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Background: Microglia are closely linked to Alzheimer’s disease (AD) many years ago; however, the pathological mechanisms 
of AD remain unclear. The purpose of this study was to determine whether leptin affected microglia in the hippocampus of young and 
aged male APP/PS1 mice.
Objective: In a transgenic model of AD, we investigated the association between intraperitoneal injection of leptin and microglia.
Methods: We intraperitoneal injection of leptin (1mg/kg) every day for one week and analyzed inflammatory markers in microglia in 
the hippocampus of adult (6 months) and aged (12 months) APP/PS1 mice.
Results: In all leptin treatment group, the brain Aβ levels were decrease. We found increased levels of IL-1β, IL-6 and microglial 
activation in the hippocampus of adult mice. Using aged mice as an experimental model for chronic neuroinflammation and leptin 
resistance, the number of Iba-1+ microglia and the levels of IL-1β/IL-6 in the hippocampus were greatly increased as compared to the 
adult. But between the leptin treatment and un-treatment, there were no difference.
Conclusion: Leptin signaling would regulate the activation of microglia and the release of inflammatory factors, but it is not the only 
underlying mechanism in the neuroprotective effects of AD pathogenesis.
Keywords: Alzheimer’s disease, leptin, microglial, neuroinflammation, aged

Introduction
Alzheimer’s disease (AD) is a complex neurological disorder of the central nervous system (CNS) with increasing cognitive 
dysfunction and behavioral impairment, resulting in death between 3 and 9 years after diagnosis.1 The neuropathological 
changes of AD brain include abnormal generation and deposition of A-amyloid (Aβ) peptides, either in Aβ40 or Aβ42 
fragments, and hyperphosphorylated Tau protein clumps (neurofibrillary tangles) that are accompanied by astrogliosis and 
microglial cell activation.2 As a multifactorial disease, the prevalence and progression of AD are underpinned by a variety of 
contributing factors and complicated mechanisms. Besides genetic factors, aging, unhealthy lifestyles, obesity, etc. can 
directly or indirectly facilitate the occurrence of AD.3 So, it is a challenge to address its patho-physiology and thus therapeutic 
strategies because of the complexity of various processes and their interlinking between them.

Microglia are resident immune cells in the CNS that are able to detect (micro) environmental variations and tissue 
damage.4–6 Besides well-characterized roles in neuroinflammation, removing cellular debris and repairing injuries, 
microglia also provide trophic neuronal support, synaptic pruning, and homeostasis for living neurons, which is essential 
for the remodeling of neural circuits and plasticity of synapses.7 When brain homeostasis is disturbed, microglia become 
“activated”, a state marked by morphological alterations, such as process retraction and thickness, and produced 
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inflammatory cytokines such as IL-1β and IL-6.8 Numerous searches revealed that phenotypic changes keep occurring 
in AD and that microglia communicate extensively with astrocytes, oligodendrocytes, neurons, and peripheral innate 
immune cells through certain signaling pathways and cytokines.9–13 The most important functions of microglia are 
synaptic remodeling throughout life and complement-dependent synaptic pruning throughout CNS maturation.14,15 

Brain-derived neurotrophic factor (BDNF), for example, promotes the creation of synapses that are dependent on 
learning and protects neurons from damage to the brain.16,17 Furthermore, the activation of microglia in AD pathogenesis 
is a double-edged sword since it may promote the removal of Aβ and tau while also having the ability to cause 
neuroinflammation and the neuronal impairments linked to AD.18–20

As a polypeptide hormone, leptin is primarily secreted by adipocytes and performs its biological activity mostly in 
the brain, with potential metabolic effects on neurological systems.21,22 It was found to be expressed in various brain 
regions associated with higher cognitive functions, including the cortex and hippocampus, 2 main brain areas affected 
by AD.23,24 Numerous studies have shown that the aging process significantly reduces the sensitivity of neurons to 
leptin.25 Additionally, clinical research has found a link between circulating leptin levels and the chance of developing 
specific neurological diseases including Alzheimer’s disease (AD).26 According to growing research, leptin appears to 
have cognitively enhancing and neuroprotective effects in multiple AD models. Numerous studies have identified that 
leptin has been linked to improved hippocampal neuron survival, inhibition of neurodegeneration, promotion of 
NMDA-receptor dependent synaptic plasticity and glutamate receptor trafficking, facilitation of long-term potentiation, 
reduction of Aβ levels, and inhibition of tau phosphorylation.25,27–31 It has been reported that astrocyte and microglia 
express leptin receptors using RT-PCR analysis, suggesting that inflammation and immune responses are directly 
modulated by leptin.32 Microglial pro-inflammatory responses can be enhanced by leptin, including IL-6 production, 
IL-1β release and lipopolysaccharide (LPS)-induced pro-inflammatory responses.33,34 Following avulsion of the 
preganglionic cervical root, leptin is positive correlated with the expansion of microglia and necessary for their 
differentiation into an active state.35 Moreover, inhibition of leptin activity in cerebral ischemia-reperfusion (IR) 
lesions model preserved the viability of ipsilateral hippocampal CA1 neurons, probably through reducing apoptosis 
and local inflammation.36 On the other hand, previous research observed that treatment with leptin reversed the 
upregulation of pro-inflammatory cytokines expression (IL-1β, IL-6, and TNF-α) in AD mice.37 Furthermore, in 
comparison to untreated animals, leptin treatment reduced Iba1+ cell number and increased microglial span ratio in the 
hippocampus of 12-months-old 2xTgAD animals.38 Fernández-Martos et al also found that leptin induced microglial 
neuroprotective phenotypes and reduced inflammatory responses in a spinal cord injury model.39 Myeloid cell-specific 
LepR deficient mice showed less ramified microglia and reduced phagocytosis, suggesting that leptin directly regulates 
homeostatic microglial phenotypes.40 Microglia carry out a variety of physiological functions and their abnormal 
activation can lead to harm (eg, neuroinflammation). It is possible that leptin signaling in microglia could influence the 
central nervous system’s homeostasis.

Leptin can enter the brain via the blood–brain barrier, this study aims to determine whether injection of leptin into the 
abdomen has neuroprotective effect on the AD mouse model, and to better understand leptin signaling in microglia and 
CNS homeostasis.

Methods and Materials
Animals
Male APP/PS1 mice (n = 40) used in experiments were obtained from Beijing Vital River Laboratory Animal 
Technology Co., Ltd (Beijing, China). A 12-hour light/dark cycle was maintained in a humidity and temperature- 
controlled environment with free access to food and water for all the animals. Animals were used in experiments in 
a minimal number and their suffering was minimized. Research on animals was conducted strictly in accordance with the 
Laboratory Animal Protection Handbook, as well as receiving approval from the Chengde Medical University Affiliated 
Hospital Ethics Committee (CYFYLL2019007) for animal experiments.
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Leptin Treatment
Mice were divided randomly into four groups: adult model group, leptin + adult model group, aged model group and 
leptin + age model group (n = 10 in each group). Recombinant mouse leptin (Elabscience. Catalog No. PKSM041419) 
was dissolved in sterile saline solution (0.9% NaCl). Seven days of leptin (1mg/kg) or saline injections were given 
intraperitoneally (i.p.) every day after 8 hours of fasting to both adult and aged models.38 The control and experimental 
groups were concealed from the investigators during experiments and analysis.

Tissue Collection
Isoflurane anesthesia was used to deeply anesthetize fasting mice. Brain tissue was collected from half of the subjects, 
flash frozen on liquid nitrogen, and stored at −80°C for later analysis of protein expression, while the second half of the 
subjects’ brains were postfixed for 24 h at 4°C in 4% paraformaldehyde.

Tissue Homogenates and ELISA Assays
Using a glass homogenizer on ice, frozen hippocampal samples of mice (n = 5 per group, 10mg) were homogenized in 
PBS (tissue weight (g): PBS volume (mL) =1:9). We sonicate the suspension with an ultrasonic cell disrupter to further 
break down the cells. The homogenates are then centrifuged for 5–10 min at 5000×g at 2–8°C to get the supernatant and 
centrifuge it for 5–10 minutes at 5000RPM at 2–8°C in order to obtain the supernatants.

Levels of Aβ1-40 (Amyloid Beta 1–40), Aβ1-42 (Amyloid Beta 1–42), IL-1β and IL-6 in brain tissues were 
measured by ELISA kits according to the instructions of the manufacturers. The concentration of total protein, 
which was determined using a BCA Protein Assay Kit, was used to adjust the results of ELISA measurements in 
hippocampal homogenates. The sensitivities and detection range of the assays were 4.69 (7.81–500) pg/mL for 
Aβ1-40 (Amyloid Beta 1–40), 1.88 (3.13–200) pg/mL for Aβ1-42, 4.69 (7.81–500) pg/mL for IL-1β and 18.75 
(31.25–2000) pg/mL for IL-6. All samples were assayed in duplicate and the coefficient of variation was less than 
5% for both assays.

Western Blotting (WB)
Proteins were extracted from frozen hippocampi samples using ice-cold RIPA lysis buffer supplemented with protease 
and phosphatase inhibitors. The Bradford assay was used to determine the protein concentration of the supernatant. The 
expression level of synaptophysin and leptin receptor at various epitopes in the transgenic mice was determined by WB 
analysis. A 10% SDS-PAGE gel was loaded into an electrophoresis running buffer (Tris/Glycine/SDS) and electrophor-
esed for 1 hour at 120 volts, followed by transfer to a polyvinylidene difluoride membrane. 5% Tris-buffered saline with 
0.1% Tween (TBS-T) buffer was used to block the membranes, and then mouse anti-synaptophysin (Proteintech 17,785- 
1-AP), anti-leptin receptor (Affbiotech DF7139), and anti-GAPDH antibodies (Elabscience E-AB-40337) were used to 
incubate them. Overnight at 4°C, the membranes were incubated with primary antibodies on a shaker. We rinsed the 
membranes with TBS-T and incubated them for one hour with HRP-linked secondary antibodies (Elabscience E-AB- 
1003), followed by a second rinse with TBS-T. Finally, we scanned the membranes with a GS-800 Densitometer using 
ECL to determine density of bands. We used GAPDH to normalized the synaptophysin and leptin receptor densities. 
ImageJ was used to quantify signal density.

Immunofluorescent Staining and Measurement of the Percentage Area of 
Immuno-Positive Staining
Paraformaldehyde-fixed mouse brains were processed for paraffin blocks after 24 hours to perform immunohistochem-
istry assays. According to stereotaxic atlas, hippocampus staining was carried out on sections between coordinates 1.4 
and 2.4 mm of lateral plane from medial line, then sliced into 4 μm coronal sections using a rotary microtome (Leica, 
Germany). Sections were air-dried after mounting them on gelatin-coated slides. After deparaffinization in xylene for five 
minutes, rehydration in ethanol at decreasing concentrations, they were hydrated with distilled water for five minutes. For 
IBA1 staining, sections were incubated in EDTA Antigen Retrieval Solution or citrate buffer (0.1 M) for 30 minutes for 
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antigen retrieval, followed by washing with PBS. In order to decrease endogenous tissue peroxidase activity, 3% H2O2 
was used to treatment for 10 min and PBS containing 0.3% Triton X-100 and 5% BSA was performed to block for 30- 
min. Sections were subsequently incubated with rabbit anti-IBA1 (Proteintech, 10,904-1-AP) overnight at 4°C. 
Polyperoxidase-anti-Rabbit/Mouse IgG (Elabscience E-IR-R221) was applied to incubate the sections after washing, 
then 3.30-diaminobenzidine was added to create color. To evaluate non-specific staining, sections were treated without 
the primary antibody and served as the negative control. In the end, sections were dehydrated in increasing grades of 
ethanol while being faintly counterstained with haematoxylin. Following air drying, xylene clearing, and mounting with 
DPX (Sigma-Aldrich, 06522), the sections were prepared. The Olympus BX 51 was used for the microscopic examina-
tion. The hippocampus of CA1, CA3 and DG were chosen and evaluated using ImageJ software (National Institutes of 
Health) to determine the cell number for Iba1. Per hippocampus subregion, three ROIs were consistently positioned in 
the same location across all pictures. All analyses were done blinded.

Statistical Analysis
GraphPad Prism (version 5.01 for Windows; Graph Pad Software, USA) was used for statistical analysis and graphs 
preparation. Although the D’Agostino & Pearson omnibus normality test and the ROUT test for outliers were used to 
determine the data’s normality, no data points were left out of the analysis. Our work needs to be viewed as exploratory 
given the small sample size. Two-way Analysis of Variance (ANOVA) was used to analyze data comparing four groups 
with two variables (treatment and age), followed by the multiple comparisons Tukey posthoc test. Differences between 
measures in 2 groups were analyzed with unpaired t-test. The data are expressed as mean ± standard error of the mean 
(SEM). We considered the results statistically significant if P < 0.05.

Results
Leptin Reduces Aβ1-40 and Aβ1-42 Level in the Hippocampus of Adult and Aged Mice
APP/PS1 mice, which can generate senile plaques, is a typical Aβ-related AD mice model. We used adult (6 months) and 
aged (12 months) transgenic mice, treated and untreated with leptin, to describe the ability of leptin to reduce brain Aβ 
levels. The CA1, CA3 and dentate gyrus (DG) of aged transgenic mice contains higher Aβ1-40 and Aβ1-42 level as 
compared with adult group, both leptin treatment group and un-treatment. In addition, both adult and aged mice group 
treated with leptin showed a lower level of Aβ1-40 and Aβ1-42 in the CA1, CA3 and DG of hippocampus (Figure 1A 
and B) and also demonstrated whenever used leptin has a beneficial effect.

Figure 1 Influence of leptin on the levels of Aβ1-40 (Left) and Aβ1-42 (Right) in the adult + leptin group, adult + saline group, aged + leptin group and aged + saline group.
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Leptin Alleviates the Synaptic Dysfunction in the Hippocampus of Adult and Aged 
Mice
In AD patients and various animal models of AD, synaptic integrity loss in the hippocampal brain is a crucial 
characteristic. It has also been shown that APP/PS1 double transgenic mice display a reduction in synapse number, 
which can be reversed to the previous state (3 months) by leptin treatment.41 We therefore assessed the expression of 
synaptophysin in the leptin treatment group compared with their age-matched saline treatment. Both adult and aged mice 
with leptin treatment displayed significantly higher in synaptophysin protein expression levels than age-matched controls 
(Figures 2 and 3). Additionally, aged mice had significantly lower expression levels of synaptophysin in the hippocampus 
than the adult mice. According to these findings, AD damages hippocampal synaptic integrity, and leptin treatment may 
partially alleviate impairment, especially in adult mice.

Leptin Treatment Show an Increase in Microglia Immunoreactivity in the Adult 
Hippocampus
In order to evaluate the effects of leptin on microglia in the hippocampus, Iba-1 staining was performed to access 
microglia numbers (Figure 4A–D). After seven days of leptin treatment, the number of IBA1-positive cells was increased 
in CA1 (p = 0.025) (Figure 4E), CA3 (p = 0.006) (Figure 4F) and DG (p = 0.037) (Figure 4G) hippocampal subregions of 
the adult mice when compared to controls. In old age, the CNS becomes resistant to leptin signaling and becomes more 
prone to inflammation. Since transgenic animals at this age already have significant Aβ plaque formation in the 
hippocampus, increased levels of microgliosis and microglial activation, as well as modifications in the cytokine 
production of microglia,42 we also decided to use 12-month-old mice for this experiment. We administered the same 
treatment to the aged mice with leptin, however there was no difference in the number of IBA1-positive cells between the 

Figure 2 Western blotting analysis of synaptophysin expression in the adult + leptin group, adult + saline group, aged + leptin group and aged + saline group.

Figure 3 Semi-quantitative analysis of synaptophysin expression in the adult + leptin group, adult + saline group, aged + leptin group and aged + saline group.
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two groups (Figure 4E–G). As expected, aged mice showed significantly higher in the number of microglial in the 
hippocampus than the adult mice – CA1 (p = 0.025), CA3 (p = 0.004) and DG (p = 0.005). According to our findings, 
leptin increases the number of microglia in the hippocampus subregions with an age-dependent manner.

Figure 4 Leptin increased microglial cell number in the hippocampus of adult mice, but not aged mice. (A–D) Representative images of Iba-1+ cells, in the hippocampus 
sections of the mice. (E–G) Quantitative analysis of Iba-1+ stained cells.
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Leptin Increases IL-1β and IL-6 Levels in the Hippocampus of Adult Mice
Leptin increases the amounts of pro-inflammatory cytokines in the hippocampus, which is evidence that it affects 
microglia dynamics.33,34 Here, we aimed to assess and confirm the effect of leptin on IL-1β and IL-6 levels in the 
hippocampus in adult and aged mice. For this purpose, the levels of IL-1β and IL-6 expression in hippocampus tissue 
from adult (6 months) and aged (12 months) mice were measured. Leptin significantly increased the level of IL-1β and 
IL-6 in adult mice compared to the adult saline group. In aged animals, we did not detect an increase in the level of IL-1β 
and IL-6 between in leptin treatment group and the saline treatment group, but it contains higher level of IL-1β in the 
control group as compared with the adult (p = 0.007), but no IL-6 level (p = 0.095) (Figure 5). In addition, we also 
conducted a correlation between toxic Aβ conformer levels and pro-inflammatory cytokine, but there was no significant 
correlation in all groups.

Leptin Resistance in the Aged Mice Group
Leptin Resistance is the condition where circulating levels of leptin increased and leptin sensitivity diminished, which 
affects in body fat or food intake.32 It is not only found in obesity, but also in aging and neurodegenerative diseases. 
Leptin levels were increased in the hippocampus and CSF, but leptin receptor mRNA was downregulated in the 
hippocampus and this could suggest a novel neuronal leptin resistance in AD.43 On the other hand, age-related variations 
in LepR expression levels are also shown in an animal model of AD.30 In our study, there was an age-dependent 
reduction of LepR expression in the hippocampus at 12 months of age in APP/PS1 mice (Figures 6 and Figure 7). 
Injection of leptin can increase the level of LepR expression in the adult group; however, this difference was not 
detectable in the aged group. Based on the results described above, brain leptin resistance may play a role in the 
pathophysiology of AD.

Figure 5 Influence of leptin on the levels of IL-1β (Left), IL-6 (Right) in the adult + leptin group, adult + saline group, aged + leptin group and aged + saline group.

Figure 6 Western blotting analysis of leptin receptor expression in the adult + leptin group, adult + saline group, aged + leptin group and aged + saline group.
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Discussion
According to our research, adult and aged transgenic mice showed different inflammatory reactions to leptin. This theory 
is confirmed by the fact that adult mice, but not aged mice, exhibited an increase in Iba-positive microglia in the CA1, 
CA3 and DG of hippocampus subfields in response to leptin. In addition, the study of the inflammatory markers linked to 
microglia revealed concurrently higher IL-1 and IL-6 levels in the hippocampus of adult mice. Here, it is suggested that 
leptin affects spatial memory processing and inflammatory mediator expression via activating microglia, especially in the 
hippocampus of adult mice. After leptin treatment, we discovered that pattern of microglia activation of adult mice was 
accompanied by elevated levels of IL-1 and IL-6, supporting the link between microglia phenotypes and memory 
performance.8 Although researchers have already discussed the beneficial benefits of both IL-1 and IL-6 on memory,44–47 

our findings largely link this signature to leptin influencing higher brain functions, mostly through microglia. Moreover, 
this is the first time demonstrated that the IL-1β/IL-6 level in the hippocampus of 6-month-old mice was increased but in 
the hippocampus of aged mice was not changed. Aged mice did not respond to leptin challenges by activating microglia 
and increasing the levels of IL-1/IL-6 in the hippocampus region as was seen in adult mice. Additionally, we also found 
that there was an age-dependent reduction of LepR expression in the hippocampus at 12 months of age in APP/PS1 mice, 
suggesting a different mechanism underlying brain leptin resistance during aging. It is important to note that both our 
study and the referred study did not provide evidence to exclude possible abnormalities in leptin resistance caused by 
aging. Age-related declines in peripheral and central leptin signaling seem to impair microglial responses.48,49 

Additionally, despite disagreements, it has also been established that a little quantity of leptin is created in the brain, 
however its precise function and potential impact on extracellular levels in aging brains are still unknown.50

It is widely acknowledged that the formation of Aβ oligomers in the AD brain is toxic to neural cells which can 
trigger AD pathogenesis.2 An analysis of APP/PS1 mouse brains showed that the Aβ plaques were localized in the 
hippocampus. After 8 weeks of leptin treatment, the levels of brain Aβ were significantly decreased in adult CRND8 
transgenic mice (6-months old).51 According to other researchers, leptin therapy prevented Aβ deposits from accumula-
tion in aged 2xTgAD mice (12-months old).38 Our findings found that leptin treatment decreased Aβ1-40 and Aβ1-42 
levels in the hippocampus of 6 months-age and 12 months-age mice. Leptin is known to play a role in all aspects of Aβ 
metabolism, including its synthesis, clearance, and breakdown, which suggests that it lowers Aβ levels.52 Leptin was 
additionally reported to promote the absorption of Aβ by microglia, which subsequently target Aβ for intracellular 
breakdown, although the underlying physiological functions were unknown.37

As a polypeptide hormone, leptin is primarily secreted by adipocytes and performs its biological activity mostly in the 
brain, with potential metabolic effects on neurological systems.21,22 Additionally, it alters immune cells’ 
immunometabolism.32 The activation of leptin signaling pathways causes intracellular metabolic changes, including an 
increase in glucose uptake and glycolysis and a decrease in oxidative phosphorylation (OXPHOS), which is linked to 
immune cells’ pro-inflammatory phenotype.32 Our study showed that leptin increased the microglia number and then 

Figure 7 Semi-quantitative analysis of leptin receptor expression in the adult + leptin group, adult + saline group, aged + leptin group and aged + saline group.
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led to higher IL-1β/IL-6 production in adult mice. Additionally, when leptin was treated in aged mice there was neither 
the levels of IL-1β/IL-6 nor the number of microglia difference between the leptin treatment group and controls. 
However, the microglia are more activated in aged mice than in adult ones at basal conditions, which sustained 
inflammation hypothesis in the course of aging. There is evidence that the proliferation of microglia may be promoted 
by disease pathology. Microglial activation has been reported as an important factor in the pathological development 
of AD.8,53 It has a neuroprotective effect and may lessen AD pathogenesis by lowering Aβ levels and maintaining 
synaptic integrity in APP-based models.54 Our research also demonstrated that adult mice treated with leptin had relieved 
synaptic dysfunction and increased Iba-positive microglia in the hippocampus. An earlier study showed that a rapid 
microglial response is caused by the high accumulation of Aβ.55 In general, moderate rises in these cytokines have been 
identified as a natural aspect of aging.8,56 However, significant elevations, as seen in AD, result in excessive neurotoxi-
city, which fuels the neurodegenerative process and, as a result, may be related to the pathology of AD.57 In disorders of 
the brain, severe neuronal damage can cause chronic activation that results in the persistent produce of pro-inflammatory 
chemicals and the damaging generation of ROS, both of which have negative effects.57 However, lots of convincing 
evidence performed that microglia can affect neurons by secreting substances that damage these cells, raising the 
possibility that leptin signaling in the hippocampus may play a role in the regulation of the microglia activation in AD.58

In conclusion, our data revealed that leptin signaling would regulate the activation of microglia and the release of 
inflammatory factors, but it is not the only underlying mechanism in the neuroprotective effects of AD pathogenesis. 
Activation of leptin signaling pathways affects a variety of functions, including food intake and energy expenditure, as 
well as immunometabolism in immune cells.37 Leptin receptor activation leads to changes in intracellular metabolic 
activity, including increased glucose uptake, glycolytic activity, and OXPHOS reduction, which are associated with pro- 
inflammatory phenotype of immune cells.52 Our study showed that leptin resistance of the CNS is indicated by the 
apparent paucity of leptin receptors seen in older brains. A new pathological mechanism underlying leptin resistance and 
cognitive decline in the aging brain is the rupture between leptin signaling in the hippocampus and microglia activation. 
Leptin has been demonstrated as a potentially useful therapeutic tool for AD, but essential features must be met to ensure 
its translation into the clinic in the future.
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