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Background: Studies have demonstrated that propionate metabolism-related genes (PMRGs) are associated with cancer progression.
PMRGs are not known to be involved in Hepatocellular carcinoma (HCC).

Methods: In this study, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were accessed for HCC-
related transcriptome data and clinical information. First, DE-PMRGs were derived by intersecting PMRGs and DEGs between HCC
tissues and normal controls. The clusterProfiler R package was then used to enrich DE-PMRGs. In addition, biomarkers of HCC were
identified, and a prognostic model was developed. Using functional analysis and tumor microenvironment analysis, new insights were
obtained into HCC. The expression of biomarkers was validated using quantitative real-time polymerase chain reaction (QRT-PCR).
Results: 132 DE-PMRGs were obtained by intersecting 3690 DEGs and 291 PMRGs. Steroid and organic acid metabolism were
associated with these genes. For the construction of the risk model for HCC samples, five biomarkers were identified, including Acyl-
CoA dehydrogenase short chain (ACADS), CYP19A1, formiminotransferase cyclodeaminase (FTCD), glucose-6-phosphate dehydro-
genase (G6PD), and glutamic-oxaloacetic transaminase (GOT2). ACADS, FTCD, and GOT2 were positive factors, whereas CYP19A1
and G6PD were negative. HCC patients with AUC greater than 0.6 were predicted to survive 1/2/3/4/5 years, indicating decent
efficiency of the model. The probability of 1/3/5-survival for HCC was also predicted by the nomogram using the risk score,
pathologic T stage, and cancer status. Moreover, functional enrichment analysis revealed the high-risk genes were associated with
invasion and epithelial-mesenchymal transition. Significantly, immune cell infiltration and immune checkpoint expression were linked
to HCC development.

Conclusion: This study identified five biomarkers of propionate metabolism that can predict HCC prognosis. This finding may
provide a deeper understanding of PMRG function in HCC.
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Introduction

Hepatocellular carcinoma (HCC) accounts for 75-85% of liver cancer cases." While immune and targeted drug therapy
are the first-line treatments for HCC, they are not suitable for all patients owing to the different biological characteristics
of tumors.” Even though the above treatments have greatly improved survival rates, advanced HCC still has a poor
prognosis. In current practice, it is widely used to predict the prognosis of HCC using the Barcelona Clinic Liver Cancer
(BCLC) classification.” However, some patients with similar tumor stages exhibit different outcomes, suggesting that the
staging system is still lacking. Therefore, exploring new biomarkers for HCC patients and constructing a risk model to
aid in the diagnosis and prognosis of HCC are of significant importance.
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Propionate metabolism differs across species.* Propionate growth triggers fatty acid breakdown, boosting three p-
oxidation enzymes. Increased amino acid and protein degradation enzymes indicate their role in supporting propionate
metabolism.” Recent research has revealed that propionate metabolism dysfunction is a significant factor in cancer and
also represents a valuable potential target in the treatment of metastatic cancer.® There were several health benefits of
propionic fermentation in colon, which include the prevention of fat deposition, lowering cholesterol, reducing inflam-
mation, and preventing cancer development.” Propionate metabolism imbalance heightens metastasis in breast and lung
cancers via ERK2-activated SP1/EGR1 switch, downregulating methylmalonyl-CoA epimerase (MCEE). MCEE loss
weakens propionate-driven anaplerosis, causing intracellular and intratumoral methylmalonic acid (MMA) buildup.
MMA, a propionate metabolism byproduct, enhances cancer cell invasiveness, exacerbating metastasis. Besides
inhibiting colon cancer cell proliferation and inducing apoptosis, propionate could act as an inhibitor of proliferation
of HCC by activating the GPR43 signaling pathway.® '° Despite this, the role of the propionate metabolism-related genes
(PMRGs) in the pathogenesis of HCC remains uncertain.

We constructed a novel prognostic model for HCC based on five prognostic biomarkers (ACADS, CYP19A1, FTCD,
G6PD, and GOT2) that were identified in this study, in which the coefficient of ACADS, FTCD, and GOT2 were
negative and that of the other were positive. The biomarkers were acquired by univariate Cox analysis and at least
absolute contraction and choice of operator (lasso) analysis. Next, univariate and multivariate Cox analyses were
performed to select the independent predictor to construct the nomogram. Additionally, we focused on the function
and the tumor microenvironment (TME) of different risk groups. Our findings may prove useful in identifying potential
targets for the clinical diagnosis of HCC and in understanding the mechanisms whereby PMRGs play a role in the
development of HCC.

Materials and Methods

Data Extraction
The RNA sequencing data, survival, and clinical information of HCC patients were downloaded from TCGA database
(https://portal.gdc.cancer.gov) and GEO database (http://www.ncbi.nlm.nih.gov/geo), respectively. The former contains

371 HCC and 50 normal control (HC) samples, and 365 HCC samples have both survival and clinical information. The
GES14520 dataset (GPL3921, https://www.ncbi.nlm.nih.gov/search/all/?term=GES14520) contains 225 HCC and 220
HC samples, and 221 HCC samples have survival information. Furthermore, a total of 291 PMRGs (relevance score >

10) were retrieved from the GeneCards database (https://www.genecards.org; Supplementary Table 1) with “propionate

metabolism” as the key work.

Functional Analysis of Differentially Expressed PMRGs (DE-PMRGs) of HCC

First, the differentially expressed genes (DEGs) between 371 HCC and 50 HC samples were compared using the “limma”
R package (version 3.48.3) (|log,FC| > 1, adj.p value < 0.05)."" Then, DE-PMRGs were obtained by intersecting the
DEGs and 291 PMRGs using “venn”. Furthermore, Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses of DE-PMRGs were conducted using the “clusterProfiler” R package (version
4.0.2) (count > 1, adj.p value < 0.05)."2

Construction of the Survival Risk Model of HCC

In this study, 365 HCC samples from TCGA database were collected for constructing the survival risk model. The
survival risk model was constructed using biomarkers obtained through univariate cox analysis and least absolute
shrinkage and selection operator (LASSO) analysis. The univariate cox analysis was implemented by “survival”
package'® (version 3.2-13) and the results was displayed by “forestplot” package'® (version 2.0.1). Furthermore,
“glmnet” package'> (version 4.1-3) was used to implemented LASSO regression analysis. The predict.coxph function
in survival package was used in calculating the risk score, as follows: Riskscore = ;X + B, X, +. + B, X,. P refers to the
regression coefficient of the prognostic gene, and X represents the expression of the gene. The HCC patients were
divided into the high- and low-risk groups on the basis of the median risk value.
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To predict the accuracy of the survival risk model, the Kaplan—Meier (KM) curve and receiver operating character-
istic (ROC) curve were analyzed between these two groups. In addition, 221 HCC samples from GSE14520 were
collected and used as the validation dataset to verify this survival risk model. The risk curve of high- and low-risk groups
and the expression heatmap of biomarkers were plotted by “ggplot2” package (version 3.3.5).'® The KM curve and ROC
curve were painted by “survminer” package (version 0.4.9)'” and “survivalROC” package (version 1.0.3),'® respectively.

Independent Prognostic Analysis and Clinical Correlation Analysis

The Wilcoxon test was used to compare the correlation between the risk score and different clinical characteristics (age,
stage, grade, cancer status, gender, pathologic stage M, N, and T). Then, the significant prognostic factors explored by
univariate and multivariate Cox analyses were used to construct the nomogram. Afterward, the calibration curves,
decision curve analysis (DCA), and ROC curves of the above model and prognostic factors were constructed to verify the
validity of the nomogram.

Functional Analysis

On the one hand, the gene set enrichment analysis (GSEA) was performed to study the function of genes in different risk
groups using the “clusterProfiler” R package (version 4.0.2) and the “org.Hs.eg.db” R package (version 3.13.0) (NES| >
1, NOM P < 0.05, q < 0.25). Next, 86 invasion-related genes were obtained from cancerSEA database,'® 1184 epithelial—
mesenchymal transition (EMT)-related genes were obtained from dbEMT?2 database,”® and 47 angiogenesis-related genes
obtained from MSigDB database.?’ The invasion score, angiogenesis score, and EMT score of each sample were
calculated using the “ssGSEA™ algorithm in “GSVA” package®® based on the expression of above genes. These three
scores and the mRNAsi score were compared in these two risk groups. The mRNAsi stemness index of patients in the
TCGA-LIHC cohort was collected from the Annex of the published literature.*?

TME Analysis

TME is a critical part of the tumor tissue.>* During this study, the relative percent of 22 immune cells in the samples was
calculated by CIBERSORT? algorithm (http://CIBERSORT.stanford.edu/). The score of 22 immune cells and 47
immune checkpoints®® were compared between different risk groups by Wilcoxon test. Moreover, the immunophenscore

(IPS), tumor immune dysfunction and exclusion (TIDE), and ESTIMATE (Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data) analyses in different risk groups were calculated for assessing the tumor
purity and the response to the immunotherapy. The IPS score of HCC patients was collected from The Cancer
Immunome Atlas (TCIA) database (https://tcia.at/home). The score of TIDE prediction, dysfunction prediction, and

exclusion prediction was retrieved from the TIDE online database (http://tide.dfci.harvard.edu/). In addition, the immune

score, ESTIMATE score, stromal score, and tumor purity of samples in the high- and low-risk groups were calculated via
ESTIMATE algorithm based on the expression of biomarkers.

Expression Verification of Biomarkers

The expression of each biomarker was verified in both TCGA database and GSE14520. After that, the expression of
biomarkers was validated by using a quantitative real-time polymerase chain reaction (QRT-PCR). Ten pairs of HCC
tumor and adjacent tissue samples were committed by the patients and the Ethics Committee of Huaihe Hospital
(Supplementary Table 2). Total RNA was extracted using TRIzol (Thermo Fisher, Shanghai, CN), and mRNA was
reverse-transcribed into cDNA using SureScript-First-strand-cDNA-synthesis-kit (Servicebio, WuHan, CN). The qRT-
PCR reaction system was made up of 3ul of cDNA, 5ul of 2xUniversal Blue SYBR Green qPCR Master Mix and lul of
each upstream and downstream primers. Finally, the reactions were performed on a CFX96 real-time quantitative

fluorescence PCR instrument. The amplification reactions were programmed with pre-denaturation at 95 °C for 1 min,
followed by 40 cycles, each cycle consisting of 95 °C for 20s, 55 °C for 20s, and 72 °C for 30s. The relative expression
of genes was calculated by the 274

listed in Table 1.

method using Gapdh as the internal reference gene. The primer sequences were
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Table | The Primer Sequences for qRT-PCR Validation of

Biomarkers

Primer Sequences

G6PD F AGAGAAGTCTGAGTCCGCCAG
G6PD R ATGCGGTTCCAGCCTATCTG
GOT2 F CGTCCGCAAGTTTGTCACTG
GOT2 R TGCAGAAAACTGGCTCCGAT
FTCD F GAGGCATTTAAGGACCAGCCT
FTCD R CACCTGGGAAGCGAGGCTAT
ACADS F CCCGAGAACACACCAGATGTT
ACADS R ATTGGTGATCCAGGCTTTGGT
CYPI9AI F AGCCCATCAAACCAGGACTC
CYPI9AI R CATCCACAGGAATCTGCCGT
Internal reference-GAPDH F CGAAGGTGGAGTCAACGGATTT
Internal reference-GAPDH R ATGGGTGGAATCATATTGGAAC

Results

A Total of 132 DE-PMRGs Were Associated with Steroid and Organic Acid Metabolic
Processes

There were 3690 DEGs (1627 up-regulated and 2063 down-regulated) between 371 HCC and 50 HC samples

(Figure 1A). Then, 132 DE-PMRGs were obtained by intersecting 3690 DEGs and 291 PMRGs (Figure 1B,
Supplementary Table 3).

These 132 DE-PMRGs were enriched to 867 Gene Ontology (GO) functions with respect to function, encompassing
steroid metabolism, carboxylic acid, organic acid, cellular amino acid metabolism, etc. Additionally, these DE-PMRGs
were linked to 49 KEGG pathways, including those for steroid hormone production, retinol metabolism, the breakdown

of valine, leucine, and isoleucine, carbon metabolism, and others (Figure 1C and D).

Five Biomarkers Were Used for Constructing the Survival Risk and Prognostic Models

of HCC
In this study, five biomarkers, namely, ACADS, CYP19A1, FTCD, G6PD, and GOT2 were identified. Among them, ACADS,
FTCD, and GOT2 were positive factors (hazard ratio < 1), while CYP19A1 and G6PD were negative factors (hazard ratio > 1)
(Figure 2A and B). The coefficient of biomarkers was shown in Table 2. Next, the risk score was calculated, and the KM curve
and risk curve indicated that the survival between the two risk groups differed significantly (p <0.0001) (Figure 2C and D). It
was determined that the survival risk model could be used as a prognostic model if the area under the ROC curve (AUC value)
of 1-5 years was greater than 0.6 (Figure 2E). Moreover, the results of KM curve, risk curve, and ROC curve in the validation
dataset (GSE14520) were consistent with those of the training dataset (Figure 2F-H).

In addition, the risk scores were considerably different between stages I and II, stages I and III, grades 1 and 2, grades
1 and 3, grades 1 and 4, grades 2 and 3, tumor free and with tumor, pathologic MO and MX, pathologic T1 and T2,
pathologic T1 and T3, and pathologic T1 and T4 (p < 0.05) (Figure 3A). Three factors, namely, pathologic T, cancer
status, and risk score were negatively associated with patient survival (Figure 3B and C). The nomogram with these three
prognostic factors was constructed, and the slopes of survival probability in calibration curve were close to 1, which
indicated that the prediction model could be used as an effective model (Figure 3D and E). In addition, the benefit rate
and the AUC value of the nomogram model were higher than others, and the AUC value of these three prognostic factors
were higher than 0.6 (Figure 3F and G). All these results suggested that the nomogram model had accurate predictive
ability for HCC, and the prediction accuracy of the nomogram model was higher than that of the single factor.
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Figure | The differentially expressed propionate metabolism-related genes (DE-PMRGs) and functional enrichment analysis. (A) 3690 differentially expressed genes (DEGs)
between liver Hepatocellular carcinoma (LIHC) and normal control (NC) samples. (B) The venn diagram of 132 DE-PMRGs. (C and D) The Gene Ontology (GO) functions
(€) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (D) enriched by 132 DE-PMRGs. BP, biological progress; CC, cellular component; MF, molecular
function.

The Genes in High-Risk Groups Were Associated with the Functions of Invasion and
EMT

The GSEA results demonstrated that the functions of alpha amino acid, fatty acid catabolic and metabolic process,
monocarboxylic acid, organic acid catabolic process, and others and the pathways, including complement and coagula-
tion cascades, fatty acid metabolism, glycine serine and threonine metabolism and degradation, PPAR signaling pathway,
and others were significantly highly enriched in the high-risk groups (p < 0.05) (Figure 4A and B, Supplementary
Table 4). In addition, the invasion score, angiogenesis score, EMT score, and mRNAsi score were significantly different
between these two risk groups. In detail, the invasion score, EMT score, and mRNAsi score were higher in high-risk
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Figure 2 Construction and validation of prognostic model for LIHC. (A) The forest diagram of 44 biomarkers obtained by univariate cox analysis (p < 0.01). (B) The
coefficients of biomarkers and the error plot for cross-validation in the least absolute shrinkage and selection operator (LASSO) analysis. The different colored lines in the
graphic above represent different genes. (C) Kaplan-Meier plot of patients in a low- or high-risk group (p < 0.0001), and the number of patients in different risk groups. (D)
Up: The risk score of each patient with LIHC. Medium: The patient survival based on the risk score. Down: The heat map of the 5 biomarkers in the high- and low-risk
group. (E) Receiver operating characteristic (ROC) curves for the predictive value of the prognostic model for different years. AUC: area under the curve. (F-H) Validation
of the prognostic model in GSE14520 dataset. (F) Kaplan-Meier plot of patients in a low- or high-risk group (p = 0.00065), and the number of patients in different risk
groups. (G) Up: The risk score of each patient with LIHC. Medium: The patient survival based on the risk score. Down: The heat map of the 5 biomarkers in the high- and
low-risk group. (H) ROC curves for the predictive value of the prognostic model for different years.
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Table 2 The Coefficient of the

Biomarkers
Gene coefficient
G6PD 1.309598e-01
GOT2 =1.119783e-01
FTCD —4.705834e-02
ACADS —3.486442e-03
CYPI9AI 4.783923e-05

groups (p < 0.05) (Figure 4C). According to these results, genes associated with invasion and EMT functions were
significantly more prevalent in high-risk groups.

The Response to Immunotherapy Was Worse, and the Level of Immune Escape Were
Higher in High-Risk Groups

There were six significantly different immune cells and 36 significantly different immune checkpoints in different risk
groups. There was a significant increase in the expressions of activated memory CD4 T cells, regulatory T cells (Tregs),
and macrophages MO in high-risk groups (p < 0.05). However, there was a significant decrease in the expression of
resting memory CD4 T cells, monocytes, and resting mast cells in high-risk groups (Figure 5A and B). Additionally, all
36 immune checkpoints, with the exception of IDO2 and ICOSLG, were highly expressed in high-risk groups (p < 0.05)
(Figure 5C). It is worth noting that the IPS score was lower, whereas the TIDE score was higher in high-risk groups
(Figure 5D and E). Based on these findings, high-risk groups experienced higher levels of immune escape as well as
poorer responses to immunotherapy. Moreover, the stromal score and immune score were higher in high-risk groups,
which indicated a lower tumor purity in these groups (Figure 5F).

Expression Verification of Biomarkers

The expressions of ACADS, FTCD, and GOT2 were significantly lower, while the expressions of CYP19A1 and G6PD
were significantly higher in HCC groups of TCGA database (p < 0.05). Furthermore, the expression trends of these
biomarkers in GSE14520 were consistent with TCGA database (Figure 6A and B). Besides, the qRT-PCR results also
showed that ACADS, FTCD, and GOT2 were extremely significantly lowly expressed, while CYP19A1 was extremely
significantly highly expressed in HCC samples (p < 0.001). These results were consistent with the results of our previous
analyses in both TCGA-HCC dataset and GSE14520 (Figure 6C).

Discussion

HCC treatment strategies vary from the stage of the disease and the underlying conditions, and patients with similar
disease phenotypes might have different molecular etiologies, which could lead to the uniqueness of treatment responses.
The categorization of patients according to their molecular characteristics would be beneficial to the construction of the
most accurate treatment predicting models.?” Nevertheless, in-depth studies have enhanced our understanding of the role
of propionate metabolism in cancer progression.”® >’

In this study, we found out 132 DE-PMRGs associated with steroid and organic acid metabolic process. Kang®' also
pointed out that the DEGs in HCC mainly included steroid metabolic process, which is consistent with our study. Deng**
proposed a new approach to HCC from the standpoint of the glycolysis and cholesterol synthesis axis and predicted its
prognosis. In addition, our study also pointed out that these 132 DE-PMRGs were associated with the degradation of
valine, leucine, and isoleucine, and carbon metabolism. The catabolism of amino acids is primarily carried out in the
liver, and the amino acid metabolism starts from the tricarboxylic acid cycle and glycolytic pathway. Additionally, cancer
cells are characterized by an enhanced glycolysis rate.”®> Wang* also noted that DEGs between high- and low-risk HCC
patients played a key role in cell metabolism, especially organic acids, inorganic acids, and lipid metabolism, which is
consistent with our study.
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ACADS, CYPI9A1, FTCD, G6PD, and GOT2 were screened and identified as biomarkers of HCC. Based on the
expression heatmap of biomarkers, it is evident that CYP19A1 and G6PD exhibit higher expression levels in the high-risk
group, whereas ACADS, FTCD, and GOT2 show elevated expression in the low-risk group. This observation aligns with the
univariate Cox analysis where CYP19A1 and G6PD exhibit hazard ratios (HR) greater than 1, while ACADS, FTCD, and
GOT2 consistently display HR values less than 1. In conclusion, CYP19A1 and G6PD are considered risk factors within the
context of Hepatocellular Carcinoma (HCC), whereas ACADS, FTCD, and GOT2 are regarded as protective factors.
ACADS could be considered a biomarker of HCC, and it was associated with methylation and might be associated with
proliferation and metastasis.>> Polymorphisms in CYP19A1 were associated with HCC and promoted prostate stem cell
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Figure 5 Analysis of immune infiltration and immunotherapy between high- and low-risk groups. (A) The proportion of 22 immune cells in LIHC samples. (B) Discrepancies
of immune cells between high- and low-risk groups. ns, not significant; *p<0.05; ** p<0.01; **p<0.001; ***¥p<0.0001. (C) Comparison of 47 immune checkpoints expression
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score, stromal score, and tumor purity between high- and low-risk groups. *p < 0.05, **p < 0.01.
Abbreviation: ns, not significant.
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proliferation and metastatic homing.*® As a tumor suppressor gene, FTCD plays a key role in the pathogenesis and
progression of HCC in tumor tissues.?” Inhibition of ferroptosis by G6PD was associated with increased proliferation,
migration, and invasion of HCC cells.*® Research has demonstrated that GOT2 expression is down-regulated in HCC
tissues, and GOT2 knockdown promotes proliferation, migration, and invasion in HCC cells.> In summary, this study has
identified five biomarkers through bioinformatics methods that may be associated with the occurrence and progression of
Hepatocellular Carcinoma (HCC). These findings hold the potential to offer novel targets for improving the prognosis and
treatment of HCC patients. Naturally, we will continue to monitor the roles of these genes within HCC and further delve into
their underlying mechanisms.Immune infiltration results in a weakened tumor immunity, EMT, stromal cell alterations,
tumor angiogenesis, and metabolic changes in TME. As a result of these changes, the tumor proliferates, invades, and
metastasizes, evading the immune system and resisting treatment.**** An immune cell infiltrating a tumor could influence
the microenvironment, and its presence is indicative of the success of immunotherapy. TIDE and ESTIMATE are two
computational tools used to predict and infer immune response and potential response to immunotherapy. According to
previous studies,* T/B cells were detected in HCC tissue, whereas immune negative regulatory cells from high-risk cohorts
were found infiltrating significantly. The high- and low-risk groups exhibited differences in the expressions of 36 immune
checkpoints based on a comprehensive analysis of 47 immune checkpoints. A higher level of tumor immune evasion was
observed in the high-risk population, which indicated a more adverse outcome. In the following analyses, we found that the
cohort that was at a heightened risk had higher TIDE scores, stromal scores, ARG scores, invasion scores, EMT scores, and
mRNAsi scores. The high-risk group exhibited a greater degree of immune scores, which indicated a greater level of
immune cell infiltration. A significant association has been established between elevated IS and a longer PFS and OS
following HCC.** PD-1 (programmed cell death protein 1) is an immune checkpoint that plays a role in down-regulating the
immune system by preventing the activation of T cells. CD8+ T cells are a type of immune cell that can kill cancer cells. It
has been shown that a high fraction of PD-1 hi CD8+ T cells in TME is positively associated with treatment response and
patient survival in cases of cancer treated with PD-1 blockade.*® A poor prognosis has been demonstrated in HCC patients
who have PD1Hi or TIM3+ PD1Hi CD8+ T cells. Based on preclinical HCC models, a personalized neoantigen vaccine
combined with PD-1 blockade increased the infiltration of CD8+ memory T cells.*” According to our hypothesis, increased
tumor immune attenuation might result from propionate-mediated modifications in the phenotype of immune cells.
Additionally, propionate promoted a higher expression of immune checkpoints, modified the transition of tumor epithelial
mesenchymal cells, triggered changes in stromal cells, and stimulated tumor angiogenesis. These results suggested that
tumors are more invasive and less responsive to treatment in the high-risk group. Nevertheless, the presence of significant T/
B cell infiltration and elevated IP scores indicate a greater possibility for the collaborative amplification of antitumor
treatment approaches of high-risk HCC patients compared with patients with minimal lymphoid immune cell infiltration.
Future research might be able to address the findings of this study.

Several limitations should be considered in this study. TCGA and GSE14520 revealed that most cases did not have
a B-related hepatitis history. Studies of this type may exclude patients with hepatitis B-related HCC from other areas with
distinct genetic phenotypes and clinical characteristics, making them susceptible to bias. Although these five genes have
been annotated through computational approaches, further research is required to elucidate the mechanisms whereby
these genes contribute to the development of HCC.

Conclusion

Based on the TCGA and GEO databases, we have identified a gene signature associated with the metabolism of
propionate that could be used to classify the prognosis of HCC patients. It might be possible to use this method for
the management of HCC patients as well as for individualized treatment planning.
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