as BRCA1/2, ATM, PTEN, CHEK2, MLH1, 

P53, and ER.169 Moreover, specific miRNAs, including miR-

NAs that regulate genes involved in cell proliferation, such 

as MAPK, RAS, HER2, HER3, and ESR1, have been shown 

to play a direct role in male breast cancer development.173,174 

Indeed, cluster analysis of miRNA expression profiles reveals 

cancer-specific alterations of miRNA expression in male 

breast cancer distinct from female breast cancer, such as 

downregulation of miRNAs that suppress HOXD10, a protein 

involved in cell proliferation and migration, and vascular 

endothelial growth factor.173

Significant differences in miRNA expression profiles 

associated with molecular subtypes of breast cancer and 

correlated with specific clinicopathological factors, such as 

estrogen receptor, progesterone receptor, and HER2 status, 

emerged in breast cancer.170 Thus, evaluation of the associa-

tions between miRNA expression profiles and clinicopatho-

logical characteristics may be important to identify distinct 

breast cancer subgroups and may lead to improvements in the 

clinical management of breast cancer patients. Indeed, some 

miRNAs, including mir-21 and mir-145, have been shown 

to have potential clinical applications as novel biomarkers in 

the diagnosis and prognosis of breast cancer.175,176 Moreover, 

miRNAs may act as strong inhibitors of cellular pathways via 

regulation of entire sets of genes, thus suggesting a possibly 

great potential for miRNAs in breast cancer prevention and 

therapeutics.116

Future research directions
Recent advances in technology have shed more light on 

the complexity of breast cancer biology and have provided 

data that allow risk estimation for patients with inherited 

mutations, prognostic and predictive determinations for 

patients with sporadic breast cancer, and targets for therapies. 

Recently, loci identified by genome-wide association stud-

ies have greatly expanded the list of genes associated with 

breast cancer risk.

However, evaluation of the functional consequences of 

low-penetrance alleles in breast cancer risk and their associa-

tion with breast cancer molecular subtypes and clinicopatho-

logical characteristics are still challenging, but are needed for 

clinical application. Moreover, exploration of the polygenic 

model proposed for low-penetrance alleles requires further 

research in diverse and large populations. Overall, despite the 
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remarkable efforts made in recent years, much of the complex 

landscape of familial breast cancer risk remains unknown, 

suggesting the need for ongoing efforts in this field.96

The introduction of high-throughput molecular approaches 

has greatly increased the amount of information on the 

genomic landscape of breast tumors. Serial analysis of the 

cancer genome in different phases of its evolution might lead 

to improved management of the individual breast cancer 

patient.118

Moreover, studying the global methylation status as well 

as miRNA expression profiles of different types of tumors 

will allow the development of profiles unique for breast 

cancer and its subtypes, staging, and prognostic categories, 

leading to diagnostic applications and identification of new 

therapeutic targets.116,171

Conclusion
The identification of breast cancer susceptibility genes, in 

particular BRCA1 and BRCA2, has changed the management 

of breast cancer patients with a family history of breast can-

cer. Several models have been developed, and are currently 

used to assess the pretest probability of identifying BRCA1/2 

germ-line mutations in individuals at risk for hereditary breast 

and ovarian cancer. Moreover, novel therapeutic strategies 

specific for BRCA1 and BRCA2 cancers are emerging, includ-

ing crosslinking agents and poly ADP ribose polymerase 

inhibitors.156

Both genetic and epigenetic acquired alterations are 

frequently associated with specific biological and clinico-

pathological tumor characteristics, allowing identification 

of personalized therapies targeting specific molecular 

pathways. In particular, a number of compounds, including 

trastuzumab, lapatinib, and pertuzumab, are currently under 

clinical evaluation for HER2-targeted therapy.177 However, 

the majority of HER2-overexpressing breast cancers do not 

respond to HER2-targeted therapy alone.178 There is evidence 

showing that combination therapy involving the use of HER2 

and endothelial growth factor receptor inhibitors, such as 

trastuzumab and lapatinib, may have promising results in 

breast cancer treatment.178 Crosstalk between the endothe-

lial growth factor receptor/HER2 and phosphatidylinositol 

3-kinase/Akt pathways provides a rationale for combining 

anti-endothelial growth factor receptor/HER2 agents and 

inhibitors of phosphatidylinositol 3-kinase/Akt/mTOR in 

breast cancer. In addition, DNA methylation as well as miR-

NAs are currently emerging as interesting candidates for the 

development of therapeutic strategies against breast cancer. 

In conclusion, elucidation of the inherited and acquired 

genetic and epigenetic alterations involved in breast cancer 

has not only clarified the molecular pathways involved in 

development and progression of breast cancer itself, but may 

also have important clinical and therapeutic implications in 

the management of patients with breast cancer.
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