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Abstract: Systemic treatment for advanced hepatocellular carcinoma (HCC) has been revolutionized over the last few years following 
the approval of immune checkpoint inhibitors (ICI). Despite the promising survival extension seen with ICI combination regimens, 
responses are not universally seen and the optimal partner for programmed cell death 1 pathway inhibitors remains to be identified. 
Even fewer encouraging results have been demonstrated with ICI used for monotherapy. Several mechanisms of resistance have been 
described so far, involving characteristics of cancer cells (intrinsic mechanisms) and of the surrounding tumor microenvironment 
(extrinsic mechanisms). Factors related to therapy may also contribute to the development of resistance. Increasing research efforts are 
being dedicated to the discovery of novel approaches and targets to overcome resistance, some of which may be introduced into clinic 
in the future. Herein we describe a selection of resistance mechanisms that have been involved in impairing response to ICI and 
propose potential therapeutic approaches to overcome resistance. 
Keywords: immune checkpoint inhibitors, liver cancer, recurrence, tumor microenvironment

Introduction
Hepatocellular carcinoma (HCC) represents the most common primary liver cancer and a globally burdensome oncolo-
gical diagnosis, ranking as the sixth most frequently diagnosed cancer and the third most common cause of cancer death 
worldwide.1 Unlike other malignancies, both incidence and mortality from HCC are expected to rise by more than 55% 
in the next few decades.2 HCC usually develops in the context of chronic liver disease, with Hepatitis B virus (HBV) and 
Hepatitis C virus (HCV) infection and alcohol abuse representing the most prevalent etiologies worldwide. However, the 
proportion of HCC cases arising in the setting of underlying metabolic dysfunction-associated fatty liver disease 
(MAFLD) is rapidly increasing, and it is expected that MALFD will become the leading risk factor for HCC in the 
years to come.3 Improved management of underlying chronic liver disease is likely to reduce the risk of cirrhosis 
decompensation and the ensuing mortality, leading to an increase in the number of patients with prolonged survival from 
cirrhosis but still at risk for developing HCC. On the other hand, the increasing prevalence of MAFLD, associated with 
the lack of effective surveillance strategies in patients with non-cirrhotic MAFLD and with the intrinsic difficulty of 
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ultrasound surveillance in cirrhotic patients, is likely related to the persistently high number of cases diagnosed at 
advanced stages.4 For these patients, systemic therapy still remains the standard of care.

The advent of novel, more effective systemic therapies has markedly revolutionized the prognostic outlook of patients 
with advanced HCC. Monotherapies with the anti-programmed cell death protein-1 (PD-1) targeting agents nivolumab 
and pembrolizumab received accelerated approval by the Food and Drug Administration (FDA), based on unexpectedly 
high radiological response rates observed in uncontrolled early-phase clinical trials.5,6 However, PD-1 monotherapy 
failed in showing a significant overall survival (OS) benefit in Phase III RCTs and only pembrolizumab was granted full 
FDA approval.7,8 Primary disease progression on nivolumab monotherapy was reported in 37% of patients,7 suggesting 
that resistance to this type of therapeutic approach is common. Follow-up studies of tislelizumab and durvalumab, two 
monoclonal antibodies directed against PD-1 and programmed cell death ligand-1 (PD-L1), respectively, demonstrated 
the non-inferiority of PD-1/PD-L1 blockade against sorafenib, with meta analyses showing improved therapeutic index 
over tyrosine kinase inhibitors (TKIs).9

Conversely, it is now known that ICI-based combination regimens provide a significant improvement in OS compared 
to sorafenib in phase III RCTs, shifting the expected survival of patients with advanced disease from approximately 6 
months to up to 20 months.10,11 The combinations of atezolizumab (anti-PD-L1) plus bevacizumab (anti-vascular 
endothelial growth factor [VEGF]), and durvalumab (anti-PD-L1) plus another ICI (tremelimumab, an anti-Cytotoxic 
T-Lymphocyte Antigen 4 [CTLA-4]) have obtained full FDA approval for first-line treatment, whereas the combination 
of nivolumab plus anti-CTLA-4 ipilimumab has been granted accelerated approval for patients who have been previously 
treated with sorafenib.12 The rationale behind combining ICI with anti-VEGF is that VEGF inhibition may regulate and 
suppress elements of the tumor immune microenvironment (TiME), including regulatory T cells (T-regs), myeloid- 
derived suppressor cells (MDSCs), and tumor-associated macrophages (TAM). On the other hand, the combined 
blockade of CTLA-4 and PD-1 in ICI doublets has a distinct and non-redundant immune-biologic role within the cancer 
immunity cycle. CTLA-4 inhibition drives immune-suppression in tumor-antigen presenting cells and T-regs, while PD- 
1/PD-L1 blockade predominantly downregulates the effectiveness of the cytotoxic CD8+ T cell response.13 

Unfortunately, combinations of ICI plus TKI, such as atezolizumab plus cabozantinib or pembrolizumab plus lenvatinib, 
did not statistically improve OS compared to TKI monotherapy in phase III RCTs.14,15 Overall, compared to ICI 
monotherapies, ICI-based doublets are associated with improved outcomes, and this is probably related to the added 
benefit of each component. However, the proportion of patients obtaining long-term survival benefit still remains limited 
and does not exceed 20–30%. This has led to the development of triplet regimens that have been investigated in phase I/II 
trials (such as nivolumab plus ipilimumab and cabozantinib) or are currently under investigation (such as atezolizumab 
plus bevacizumab and ipilimumab).16,17

HCC is characterized by high clinical and biological heterogeneity, translating into an extremely variable prognosis.18 

The diagnosis of HCC can be performed by using validated imaging criteria, without the need for histological 
confirmation in patients with cirrhosis.19 This has inevitably led to a relatively limited understanding of the molecular 
mechanisms associated with prognosis and treatment response compared to other solid tumors. Nevertheless, it is well 
known that HCC is characterized by a high transcriptional and genetic heterogeneity.20 Research on molecular signatures, 
which could potentially predict outcomes, led to the identification of two major subclasses of HCC: one characterized by 
intrinsic cell proliferation, and the other defined as the non-proliferative class. The former is denoted by poor tumor cell 
differentiation and associated with chromosomal instability, as well as p53 tumor suppressor gene (TP53) mutations. 
Potentially actionable driver linked to this class is transforming growth factor beta (TGF-beta) signaling. The non- 
proliferative class is associated with more differentiated HCC, presence of mutations in the Wnt/beta-catenin pathway 
and with a better prognosis.21 Utilization of high throughput sequencing technologies led to a further deepening in the 
understanding of the functional characteristics recapitulated within the HCC TiME. First, the presence of a percentage of 
HCC with expression of markers of inflammatory response, named as immune class, was identified.22 A subsequent 
study improved the classification.23 Three phenotypic classes were defined: an immune class, characterized by high 
immune cell infiltration and PD-1/PD-L1 pathway activation, an immune intermediate class, and an immune-excluded 
class, which conversely is associated with low immune cell infiltration, low expression of PD-1 and PD-L1 and high 
frequency of chromosomal aberrations.23 A fourth subclass, defined as immune-desert pattern, has also been described; it 
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is distinguished by an impoverishment of the immune component leading to immune ignorance and a lack of priming 
T cell.24

While useful in understanding the pathogenesis of HCC, implementation of these classifications in clinical practice 
remains limited, and prospective studies proving their predictive performance are lacking. In addition to molecular 
characteristics, the heterogeneity of HCC etiology has become the subject of debate with regard to its differential ability 
to lead to effective immune-mediated tumor rejection following immunotherapy. A meta-analysis of three RCTs 
administering anti-PD-1 monotherapy or in combination with anti-VEGF to patients with advanced HCC (CheckMate- 
459,7 IMbrave150,10 and KEYNOTE-2408) showed that patients with HBV- or HCV-related HCC benefitted from ICI, 
whereas patients with HCC of a non-viral etiology did not.25 Non-viral etiology was associated with shorter survival in 
patients with HCC undergoing anti-PD-1 therapy, even after correction for potential confounding factors relevant for 
prognosis, such as severity of liver damage, macrovascular tumor invasion, extrahepatic metastases, performance status, 
and alpha-fetoprotein.25 MAFLD-HCC appears to be characterized by a particular TiME composition, including aberrant 
T cell activation, leading to tissue damage and impaired immune surveillance.25

Based on data from the IMbrave150 study, corroborated by post-registration evidence, between 19% and 22% of 
patients treated with atezolizumab plus bevacizumab experienced early disease progression following treatment.26,27

In this continuously evolving setting, the identification of mechanisms of resistance to ICI-based treatments is crucial 
to allow the identification of subgroups of patients that could experience the greatest benefit from different therapeutic 
regimens and, ultimately, to improve patient outcomes. In this review, we discuss the mechanisms of resistance to 
immunotherapies in HCC and review the main intrinsic and extrinsic mechanisms that might be exploited for therapy.

Defining Therapeutic Resistance
Resistance to immunotherapy can be occurring in patients who are primary non-responders, or it can be acquired if it 
occurs after a period of documented response to therapy.28 The mechanisms proposed to explain the primary resistance to 
immunotherapy concern the reduced immunogenicity of the tumor, which can manifest itself as low expression of 
neoantigens, altered presentation of antigens and expression of immune co-inhibitory signals.29 HCC is generally 
considered a malignancy with low tumor mutational burden (TMB).30 As a consequence, the small proportion of somatic 
mutations leads to a lower expression of putative neoantigens. Antigen presentation in HCC is also negatively influenced 
by the expression of several co-inhibitory receptors that further suppress the function of T cell immunity responsible for 
tumor control.31

Our current understanding of acquired resistance is linked to the clonal evolution of the tumor towards a low 
immunogenicity phenotype after the initiation of immunotherapy.28 As with primary resistance, impaired functioning of 
the antigen presentation system plays a highly relevant role.32,33 Little evidence is applicable to HCC to date, where 
acquired resistance represents a field of active research.34

Another important conceptual characterization of resistance relies on its distinction between intrinsic, ie, linked to 
mechanisms that cancer cells implement to avoid immune rejection, and extrinsic, therefore external to tumor cells and 
linked to the characteristics of the TiME.28 In the clinic, it is accepted that these mechanisms often overlap in 
contributing to treatment failure. Figure 1 shows selected mechanisms of intrinsic and extrinsic resistance.

Tumor-Intrinsic Mechanisms of Resistance
Among the many intrinsic mechanisms exploited by cancer cells to develop resistance to ICIs, oncogenic alterations have 
a primary role. Dysregulation of the Wnt/beta-catenin and Janus kinase (JAK) 1/2 pathways are among the key 
mechanisms studied to date, alongside the dysregulation of intracellular signaling in tumor cells and alteration of 
immune recognition processes.

The Wnt/Beta-Catenin Pathway
Dysregulated Wnt/beta-catenin signaling is one of the major oncogenic alterations in HCC.35,36 Detailed genomic 
analysis has elicited that gain-of-function mutations in the CTNNB1 gene, which encodes beta-catenin, and loss-of- 
function mutations in AXIN1 occur in around 15–35% of HCC patients.34,36 As a result of these genetic changes, Wnt/ 
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beta-catenin signaling has been linked to progression, stemness, metastasis, and resistance in HCC patients.34,36,37 

Studies have revealed that the pathway is characteristic of tumors that are enriched in cancer stem cells.38,39 Fan et al 
provided preclinical evidence on the effect of protein tyrosine kinase 2 hypomethylation enhancing HCC stemness via 
Wnt activation, ultimately causing resistance and increasing the risk of recurrence (p<0.01).38 Aberrant Wnt/beta-catenin 
activation has been associated with resistance to sorafenib and regorafenib.36,40 Harding et al demonstrated lower disease 
control rates (8.3% vs 40.2%) and progression-free (1.9 vs 5.3 months) and overall survival (2.0 vs 7.4 months) rates in 
HCC patients associated with over-activation of the Wnt/beta-catenin pathways.40 These poorer prognostic results were 
significantly associated with increased resistance rates (p<0.01).40 Similar findings have been corroborated by de 
Galarreta et al, who described that in a genetically engineered mouse model of HCC, the induced expression of 
exogenous MYC; Trp53-/- antigens causes immune evasion via upregulation of beta-catenin pathways, driving resistance 
to nivolumab and pembrolizumab.38 Incorporating next generation sequencing to identify patients with overactivated 
Wnt/beta-catenin pathways has the potential to identify HCC patients who would benefit from genome-targeted therapies. 
However, further studies into biomarker use are required before this can be integrated into standard clinical practice.

P53 Tumor Suppressor Gene
TP53 is frequently defective in human cancers, including HCC, and its mutations can be caused by both viruses and 
chemicals.41 TP53 contributes to immune surveillance by recruiting CD8+ and T-helper cells, and its perturbations could 
promote an immunosuppressive environment.42,43 A recent study that analyzed 240 samples of HCC showed an 
increased rate of TP53 mutations in a group of tumors defined as “intermediate class”, characterized by a decreased 

Figure 1 Selected mechanisms of resistance: extrinsic and intrinsic mechanisms are shown in panel A and B, and panel C respectively. Panel A represents the processes 
involved in T cell exhaustion, which are mediated by lymphocyte activation gene-3 and fibrinogen-like protein 1 (FGL-1) interaction, T cell immunoglobulin and 
immunoreceptor tyrosine-based inhibitory motif domain expression, and the development of inflammation led by Kupffer cells. Panel B shows the role of activated hepatic 
stellate cells and fibroblasts in immunosuppression. Panel C depicts intrinsic mechanisms of resistance (from left to right): the Wnt/beta-catenin pathway, interferon γ 
signaling with Janus kinase / signal transducer and activator of transcription pathway activation, and FGL-1 over-expression with beta-2-microglobulin dysfunction and p53 
tumor suppressor gene-mediated immunosuppression. Created with BioRender.com. 
Abbreviations: LAG-3, lymphocyte activation gene-3; FGL-1, fibrinogen-like protein 1; TIGIT, T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif 
domain; TREM-1, triggering receptor expressed on myeloid cell-1; HSCs, hepatic stellate cells; TGF-β, transforming growth factor beta; EMT, epithelial-to-mesenchymal 
transition; β-Catenin, beta catenin; INF-γ, interferon γ; INFGR, interferon γ receptor; JAK, Janus kinase; STAT, signal transducer and activator of transcription; PD-L1, 
programmed cell death ligand-1; β2-microglobulin, beta-2-microglobulin; TP53, p53 tumor suppressor gene.
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immune infiltration and an immunosuppressive microenvironment. In this setting, TP53 demonstrates a critical role for 
immune evasion in HCC.23

Interferon-γ Signaling Pathway
Interferon γ (INF-γ) is a cytokine secreted by T cells after the recognition of tumor neoantigens that act as a key regulator 
of immune response against tumor cells. The binding of INF-γ to its receptor on cancer cells induces the activation of the 
JAK-signal transducer and activator of transcription (STAT) signaling pathway, thus resulting in the subsequent 
transcriptional activation of PD-L1. This leads to an increased expression of PD-L1 on the tumor cells’ surface and 
subsequently, to the negative regulation of antitumor immunity.44 However, tumor intrinsic alterations of the INF-γ 
signaling pathway reduce the expression of PD-L1, thereby promoting resistance to ICI.45

Accordingly, mutations in genes involved in the INF-γ pathway, including loss of signaling-related genes (JAK 1/2) 
and amplification of suppressor genes, have been identified in patients that do not respond to anti-CTLA-4 and anti-PD-1 
therapies, thereby reinforcing the suggested role of INF-γ signaling disruption in ICI resistance.46,47 Moreover, studies 
conducted on HCC tissues identified the presence of methylations in the suppressors of cytokine signaling genes SOCS-1 
and SOCS-3, which are negative regulators of the JAK2-STAT signaling pathway. This epigenetic modification silences 
SOCS-3, thus leading to the constitutive activation of STAT3 in hepatoma cells. STAT3 is a transcription factor involved 
in the regulation of many cancer mechanisms, including resistance to apoptosis and treatment.48,49

Tumor Mutational Burden
Somatic mutations occurring within neoplastic tissue may be relevant to cancer progression beyond their functional role 
in the protein they encode. Changes in the protein conformation induced by somatic mutations can elicit immune 
responses, through the unmasking of neoantigens. The positive correlation between somatic mutations and neoantigens 
entails that the higher the TMB of a tumor is, the greater its capacity would be to trigger a more efficient and diverse 
T cell response.50 Several studies have attempted to investigate TMB as a biomarker for ICI response.51–53 Although 
TMB alone is not sufficient to predict outcome, higher TMB scores have been associated with higher ICI efficacy in 
melanoma and non-small-cell lung cancer (NSCLC).51,52,54 TMB in HCC is relatively low compared to other solid 
tumors.52 Etiologic factors specific for HCC, such as virally induced chronic liver disease, appear to be related to a higher 
TMB, leading to a better response to ICI.55 In contrast, tumors arising in the context of MAFLD show a trend toward 
lower TMB.56 While retrospective evidence shows that higher TMB levels positively correlate with an improved 1-year 
OS compared to a lower TMB, the provision of immunotherapy is not routinely informed by TMB quantification in the 
clinic. Lack of a universally validated cutoff to define TMB-high, as well as difficulties in harmonizing sequencing 
platforms and depth are among the hurdles identified in the clinical applicability of this putative biomarker in HCC.57

Dysfunction of the Antigen Presentation Machinery
The cytotoxic capacity of the host immune system against tumor cells is mediated by the effective presentation of cancer 
antigens and neo-antigens to CD8+ T cells. The latter is facilitated by major histocompatibility complex (MHC) proteins, 
which interact with T cell receptors (TCRs) on T lymphocytes and elicit cytotoxic activity.58 Downregulation of MHC 
proteins is related to immune escape of the tumor and could lead to ICI resistance.59 Mutations in beta-2-microglobulin, 
a gene associated with MHC stability on the cell surface, have been linked to ICI resistance in solid neoplasms.60 

Likewise, the suppression of MHC class I proteins caused by methylation of its transactivator caspase recruitment 
domain 5 has been related to poor antigen presentation and reduced survival.61

Fibrinogen-Like Protein 1
Fibrinogen-like protein 1 (FGL-1) is a hepatocyte protein62 involved in liver regeneration and cell proliferation.63 It is 
not only present in the liver, but it also exists in plasma, where it, however, has not been implicated in coagulation.62 

FGL-1 has been demonstrated as an important ligand for lymphocyte activation gene-3 (LAG-3 or CD223), 
a transmembrane protein that, like PD-1, represents one of several immune checkpoints considered gatekeepers of 
immune responses.64 The interaction between the LAG-3 extracellular domain and the FGL-1 domain is independent 
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from the antigen presenting machinery; their binding is less effective in resting T cells that express minimal LAG-3 
levels.65,66 Impediment of the FGL1-LAG-3 interaction in mouse models potentiates anti-tumor immunity.65 Using this 
interaction as a therapy target could allow to avoid the resistance mechanisms caused by the alteration of antigen 
presentation mechanisms, considering that the latter would not be directly involved. Moreover, FGL-1 expression within 
the tumor appeared to be correlated with the progression and prognosis of HCC, suggesting that FGL-1 could be used not 
only as a molecular target but also as a potential prognostic biomarker.67 More research is needed in order to understand 
if LAG-3 through FGL-1 blockade could have a role as a new therapeutic strategy to overcome resistance to 
immunotherapy. In addition to its therapeutic role, it will be important to analyze the prognostic potential of FGL as 
a prognostic marker. In fact, FGL-1 expression in circulating tumor cells has been related to a poor prognosis in patients 
with HCC who underwent resection.68

Therapy-Associated Mechanisms of Resistance
Antidrug Antibodies
The widespread use of immunomodulatory agents has drawn attention to their potential immunogenicity, as well as their 
related effects on the safety and efficacy of treatment.69 While the majority of monoclonal antibodies is able to induce 
antidrug antibody (ADA) formation, following interaction with the host immunity,70 the risk of ADA development is 
intrinsically drug-specific, with diverse ranges of ADAs being reported across studies. Treatment with B-cell depleting 
agents appears associated with a lower risk of immunogenicity, compared to agents that enhance T cells functions.69 

Depending on the protein composition of the monoclonal antibody, a “vaccine-like” reaction may develop with first the 
generation of low-affinity IgM antibodies, followed by the appearance of high-affinity IgG antibodies; in the presence of 
low immunogenic monoclonal antibodies, the ADAs will mostly only be responsible of a minimal clinical effect.71 Each 
patient may have non-neutralizing or neutralizing ADAs,72 capable of reducing the efficacy of monoclonal antibodies by 
altering their bioavailability and/or accelerating their clearance from circulation.73 For most agents, the titers and 
percentages of ADA-positive patients are reported, but the clinical consequences of ADAs are not investigated.70 

A recent observational study examining 132 patients with advanced HCC treated with atezolizumab plus bevacizumab, 
showed that the emergence of high titers of ADA (>1000 ng/mL) as early as 3 weeks post commencement of systemic 
therapy, was associated with shorter OS, even after adjusting for various confounding factors. Patients with higher ADA 
levels exhibited reduced systemic exposure to atezolizumab, as well as impaired proliferation and activation of peripheral 
CD8+ T cells.74 Treatment-related anti-tremelimumab and anti-durvalumab antibodies have also been reported in the 
HIMALYA trial. Different antibody percentages have been identified, depending on whether the treatment involves the 
combination of the two drugs or the single agent: anti-durvalumab antibodies were detected in 3.1%, 2.5%, and 4.6% of 
patients receiving a single dose of 300 mg tremelimumab plus 1500 mg of durvalumab every 4 weeks (STRIDE 
regimen), durvalumab as single agent, and 75 mg of tremelimumab every 4 weeks for four doses plus 1500 mg of 
durvalumab every 4 weeks (T751D), respectively; neutralizing antibodies were detected in 1.7%, 0.7%, and 0% of 
patients, respectively. Anti-tremelimumab antibodies were detected in 11.0% patients receiving the STRIDE regimen and 
21.6% receiving T751D at any visit; neutralizing antibodies were detected in 4.4% and 15.7% patients, respectively.11 

Relationship with clinical outcomes was not investigated. Considering the effectiveness of immunotherapy and its first- 
line indication in advanced HCC, further studies are needed to investigate prevalence and clinical significance of antidrug 
antibodies and their consequences on therapy efficacy. A call for the universal evaluation of ADAs across clinical trials 
as a mechanism of resistance is needed to ensure a better and more complete understanding of their significance in the 
delivery of immunotherapy.

Tumor Extrinsic Mechanisms: The Immune Contexture of the Tumor 
Microenvironment
In HCC, the TiME is known to play a critical role in HCC development and progression. It consists of a dynamic 
network of growth factors and inflammatory cytokines, extracellular matrix proteins, endothelial cells, lymphocytes, 
TAMs, hepatic stellate cells (HSCs), and stromal cells, including cancer-associated fibroblasts (CAFs).75,76 The TiME in 
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HCC exhibits a high functional heterogeneity, where certain immune infiltrating cells can either promote a favorable 
antitumor immune response or limit effective immune surveillance.77 With often functionally opposing roles, infiltrating 
cells composing the TiME constitute a neoplastic niche, where the tumor can proliferate rapidly, escape from the host’s 
defense systems that are directed against transformed cells, and facilitate the invasive behavior of cancer cells.76 This 
bidirectional effect of the TiME in influencing the biological characteristics of the tumor has been termed immunoediting. 
It consists in a dynamic process, where the immune system not only protects against cancer cell growth but is also able to 
promote tumor progression, either by establishing a facilitating TiME or by selecting tumor cells that are more fit to 
survive.78 Immunoediting is traditionally divided into three phases: elimination, where transformed cells are destroyed by 
a competent immune system; equilibrium, where cells that managed to survive the immune attack start the editing 
process; and escape, the last phase, where the tumor grows progressively, becomes clinically apparent and establishes an 
immunosuppressive TiME.78 This process is not only involved in tumor development, but it can also occur in a patient 
undergoing immunotherapy.79 Understanding the interactions among the immune response, oncogenic signaling, and the 
TiME is now more than ever critical to improve the efficacy of immunotherapies, which are highly reliant on T cell 
immune reconstitution.22,80

A more in-depth view of the TiME organization could prove useful. A recent study by Sheng et al81 focused on the 
spatial characteristics of the TiME in HCC. Using the imaging mass cytometry, regional function units have been 
identified, each one of them with a distinct distribution of stromal and immune cells. The presence of specific regions 
enriched with cancer cells has been associated with worse patient OS and PFS. At the same time, a poor prognosis was 
related to the enrichment of Kupffer cells, which negatively affected the activation of T cells.81 Indeed, technologies able 
to return data on spatial organization of the TiME could prove able to discover novel biomarkers and therapeutic 
targets.82 Having more information on the constitution of the TME, it would be possible to act on its remodeling, which 
could be one of the important immunotherapeutic approaches to improve HCC treatment.83

Lymphocyte Activation Gene-3
LAG-3 is a type I transmembrane protein with four extracellular Ig-like domains that is selectively transcribed into 
activated NK and T lymphocytes.84 It has structural similarities with another MHC class II ligand (MHC-II), called CD4, 
with which it shares approximately 20% amino acid sequence identity.85 While the interaction between MHC-II and CD4 
supports T helper cells activation, the overexpression of LAG-3 downregulates antigen-dependent T helper (CD4+) 
responses in vitro.84 LAG-3 is not instrumental in the induction phase of the immune response due to its engagement 
only after lymphocyte activation.86 Its expression can be induced by infective87–90 and tumor-related antigens, and its 
overexpression leads to the generation of exhausted T cells, which ultimately results in immune escape.91–96 Exhausted 
CD4+ and CD8+ tumor-infiltrating T cells are defective in cytokine production.97 LAG-3 blockade has been demon-
strated to reinvigorate exhausted T cells and strengthen anti-infection immunity, although to a lesser extent, compared 
with that caused by PD-1 blockade.98 Preclinical studies have suggested that the co-engagement of LAG-3 and PD-1 
further suppresses interleukin-2 (IL-2) production, which is directly involved in T lymphocyte differentiation, arguing 
that LAG-3 and PD-1 act synergistically to restrain the antigenic stimulation of CD4+ T cells.99–101 Based on these 
assumptions, several clinical trials involving patients with different solid neoplasms, evaluating both the safety of LAG-3 
inhibitors and the expression of LAG-3 as an outcome marker, have been concluded or are currently recruiting 
(clinicaltrials.gov).

T Cell Immunoglobulin and Immunoreceptor Tyrosine-Based Inhibitory Motif Domain 
(TIGIT)
TIGIT is another immune checkpoint molecule first described in 2009, able to exert its immunosuppressive effects by 
binding to the poliovirus receptor (PVR or CD155), which is highly expressed in various neoplasms, and to PVR-like 
protein.102 TIGIT is also able to modulate cytokine production in dendritic cells.102 TIGIT is expressed on NK, NKT, 
CD8+, Treg, and memory CD4+T cells; in normal conditions, it protects normal cells from NK-mediated cytotoxicity and 
counter inhibits the NK-mediated killing of tumor cells.103 It has been hypothesized that the presence or the 
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overexpression of TIGIT poses a metabolic barrier to T cell function104 and in preclinical studies, TIGIT blockade has 
been shown to enhance T cells responses.105,106 Overexpression of CD155 in HCC may lead to a defective immune 
response by upregulating TIGIT.107 Given these premises, it is understandable why TIGIT can be used as a therapeutic 
target together with other immune checkpoints, particularly in combination with PD-1 blockade: the simultaneous 
blockade of TIGIT and PD-1 enhances CD8+ T cell function in HCC.108,109 Both preclinical and clinical trials are 
actively investigating anti-TIGIT antibodies.104

CD8+ T Cell Infiltration and Functional Phenotype
CD8+ cytotoxic T cells normally play a crucial role in anti-tumor immune response. Continuous exposure to antigens, 
such as during chronic infections and cancer, leads to failure of efficient CD8+ T cell development and, ultimately, their 
exhaustion.107,110 Exhausted CD8+ T cells have both a limited effector function, caused by the loss of IL-2, tumor 
necrosis factor-α and interferon-γ production, as well as a high co-expression of inhibitory receptors, such as PD-1, 
CTLA-4, TIGIT, and LAG-3, together with extensive transcriptional changes, compared to effector or memory CD8+ 
T cells.111 As a result, exhausted CD8+ T cells fail to control tumor growth, but implementing effective methods to 
reinvigorate them can significantly impact cancer progression,112 such as with ICI. HCC more often presents with an 
exhausted phenotype of CD8+ T cells in the TiME, compared to effector CD8+ T cells. In particular, an increase in the 
number of exhausted cells has been observed in advanced stages, compared to early stages.113 Moreover, the presence of 
exhausted CD8+ T cells expressing high levels of PD-1 has been described as increased in parallel with tumor stages, 
suggesting that the severity of CD8+ T cell exhaustion is related to HCC progression.114 In accordance with what has 
already been said, HCC patients with high proportions of T cells expressing PD-1 showed significantly dismal post-
operative survival after hepatectomy and a high risk of recurrence.114 In addition to the degree of PD-1 expression, the 
ratio between effector T cells and exhausted CD8+ T cells proved to be associated with disease control in anti-PD 
-1-treated patients.115 Recruiting more active T cell populations could allow for a greater response to ICI.

The Triggering Receptor Expressed on Myeloid Cell-1
Triggering receptors expressed on myeloid cells (TREMs) are a family of cell-surface receptors expressed broadly on 
myeloid cells, capable of stimulating neutrophil- and monocyte-mediated inflammatory responses.116,117 TREM-1 was 
first described as up-regulated in infections117–119 and inflammatory conditions,120–122 but also in autoimmune 
diseases.123 It was later described that cancer cells in NSCLC can directly up-regulate TREM-1 expression in the 
patients’ macrophages, which is associated with cancer recurrence and poor survival.124 In liver fibrosis, TREM-1 
expression appeared robustly increased in Kupffer cells and monocytes/macrophages, suggesting a role in the inflam-
matory liver response and in fibrotic liver disease.125 The inhibition of the TREM-1 signaling pathway in a preclinical 
model proved to regulate the inflammatory response and attenuate the development of inflammation-associated HCC.126 

Furthermore, in HCC, TREM-1 expression on HSCs was related to the aggressive tumor behaviour.127 Knowing the role 
of TREM-1 in activating inflammation and promoting carcinogenesis, this receptor could be studied not only as a future 
target for immunotherapy but also as a potential biomarker.128

Transforming Growth Factor Beta
Transforming growth factor beta (TGF-beta), mainly secreted by HSCs, plays an important role in liver carcinogenesis 
exerting proinflammatory/fibrotic, tumor suppressive and/or pro-metastatic effects.129 In the early stages of tumor 
development, high levels of TGF-beta have been associated with better prognosis, whereas increased invasiveness and 
dedifferentiation have been reported in advanced tumors. These effects suggest that in early stages TGF-beta exerts its 
tumor suppressor function, but following disease progression it contributes to the development of a malignant 
phenotype.129 Studies have reported that TGF-beta may induce a decrease of E-cadherin, characteristic of epithelial 
cells, and an up-regulation of mesenchymal genes, thus leading to an epithelial-to-mesenchymal transition.130

Moreover, it is known that TiME-derived TGF-beta is involved in the suppression of antitumor T cell response. In 
fact, an increase in TGF-beta signaling through SMAD3 transcriptional regulation may cause the upregulation of PD-1 
expression, thus inducing T cell exhaustion and conferring resistance to PD-1 blockade therapies.131
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Activated Hepatic Stellate Cells
HSCs are mesenchymal cells located in the space of Disse between hepatocytes and sinusoidal endothelial cells.132 They 
represent the principal source of extracellular matrix formation132 and their presence is vital to hepatocellular function, as 
well as the liver’s response to injury.133 The exposure to any noxious stimulus, such as viral infection or alcohol, causes 
HSC activation and increased deposition of the extracellular matrix, ultimately leading to fibrinogenesis.134 Scar tissue 
formation is aimed at protecting the liver from further damage; however, sustained activation of HSCs leads to chronic 
fibrosis and cirrhosis.135,136 HSCs are an important source of growth factors in the liver, but they are also sensitive to 
these factors.136 In HCC, HSCs can promote chemoresistance through the secretion of hepatocyte growth factor, which 
provokes upregulation of the cancer stem cell-like characteristics of epithelial tumor cells and epithelial-to-mesenchymal 
transition.137,138 The activation of HSCs also contributes to immunosuppression: they are able to convert mature 
peripheral blood monocytes into myeloid-derived suppressor cells,139,140 they can induce T cell apoptosis through PD- 
L1 expression,141 as well as Treg cell accumulation inside the liver.142 Knowing their role in the regulation of immune 
response, targeting these cells may improve immunotherapy efficacy.

Cancer-Associated Fibroblasts
Cancer-associated fibroblasts (CAFs) represent a constitutive group of stromal cells of the TiME, capable of promoting 
hepatocarcinogenesis.143,144 While their origin is not yet fully understood, and a unique marker for their identification is 
missing,144 it appears clear that these cells can produce several factors, such as growth factors, chemokines, and angiogenic 
factors that support tumor-cell proliferation and invasion.145–148 Additionally, CAFs appear to sustain a crosstalk with the 
TiME, recruiting dendritic cells and monocytes responsible for immune response suppression,149–152 and they also have the 
ability to increase PD-1 expression.153 Indeed, CAFs infiltration in the TiME is associated with a response to 
immunotherapy.154 Moreover, their interaction with macrophages promotes the construction of a tumor immune barrier, 
which is associated with the efficacy of ICI.155 Their role in immunosuppression justifies the identification of these cells as 
a therapeutic target. Both preclinical and clinical studies of CAF-targeted therapies are under investigation,156,157 but more 
experience in HCC is needed.

Influencing the TiME: The Gut Microbiome
The gut microbiome is a complex entity that comprises different microorganisms capable of performing immunomo-
dulatory activities.158 The bacteria and their metabolites are constantly interacting with immune cells at the gut mucosa 
to coordinate immune responses in the absence of inflammation.159 This so-called “homeostatic immunity” is 
controlled by several factors, including antibody responses to commensal bacteria, innate-like T cell responses, as 
well as the microbiota and its metabolites. Given the role of the gut microbiome in the immune system, it is 
unsurprising that it has been shown to modulate T cell infiltration of solid tumors and efficacy of ICIs.160 Species, 
such as Bifidobacterium161 and A. Muciniphila160,162 in particular, have been the focus of extensive research. 
Antibiotics are well documented as having a sustained impact on gut microbiota composition,163,164 with proton- 
pump inhibitors165,166 and corticosteroids167 also likely to modulate the gut microbiome. There have been a number of 
association studies investigating the impact of these medications given prior to or concomitantly with ICIs. 
Concomitant use of these three drug types has been associated with poor patient outcomes in retrospective 
analyses,168,169 with some evidence that they have a cumulative effect on predicting OS and PFS in patients with 
advanced cancer receiving ICI therapy.170 It has also been shown that use of antibiotics during the 30 days prior to the 
start of ICI therapy significantly reduces the likelihood of treatment response and OS (independent of confounding 
factors).171 In HCC, use of antibiotics within 30 days before or after systemic therapy initiation was associated with 
a worse OS and PFS, not only in ICI recipients but also in patients treated with anti-VEGF, TKI, and placebo. These 
results highlight the complexity of HCC composition, its interaction with underlying hepatopathy, and the pleiotropic 
effects of molecular therapies for HCC.172 It is essential to establish whether this is a causative relationship mediated 
by changes in the gut microbiome,173 as the use of concomitant or prior medications provide a potential modifiable 
factor in response to ICIs.
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Conclusions
ICIs have revolutionized the treatment of advanced hepatocellular carcinoma. Nevertheless, resistance to immunotherapy 
remains a major obstacle in the treatment of HCC. Both intrinsic and extrinsic mechanisms contribute to the development 
of resistance. Among the intrinsic mechanisms, TMB, which refers to the total number of somatic mutations in the tumor, 
plays a major role in the regulation of the immune response. Notably, a high TMB, which results in a higher presence of 
neoantigens, has been linked to a greater response to treatment, even if its role has not been prospectively evaluated in 
ICI.174 Tumor intrinsic mutations can occur in genes involved in the regulation of immune response. The overactivation 
of beta-catenin is related to lower CD8+ T cell infiltration and PD-L1 expression, thus resulting in resistance to ICIs.175 

Moreover, inactivating mutations of TP53, an oncosuppressor gene, have been linked to tumor progression and resistance 
to ICIs.23,43 It has also been found that dysregulation of genes involved in the INF-γ signaling pathway, as well as defects 
in antigen presentation mediated by the MHC machinery, may contribute to ICI resistance.45,59 Cancer cells overexpress 
FGL-1, which interacts with LAG-3 on T cells, leading to T cell exhaustion and subsequently, repression of the antitumor 
response.65

T cell exhaustion belongs to the tumor extrinsic mechanisms of resistance, for which TiME is responsible. The 
suppression of T cell function may be exerted by the overactivation of TIGIT, which is caused by the overexpression of 
its ligand, CD155, thus creating an immunosuppressive microenvironment and inducing tumor escape.104 Additionally, 
studies show that increased expression of TREM-1 elicits T cell dysfunction through the modulation of PD-L1, which 
impairment fails to improve the related immunosuppression.176 Additionally, HSCs141,142 and CAFs152 can also con-
tribute to the development of an immunosuppressive framework. The gut microbiome’s influence on the TiME has been 
widely acknowledged.160

To expand the spectrum of cancer patients that could benefit from immunotherapy, more targets and innovative 
approaches need to be considered in future clinical trials.66 A number of strategies have been proposed to overcome 
resistance to immunotherapy. In addition to using triplets ICI-regimens, also other mechanisms are being explored: 
among them, reinvigorating exhausted T cell response seems to be one of the most promising, with pre-clinical and 
clinical studies currently investigating the blockade of other immunosuppressive promoters, such as LAG-3 and TIGIT 
(clinicaltrials.gov). Moreover, the modification of the immunosuppressive drift of the TiME could improve ICI-efficacy. 
Many mechanisms are thought to be responsible for the creation of an immunosuppressed niche for the tumor, but our 
comprehension of these complex interactions remains incomplete.

Another proposed method to overcome resistance to immunotherapy are vaccines. Tumor vaccines are intended to 
facilitate tumor-specific immune responses by targeting tumor antigens.177 At the present time, the technologies 
investigated for vaccines in HCC so far include dendritic cell vaccines and peptide vaccines, such as AFP and 
glypican-3 (GPC3).178 All these strategies have been demonstrated to be safe and although monotherapy with vaccines 
showed limited clinical efficacy, this could be attributed to the diverse features of HCC tumors and vaccine design, or 
even a combination of both.179 The selection of the right target for vaccines is crucial. The risk of toxicity could be 
magnified by the expression of the vaccine target in non-malignant tissues, such as in the case of tumor-associated 
antigens, which are not specifically present only in cancer cells.180 Furthermore, the development of tolerance mechan-
isms is considered a possible issue.180 A new technology for vaccines could represent a future therapeutic strategy: 
neoantigens are new protein sequences specific for each patient, resulting from mutations appearing in tumor cells.181 

Neoantigens are highly tumor-specific, as they are not present in normal cells, and they possess great immunogenic 
capacity, but they require great MHC affinity to be processed by APC and to then be recognized by T cells.179 The 
combination of neoantigen-based vaccines with ICIs has been under investigation in several solid tumors, like NSCLC, 
bladder cancer, and melanoma.182,183 The encouraging results from previous studies paved the way for the application in 
HCC: currently clinical trials involving neoantigen-based vaccines in combination with anti-PD-1 (NCT04251117, 
NCT05269381, and NCT04912765) or anti-PD-1 plus anti-CTLA-4 immunotherapy (NCT04248569) in HCC are 
recruiting, both in Phase 1 and Phase 2.

Additionally, chimeric antigen receptor (CAR) T cell therapy targeting HCC antigens may also be a promising 
strategy to overcome ICI resistance. CARs are engineered, non-MHC-restricted receptors that redirect the specificity, 
function, and metabolism of T cells, ultimately leading to an improved T cell function.184,185 They possess an 
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extracellular region of a receptor that is able to recognize a specific antigen and, consequently, lead to cell death.186 

CAR-T cell therapy has already shown promising results in some oncohematological settings,187 while its role in solid 
tumors still requires further research. Among the major obstacles that remain to be overcome concern the tumor mass 
infiltration and the presence of a particular immunosuppressive TiME.188 The ability of CAR-T to reach cancer cells in 
solid tumors is invalidated by physical barriers belonging both to the tumor itself, for instance, the stromal tumor 
structure, and to the CAR-T mobility.189 Furthermore, the lack of a single target tumor reduces the effectiveness of this 
treatment and increases the risk of toxicity on non-malignant cells.188,189 In addition, even after the identification of an 
appropriate single target, the tumor could promote an antigen escape, downregulating the target antigen expression.189 

Combining multiple antigens is an investigated strategy.190 For HCC, the tumor-specific GPC3 antigen has been 
identified as a target for CAR-T cell therapy.191–193 Several clinical trials for advanced HCC patients are investigating 
GPC3 CAR-T cells (clinicaltrails.gov). The combination of CAR-T cells and ICIs could represent a future therapeutic 
scheme capable of, on the one hand, stimulating the immune system, and, on the other hand, effectively hitting the 
chosen tumor targets. However, the problem of identifying a tumor marker of HCC that allows a more targeted therapy 
remains open, as well as the identification of a marker that allows to predict the response to immunotherapy. Various 
biomarkers have already been proposed, but none of these have been validated in HCC yet, and further research is needed 
to determine their clinical utility.

Much remains to be understood about the mechanisms of resistance to immunotherapy; further translational studies 
are required to identify the patients who will respond most to this type of therapy and to avoid unnecessary side effects in 
patients who will not respond to immunotherapy. More research is needed to develop effective strategies to overcome 
immunotherapy resistance.
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