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Abstract: Globally, primary liver cancer is the third leading cause of cancer death, and hepatocellular carcinoma (HCC) accounts for 
75%–95%. The tumor microenvironment (TME), composed of the extracellular matrix, helper cells, immune cells, cytokines, 
chemokines, and growth factors, promotes the immune escape, invasion, and metastasis of HCC. Tumor metastasis and postoperative 
recurrence are the main threats to the long-term prognosis of HCC. TME-related therapies are increasingly recognized as effective 
treatments. Molecular-targeted therapy, immunotherapy, and their combined therapy are the main approaches. Immunotherapy, 
represented by immune checkpoint inhibitors (ICIs), and targeted therapy, highlighted by tyrosine kinase inhibitors (TKIs), have 
greatly improved the prognosis of HCC. This review focuses on the TME compositions and emerging therapeutic approaches to TME 
in HCC. 
Keywords: hepatocellular carcinoma, tumor microenvironment, immunotherapy, targeted therapy

Introduction
Primary liver cancer (PLC) was the sixth most common cancer and the third leading cause of cancer death globally in 2020, with 
approximately 906,000 new cases and 830,000 deaths.1 In China, PLC is the second leading cause of cancer death, and 
hepatocellular carcinoma (HCC) accounted for 93.0% of PLC, intrahepatic cholangiocarcinoma (ICC) accounted for 4.3%, and 
combined hepatocellular-cholangiocarcinoma (CHC) accounted for 1.6%; 84.4% of HCC is seropositive for hepatitis B surface 
antigen.2 Unlike other malignant tumors, HCC is highly malignant and has a higher mortality rate in individuals aged 40–65 than 
in people older than 65 years in China.3 Therapeutic interventions, including surgical measures (either resection or liver 
transplantation) paired with non-surgical strategies like transcatheter arterial chemoembolization, radiofrequency ablation, 
chemotherapy, radiotherapy, biologic treatments, and traditional Chinese medicine, remain the cornerstone of HCC management. 
Unfortunately, most patients do not get survival benefits, and patients with survival benefits also have the problem of rapid 
recurrence and metastasis.4,5

The tumor microenvironment (TME) plays a crucial role in the development of HCC, including cell proliferation, migration, 
invasion, epithelial–mesenchymal transition (EMT), immune escape, neovascularization, and treatment resistance.6 

Characteristics of the TME include hypoxia,6 abnormal vascular proliferation,7 acidification,8 inflammation,9 and 
immunosuppression.10 Hepatitis B and/or C virus infection, alcoholism, metabolic dysfunction-associated steatotic liver disease 
(MASLD), obesity, and metabolic syndrome are the major reasons for HCC. Chronic HBV infection activates and maintains 
chronic non-resolving inflammation. HBV cccDNA forms double-stranded DNA (dsDNA) in the cytoplasm or forms cyclic 
extrachromosomal DNA (ecDNA) with human genomic DNA fragments. In the process of inflammation-cancer transition, 
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dsDNA promotes the activation of non-classical nuclear factor-kappa B (NF-κB) and produces cytokines such as transforming 
growth factor beta-1 (TGF-β1), plasminogen activator inhibitor-1 (PAI1), and helper T cell 2 (Th2), which recruit inhibitory 
immune cells such as myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), regulatory T cells 
(Tregs), and tumor-associated neutrophils (TANs). These inhibitory immune cells inhibit the antiviral and anti-tumor immune 
activities of cytotoxic CD8+ T cells (CTLs), natural killer cells (NK cells), and dendritic cells (DCs) by secreting interleukin-10 
(IL-10), TGF-β1 and producing reactive oxygen species (ROS), forming an immunosuppressive TME that promotes the evolution 
and development of HCC.11 The complex TME provides more options for the treatment of HCC.

Targeted therapy and immunotherapy toward TME have provided a promising avenue for advanced or metastatic HCC. 
Targeted therapy mainly includes multi-target tyrosine kinase inhibitors (like Lenvatinib, Regorafenib, and Sorafenib), vascular 
endothelial growth factor receptor (VEGFR) antagonists (such as Apatinib and Axitinib), and VEGF/VEGFR monoclonal 
antibodies (such as Bevacizumab and Ramelimumab).12 Various immune checkpoint inhibitors have been developed, with anti- 
programmed cell death protein 1 (PD-1) and anti-programmed cell death ligand 1 (PD-L1) agents showing significant potential as 
adjuvant treatments for early-stage HCC, leading to notable extensions in survival.13,14 These treatments not only achieve more 
durable and robust efficacy across genders but also confer significant benefits in terms of quality of life for patients.15 The 
complex TME promotes the evolution and development of HCC and also provides potential molecular targets for targeted 
therapy and immunotherapy in HCC. In this review, we focus on the compositions of TME, the interaction between TME and 
HCC cells, and various therapeutic approaches to TME, with a view to providing a reference for efficient treatments of HCC.

The Composition of TME in HCC
As a dynamic system, TME is closely related to the occurrence, development, and metastasis of HCC. TME mainly 
comprises extracellular matrix (ECM), helper cells, immune cells, cytokines, chemokines, and growth factors.16 Helper 
cells in TME mainly include cancer-associated fibroblasts (CAFs), hepatic stellate cells (HSCs), and vascular endothelial 
cells. The immune cells are TAMs, TANs, Tregs, inhibitory B cells, MDSCs, DCs, CTLs, and NK cells. CTLs, NK cells, 
DCs, and helper T cell 1 (Th1) cytokines participate in anti-tumor as well as anti-viral immunity and inhibit tumor 
metastasis; TAN, Treg, helper T cell 17 (Th17), M2-TAMs, CAFs, and Th2 cytokines facilitate immune escape and HCC 
metastasis.6 Cancer cells and immune cells express co-inhibitory receptors, including cytotoxic T cell-associated antigen 
4 (CTLA4), programmed death 1 (PD-1), T cell immunoglobulin domain and mucin domain-3 (TIM-3), and lymphocyte 
activation gene 3 (LAG3), which maintain the stability and immunosuppressive characteristic of TME in HCC.17
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Pro-Tumor Cells in TME
TAMs
TAMs play a “double-edged sword” role in the occurrence and development of HCC. M1-TAMs can kill tumor cells, while 
M2-TAMs promote tumor development. The polarization of TAM is deeply associated with TME, and the polarization of 
macrophages to M1 and M2 is reversible and adjustable. With the progression of HCC, M1-TAMs gradually polarize to M2- 
TAMs, and the increase in the number of M2-TAMs also indicates a poor prognosis.18 M1-TAMs are stimulated by interferon 
gamma (IFN-γ), granulocyte-macrophage colony stimulating factor (GM-CSF), or lipopolysaccharide (LPS). Cytokines 
secreted by Th2 cells and tumor cells, including interleukin (IL)-4, IL-10, IL-13, colony stimulating factor 1 (CSF1), 
chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-X-C motif) ligand 12 (CXCL12), and connective tissue growth 
factor (CTGF), promote the polarization of macrophages to M2.19 The upregulation of Wnt2b expression in macrophages 
promotes the polarization of TAMs from M1 to M2 by activating the Wnt2b/β-catenin/c-Myc signaling pathway.20

As shown in Figure 1, the tumor-promoting effects of M2-TAMs mainly include: secreting cytokines (such as IL-6, 
CXCL8, and IL-10), blocking the inducible nitric oxide synthase (iNOS) pathway, reducing the synthesis of nitric oxide 
(NO);21 inhibiting the activation of CTLs and NK cells and reducing their killing effects on HCC cells by secreting IL-10 

Figure 1 The complex network of interactions between cellular components in TME. In TME, pro-tumor cells promote angiogenesis, ECM remodeling, and immune escape 
via secreting various cytokines and chemokines, such as VEGF, MMPs, CCL17, CXCL20, and so on. Meanwhile, pro-tumor cells also inhibit the function of anti-tumor cells 
through the release of several cytokines, such as IL-10, NO, TGF-β, ROS, and so on. The imbalance between pro-tumor strength and anti-tumor strength forms an 
immunosuppressive TME, which significantly promotes the malignant progression as well as the recurrence, metastasis, and drug resistance of HCC. 
Abbreviations: IL-4, interleukin-4; IL-10, interleukin-10; CSF-1, colony-stimulating factor 1; CXCL12, chemokine (C-X-C motif) ligand 12; CTGF, connective tissue growth 
factor; CCL2, chemokine (C-C motif) ligand 2; CXCL8, chemokine (C-X-C motif) ligand 8; IL-6, interleukin-6; TGF-β, transforming growth factor-β; VEGF, vascular 
endothelial growth factor; CCL17, chemokine (C-C motif) ligand 17; CCL20, chemokine (C-C motif) ligand 20; MMPs, matrix metallopeptidases; IFN-γ, interferon-γ; LPS, 
lipopolysaccharide; TNF-α, tumor necrosis factor-α; NO, nitric oxide; BMP2, bone morphogenetic protein 2; IDO1, indoleamine 2,3-dioxygenase 1; ROS, reactive oxygen 
species; TIM-3, T cell immunoglobulin domain and mucin domain-3; HSCs, hepatic stellate cells; MSCs, mesenchymal stromal cells; SDF-1, stromal cell-derived factor-1; VM, 
vasculogenic mimicry; HGF, hepatocyte growth factor; STAT3, signal transducer and activator of transcription 3; c-MET/FRA1/HEY1, cellular-mesenchymal epithelial 
transition factor/FOS-related antigen 1/hes related family bHLH transcription factor with YRPW motif 1.
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and TGF-β;22,23 promoting HCC cells neovascularization by secreting vascular endothelial growth factor (VEGF), 
platelet-derived growth factor (PDGF), IL-17, matrix metallopeptidase 2 (MMP2), and MMP9; promoting HCC cells 
invasion and metastasis by secreting of MMPs, cathepsins, and serine proteases;24 triggering the recruitment of Tregs to 
exert immunosuppressive effects by secreting CCL17, CCL18, CCL20 and CCL22; promoting immune evasion by 
secreting prostaglandin E2, MMP7 and other mediators.25 Hypoxia-inducible factor-1α (HIF-1α) produced by HCC 
promotes the release of IL-1β from TAMs, and IL-1β induces epithelial–mesenchymal transition (EMT) in HCC.26 

Chemokine (C-C motif) ligand 15 (CCL15) is significantly enriched in the core of cancerous areas, which promotes an 
immunosuppressive microenvironment by recruiting and polarizing M2-TAMs.27 Low expression of cluster of differ-
entiation 86+ (CD86+) TAMs and high expression of CD206+ TAMs were significantly associated with an aggressive 
tumor phenotype, poor overall survival (OS), and a shorter time to recurrence.28 Carbonic anhydrase XII (CA12) 
mediates TAMs survival in the acidic TME and induces TAMs to secrete C-C motif chemokine ligand 8 (CCL8), 
which promotes EMT and metastasis in HCC.29

TANs
TANs can be divided into subtype N1 (anti-tumor) and subtype N2 (pro-tumor).30 High levels of TANs infiltration and 
neutrophil/lymphocyte ratio (NLR) are correlated with the poor prognosis of HCC.31 LPS and IFN-γ promote N1 
polarization, while TGF-β drives the acquisition of the N2 phenotype.32 N2-TANs predominantly produce chemokines 
such as CCL20 and CCL17, which recruit Tregs and TAMs to shape the immunosuppressive TME and promote HCC 
progression as well as sorafenib resistance.33 TANs secrete TNF-α and NO, kill CD8+ T cells, and inhibit their anti-tumor 
effect on HCC.31 TANs secrete high levels of bone morphogenetic protein 2 (BMP2) and TGF-β2 and induce the 
abnormal expression of microRNA −301b-3p in HCC cells, which promotes HCC cells to acquire “stem” characteristics. 
These cancer stem-like cells excessively produce chemokine (C-X-C motif) ligand 5 (CXCL5) and sustain elevated 
activity of the NF-κb signaling pathway. This, in turn, recruits even more TANs into the tumor, creating a vicious cycle 
that significantly exacerbates the malignancy of HCC (Figure 1).34

MDSCs
MDSCs represent a diverse group of immature myeloid cells known for their pronounced immunosuppressive capabilities.35 

MDSCs mainly inhibit the antitumor function of CTLs and NK cells through arginase, iNOS, indoleamine 2,3-dioxygenase 1 
(IDO1), reactive oxygen species (ROS), TGF-β, and IL-10.36 MDSCs can induce the differentiation and expansion of Tregs, 
deprive T cells of essential amino acids, promote oxidative stress, and promote the polarization of M2-TAMs and N2- 
TANs.37,38 MDSCs express galectin 9 and bind to TIM-3 on T cells to trigger T cell apoptosis.39 A specific subtype of MDSCs, 
characterized as CD11b+ CD33+ HLA-DR−, effectively hampers the proliferation of CD8+ T cells in HCC (Figure 1).40 

Overexpression of ectonucleoside triphosphate diphosphohydrolase 2 (ENTPD2/CD39L1) mediated by HIF-1 converts 
extracellular ATP to 5′-AMP, which interdicts the differentiation of MDSCs.41 Upregulation of apolipoprotein B mRNA 
editing enzyme catalytic subunit 3B (APOBEC3B) in HCC inhibits global H3K27me3 abundance through interaction with 
polycomb repressor complex 2 (PRC2) and reduces H3K27me3 occupancy at the chemokine CCL2 promoter, thereby 
recruiting a large number of TAMs and MDSCs.42 G9a-mediated downregulation of solute carrier family 7 member 2 
(SLC7A2) promotes CXCL1 secretion through the phosphatidylinositide 3-kinases (PI3K)/protein kinase B (PKB)/NF-κB 
pathway. Upregulation of SLC7A2 recruits MDSCs, which fosters a pro-tumor TME.43 Prior to the metastatic colonization of 
HCC cells into target tissues, cancer cells secrete several soluble factors, including CXCL17, G-CSF, osteopontin, CXCL12, 
TNF-α, TGF-β, and VEGF-A. These factors play key roles in the development of the immune system by influencing CD11b+/ 
Gr-1+MDSC-mediated neo-angiogenesis, inducing inflammatory responses, remodeling the ECM, and recruiting immune 
cells, creating an immunosuppressed but nutrient-rich TME.44

CAFs
In HCC, CAFs mainly originate from HSCs and hematopoietic stem cells. Mesothelial cells, mesenchymal stromal cells (MSCs), 
and peritumoral fibroblasts can also be transformed into CAFs.45 In terms of their effects on cancer, CAFs can be broadly 
categorized into cancer-promoting CAFs (pCAFs) and cancer-restraining CAFs (rCAFs).46 The pCAFs enhance the “stemness” 
of CD24+ HCC by secreting hepatocyte growth factor (HGF) acting on the cellular-mesenchymal epithelial transition factor/ 
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FOS-related antigen 1/hes related family bHLH transcription factor with YRPW motif 1 (c-MET/FRA1/HEY1) signaling 
pathway47,48 or by secreting HGF and IL-6 acting on the phosphorylated signal transducer and activator of transcription 3 
(STAT3)/Notch signaling pathway.49 HCC cells activate CAFs by secreting the exosome miR-1247-3p, which upregulates 
inflammatory factors such as IL-1, IL-6, and IL-8 and contributes to the resistance to sorafenib.50 Hypoxia also activates CAFs, 
induces angiogenesis, and promotes HCC cell proliferation by producing proangiogenic factors such as VEGF, MMP2, and 
MMP9.51 A peculiar phenomenon known as vasculogenic mimicry (VM) is observed when aggressive tumor cells mold 
themselves to establish vascular-like channels through ECM remodeling. This unique framework acts as an alternative blood 
supply route for malignant tumors. Freshly isolated CAFs from HCC specimens have shown the capability to maintain tumor 
blood supply. They achieve this by inducing VM formation in HCC cells, driven by the paracrine factors TGF-β and stromal cell- 
derived factor-1 (SDF-1).52,53 HCC cells and CAFs induce M2 polarization of TAMs. This process involves upregulating the 
mRNA expression of markers CD163 and CD206 in macrophages while concurrently diminishing IL-6 expression and 
secretion.54 CAFs promote the proliferation of Tregs by secreting TGF-β and CXCL13.55 CD36+ CAFs recruit CD33+ 

MDSCs by expressing macrophage migration inhibitory factor (MIF) via the lipid peroxidation/p38/CEBPs axis (Figure 1).56

Tregs
As a subset of CD4+ T cells, Treg is one of the pivotal factors in maintaining immune tolerance. Tumor-infiltrating Tregs 
promote tumor immune escape through both contact-dependent and contact-independent mechanisms. The proportion 
and absolute number of CD4+CD25+ T cells increased significantly in the vicinity of HCCs.57 Huh7 culture supernatant 
seems to promote the proliferation of CD4+CD25+ T cells.58 In the hypoxic TME, Tregs are significantly enriched and 
interact with type 2 conventional dendritic cells (cDC2), leading to the loss of antigen-presenting HLA-DR on cDC2.59 

In naive T cells, CTLA-4 is localized in the intracellular space and expressed on the cell surface after receiving 
stimulation signals. Contrastingly, CTLA-4 is constitutively expressed in Tregs, which is associated with immunosup-
pressive functions.60 Long noncoding epidermal growth factor receptor (lnc-EGFR) specifically binds EGFR and 
promotes Tregs differentiation, which connects immunosuppressive states with HCC.61

Liver Cancer Stem Cells
Liver cancer stem cells (LCSCs), a class of cells capable of self-renewal and differentiation to form tumors, initiate HCC 
and are at the root of HCC recurrence.62 Intriguingly, the ECM modulates the expression of malignant markers in LCSCs, 
notably CD44 and CD133. ECM also plays a role in intercellular communication and acts as a catalyst for HCC.63 

Multiple cytokines in TME (such as HIF-1α, BMP, OSM, MMP2, and MMP9) interact synergistically with ECM 
remodeling, EMT, and tumor neovascularization networks to activate Notch, TGF-β, STAT3, and Hedgehog signaling 
pathways, enhance LCSCs stemness and chemoresistance, and positively impact HCC progression.64–66 Endothelial cells 
secrete HIF-1α and VEGF, increase LOXL2 expression, induce EMT and VM formation, and synergize with ECM 
remodeling to promote LCSC maintenance and self-renewal.67,68 TAMs can activate the IL-6/STAT3 signaling pathway 
through the release of VEGF, MMP, the secretory proteins S100A9, TGF-β, and TNF-α, which, together with tumor 
neovascularization, alter LCSCs phenotype and function.69 TANs secrete BMP2 and TGFβ to induce LCSCs production, 
and LCSCs increase, in turn recruiting more TANs, creating positive feedback in HCC.70 Furthermore, CAFs indulge in 
ECM remodeling, primarily through collagen synthesis. They also release a cocktail of cytokines, including CCL2, 
CCL5, CXCL1, and IL-6. These factors activate Notch, TGF-β, Hedgehog, and STAT3 signaling pathways, significantly 
amplifying the stemness characteristics of LCSCs.71

Anti-Tumor Cells in TME
NK Cells
It is reported that 30–50% of the lymphocytes in the liver are NK cells, and the proportion of NK cells in the liver is five 
times higher than that in the spleen or peripheral blood.72 NK cells can directly release cytotoxic substances such as 
perforin and granzyme B or secrete cytokines such as TNF-α and IFN-λ to kill HCC cells. Another strategy employed by 
NK cells is antibody-dependent cell-mediated cytotoxicity (ADCC), which can also result in the destruction of HCC 
cells.73 However, HCC cells can circumvent the recognition and killing of NK cells in TME. Hypoxia-inducible gene 2 
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(HIG-2) promotes IL-10 release from HCC cells, activates the STAT3 signaling pathway of NKs, and inhibits the killing 
activity of NKs.74 HCC cells also evade the killing activity of NK cells by reducing the expression of tumor-associated 
antigens and increasing the expression of major histocompatibility complex class I (MHC-I)-related molecules, prompt-
ing the inactivation of NK cells.75

DCs
DCs can capture and phagocytose HCC cells and transfer them to lymph nodes while presenting tumor-associated 
antigens (TAAs) to T cells. T cells migrate and infiltrate into cancerous tissues, recognize T-cell receptors (TCRs) on 
HCC cells, and then bind to them to kill them.76 TNF-β and IL-12 induced by M1-TAM, IFN-γ produced by NKs, and 
IL-2 secreted by CTLs further activate T cells. Lysosome-associated membrane glycoprotein 3+ (LAMP3+) DCs are 
higher expressed in tumor tissues than paracancerous liver tissues with highly phagocytic activity. LAMP3+ DCs 
stimulate the immune response of CD8+T, CD4+ T cells, and NK cells in tumor-draining lymph nodes by receptor and 
ligand binding.77

Other Factors in TME
ECM
The ECM is a complex network comprising collagen, non-collagen fibers, elastin, proteoglycans, and aminoglycans. As 
HCC progresses, the ECM undergoes dynamic remodeling. While it serves as a physical shield, obstructing direct 
interaction between immune cells and tumor cells, the ECM also modulates the functions of immune cells.78 Research 
has identified six ECM-associated genes (namely SPP1, ADAMTS5, MMP1, BSG, LAMA2, and CDH1) that correlate 
with a dismal prognosis in HCC patients.79 ECM is gradually remodeled by cancer cells in TME, which facilitates tumor 
development and metastasis.80 MMPs are a class of zinc-dependent endoproteases that disrupt the ECM by destroying 
the structure of different proteins within it. Overexpression of different MMPs can lead to severe ECM catabolism as 
well as a significant elevation in EMT.80 CAFs have a central role in shaping the ECM. They deposit major ECM 
proteins like collagen, fibronectin, and laminin. Moreover, they release ECM-degrading enzymes, including MMPs, 
which not only bolster CAF migration but also expedite ECM degradation, setting the stage for tumor cell infiltration.81 

HSCs are activated when the liver is damaged or subjected to extracellular stimuli. Activated HSCs participate in ECM 
remodeling by synthesizing ECM molecules and secreting MMPs.82

Growth Factors
HGF plays key roles in endothelial cell generation, tissue and organ regeneration, and cellular malignancy. Growth factor 
receptor-binding protein 2 (Grb-2), Grb2-associated binding protein 1 (Gab1), and EGFR promote HCC occurrence and 
progression by activating the C-stromal-epithelial transformation receptor (HGF/c-Met) axis.83 Insulin-like growth factor 
(IGF)/IGF-1 receptor (IGF-1R) signaling modulate stem cell differentiation and pluripotency during embryonic development. 
Dysregulated IGF/IGF1R signaling enhances tumor “stemness” and promotes drug resistance as well as tumor recurrence in 
hepatitis B virus (HBV)-related HCC (HBV-HCC).84 TGF-β maintains homeostasis in the normal liver, inhibits early-stage 
HCC, and promotes the progression of advanced HCC. TGF-β modulates the activity of various TME-associated cells (such as 
HSCs, CAFs, endothelial cells, and NK cells) and promotes the progression of HCC as well as the immune evasion of 
malignant cells.85 The functions and the targets of various growth factors are listed in Table 1.

Additional Mediators in TME
Beyond the primary cellular constituents and factors of the TME, there exist several other potential mediators that 
significantly influence the environment. It was reported that upregulated expression of the 4-gene inflammatory signature 
(including lymphocyte-activating gene 3 (LAG-3), signal transducer and activator of transcription 1 (STAT1), CD8, and 
PD-L1) was associated with immunotherapy responses in HCC. However, only the percentage of LAG-3+ CD8+ cells 
was notably linked with the immune-checkpoint blockade (ICB) response. This indicates that the efficacy of ICB therapy 
in HCC can potentially be predicted by analyzing pre-treatment levels of LAG-3 and CD8 in the TME.90 Neuropilins 
(NRPs) are the receptors of multiple proteins involved in pivotal signaling pathways related to HCC progression. NRP1 
and NRP2 were reported as potential therapeutic targets and biomarkers for HCC.91 Defined as the percentage of tumor 
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cells within the TME, tumor purity was associated with the occurrence and development of HCC. Genes like AarF 
Domain Containing Kinase 3 (ADCK3), Hexokinase-3 (HK3), and palmitoyl-protein thioesterase 1 (PPT1) were 
associated with tumor purity in HCC. Elevated expression of ADCK3 and reduced expression of HK3 and PPT1 resulted 
in high levels of tumor purity and were related with a better prognosis.92 It was found that mucosal-associated invariant 
T (MAIT) cells secrete TNF to activate TNFR2 on regulatory T cells, which forms an immunosuppression TME in 
HCC.93 Furthermore, as a naturally occurring flavonoid compound, Oroxylin A has been demonstrated to hinder the 
progression of HCC by reshaping the immune landscape of the TME. Oroxylin A achieves this by inducing M1-like 
polarization of macrophages through the release of apoptosis-related extracellular vesicles. Additionally, it reduces the 
M2-like macrophage population while bolstering T cell infiltration within the TME.94

Molecular Bases of Immunotherapy and Targeted Therapy
As compared with adjacent tissue, HCC tissues express higher levels of immunosuppressive molecules such as PD-L1, 
CTLA4, LAG3, and TIM3.95 The expression of these molecules is negatively correlated with the infiltration of IFN-γ + 

T lymphocytes in TME. The blocking antibody of these inhibitory molecules can enhance the proliferation of CD4+ and 
CD8+ tumor-infiltrating T lymphocytes and the production of cytokines.96 In the microenvironment of chronic inflam-
mation, the immune checkpoints CTLA4 and PD1 are upregulated. PD1 binds to PD-L1 to prevent TCR signaling, block 
T cell proliferation, and induce T cell exhaustion. Tregs constitutively express CTLA4 and block immune responses. 
CTLA4 binds CD80/CD86 and competes with CD28 to block T cell activation.97,98 Another molecule of significance is 
TIM3, which displays markedly increased expression in the peripheral blood monocytes and TAMs of individuals with 
HCC. The cytokine TGF-β plays a role in this elevation, as it encourages TIM3 expression and concurrently drives the 
alternative activation of macrophages.22

Over-expression of tumor-associated antigens (TAAs) and new tumor antigens formed in the process of somatic 
mutation in HCC cells stimulate specific T lymphocyte immune responses, which is the theoretical basis of tumor 
vaccine. TAAs mainly include tumor-overexpressed antigens (TERT, Wilms tumor antigen 1 (WT1)), carcinoembryonic 
antigens (AFP, glypican-3 (GPC3)), and cancer-testicular antigens (melanoma-associated antigens A (MAGE-A), 
synovial sarcoma X family member 2 (SSX-2), and New York esophageal squamous cell carcinoma 1 (NY-ESO-1)).99 

Furthermore, there is an intriguing cell group referred to as cytokine-induced killer cells. These cells belong to the 
peripheral blood mononuclear cells and exhibit dual-surface markers: the T lymphocyte marker CD3 and the NK cell 
marker CD56. These cells, when subjected to activation via IFN, anti-CD3 antibody, and IL-2 in a controlled 

Table 1 The Functions and the Targets of Various Growth Factors in TME of HCC

Growth 
Factors/ 
Cytokines

Drugs Targets Functions

HGF Rilotumumab; 

Ficlatuzumab; 
Onartuzumab

HGF/c-Met Endothelial cell generation, tissue and organ regeneration, and cellular 

malignancy83

IGF Ganitumab IGF/IGF1R Modulates stem cell differentiation and pluripotency; enhances tumor 

“stemness” and promotes drug resistance; promotes HCC recurrence84

TGF-β Pirfenidone; 

Fluorofenidone

TGF-β/SMAD Maintains homeostasis in normal liver, inhibits early-stage HCC, and promotes 

the progression of advanced HCC; promotes immune escape of HCC cells85

VEGF 
VEGFR

Bevacizumab 
Sorafenib; Lenvatinib; 

Regorafenib; 

Cabozantinib

VEGF/VEGFR Promotes neovascularization, increases vascular permeability, and promotes 
immunosuppression in TME86

IL-6 Aspirin IL-6/STAT3 Promotes the occurrence, development, invasion and metastasis of HCC87

HIF-1α Histone deacetylase 6 
specific inhibitors

Promotes angiogenesis and tumor invasion and metastasis; maintains tumor cell 
metabolism88

MMP FR (EtOH) MMP/ TIMP Promotes ECM degradation; promotes HCC growth, invasion and metastasis89
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environment, gain a robust ability to target and kill a wide array of tumor cells. Impressively, they carry out this function 
with minimal side effects, making them an attractive option for potential therapeutic strategies.100

Targeting angiogenic factors and their related signal pathways has become a hot topic in the research on targeted 
therapy for HCC. Common HCC targets for targeted therapy include cellular-mesenchymal epithelial transition factor 
(c-Met), CD 24, CD 147, GPC3, fibroblast growth factor receptor (FGFR), VEGFR, EGFR, and mammalian target of 
rapamycin (mTOR).101 Signaling pathways involved in cell differentiation (Wnt), proliferation (EGF, IGF, HGF/C-MET, 
RAF/MEK/ERK), survival (Akt/m-TOR), and angiogenesis (VEGF, PDGF, FGF) contribute to HCC growth and 
metastasis and also provide potential molecular targets for targeted therapies in HCC.102

Immunotherapy and Targeted Therapy
Immunotherapy
Immunotherapy mainly includes immune checkpoint inhibitors (ICIs), tumor vaccines, and immune cell therapy. 
Nivolumab is the first ICI approved by the US Food and Drug Administration (FDA) for the treatment of HCC. An 
open-label, non-comparative, dose escalation and expansion trial (NCT01658878) was carried out to evaluate the 
efficacy of Nivolumab as second-line therapy for HCC, and it indicates that the objective response rate (ORR) was 
20% and the disease control rate (DCR) was 64%.103 Recent trial (NCT02576509) indicates Nivolumab may be 
considered a therapeutic option for patients who are contraindicated with tyrosine kinase inhibitors (TKIs) and 
antiangiogenic agents.104 Tislelizumab is the first ICI for HCV-HCC, and its partial response (PR) rate was 17.6%, 
DCR was 76.4%, and progression-free survival (PFS) was 6.48 months (95% CI: 3.95–9.14).105 Camrelizumab is 
a PD-1 inhibitor made in China. It has been confirmed that Camrelizumab has a remarkable anti-tumor effect and 
tolerance to advanced solid tumors.106,107 In patients with previously sorafenib-treated advanced HCC, Avelumab 
demonstrated moderate efficacy and was well tolerated (NCT03389126).108 Tislelizumab also showed durable objec-
tive responses and acceptable tolerability in previously treated advanced HCC patients (NCT03419897).109 Studies on 
the application of other ICIs (such as Toripalimab, Sintilamab, Durvalumab, and Atezolizumab) in advanced HCC are 
under way (Table 2).

Tumor vaccine strategies encompass various approaches, including peptides, proteins, dendritic cells (DCs), and viral 
vector vaccines.110 A meta-analysis of 35 cohort studies indicates that the ORR of DCs vaccine (19%, 95% CI 11 to 
29%) is significantly higher compared to the peptide vaccine (1%, 95% CI 0 to 5%).111 Additionally, HBV-related HCC 
may benefit more from tumor vaccines compared with hepatitis C virus-related HCC.111 The personalized neoantigen 
vaccines have gained approval as a safe and effective approach for preventing HCC recurrence.112 Immune cell therapy 
for HCC includes enhancing the activity of endogenous anti-HCC immune cells,113 inducing active anti-HCC immune 
cells in vitro,114 and genetically modifying HCC-specific immune cells (such as CAR-T cell therapy,115 and TCR-T cell 
therapy).116 The single-chain Fv recognizing TAAs and the immunoreceptor tyrosine-based activation motif are geneti-
cally reconstituted in vitro and then transfected into patient T cells, resulting in chimeric antigen receptor T (CAR-T) 
cells. In advanced HCCs expressing glypican-3 (GPC3), the intratumor injection of IL-7 and CCL19-secreting CAR-T 
cells led to complete tumor eradication after 30 days.117 The tumor-specific antigen receptor is introduced into T cells so 
that the patient’s T cells express the antigen-specific T cell receptor (TCR), that is, TCR-modified T cells (TCR-T). 
A phase I clinical trial using CAR-T cells targeting CD133 (CART-133) indicates that the survival time of CD133- 
positive and advanced metastatic HCC patients treated with CART-133 is significantly prolonged.118 A kind of HCV1406 
TCR-T cell is constructed to treat HCV-HCC.119 CAR-T and TCR-T cells have great potential for the treatment of HCC, 
and related clinical trials are also under way (Table 3).

Targeted Therapy
Molecular targeted drugs, such as sorafenib and Lenvatinib, have improved the survival of patients with advanced HCC 
who are ineligible for liver transplantation or resection.122,123 Sorafenib is an oral multi-target tyrosine kinase inhibitor 
(TKI) that inhibits tumor growth and angiogenesis, which extends overall survival (OS) by 2.8 months.124 A multicenter 
non-inferiority trial shows that the mOS of the Lenvatinib group and the Sorafenib group is 13.8 months and 12.3 
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Table 2 Immune Checkpoint Inhibitors in HCC

Drugs Targets Status Phase Design Types Participants ClinicalTrials. 
gov

Results

Nivolumab PD-1 Not recruiting I/II Open-label, non-comparative, dose escalation and expansion trial 262 NCT01658878 No Results Posted

Pembrolizumab PD-1 Not recruiting III Multicenter, randomized, double-blinded, two-arm study 950 NCT03867084 No Results Posted
Durvalumab PD-L1 Not recruiting III Randomized, double-blind, placebo-controlled, multicenter study 888 NCT03847428 No Results Posted

Tremelimumab CTLA-4 Completed II Non-controlled, open-label, multicenter clinical trial 20 NCT01008358 Completed105

Avelumab PD-L1 Completed II Open label, single group assignment, clinical trial 30 NCT03389126 Completed108

Toripalimab PD-1 Not recruiting II/III Randomized, double-blind, placebo- controlled study 530 NCT03859128 No Results Posted

Tislelizumab PD-1 Completed II Open-label, multicenter study 249 NCT03419897 Completed109

Nivolumab plus 
Ipilimumab

PD-1 + CTLA-4 Recruiting II Open label, single group assignment, clinical trial 40 NCT03510871 No Results Posted

Cobolimab (TSR-022) + 

Dostarlimab

TIM-3 + PD1 Recruiting II Open label, single group assignment, clinical trial 42 NCT03680508 No Results Posted

Nivolumab + Relatlimab PD-1 + LAG3 Recruiting I Randomized, parallel assignment, open label, clinical trial 20 NCT04658147 No Results Posted
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months, respectively.125 Regorafenib is a second-line treatment for HCC with Sorafenib resistance, and it inhibits tumor 
angiogenesis, cell proliferation, and metastasis by altering TME and targeting multi-targets.126 Cabozantinib was 
approved by the FDA in January 2019 for the treatment of HCC. A double-blind clinical trial indicates that the mOS 
of the Cabozantinib group is 10.2 months and the median PFS is 5.2 months.127 Ramucirumab is an IgGl monoclonal 
antibody that binds to the extracellular region of vascular endothelial growth factor receptor 2 (VEGFR2), thus blocking 
the binding of VEGF to VEGFR and further preventing angiogenesis. The mOS of patients in the Ramucirumab group is 
4.9 months longer than that in the placebo group, especially when AFP ≥ 400ng/mL, the mOS of patients in 
Ramucirumab group is prolonged by 8.6 months.128 Currently, Ramucirumab is recommended as a second-line treatment 
for advanced HCC patients with AFP levels ≥400ng/mL. Apatinib, another TKI, inhibits angiogenesis by targeting 
VEGFR2 and is recommended for second-line treatment in advanced HCC.129 Recently, small-molecule targeted drugs 
with more specific targets have been the focus of current clinical studies. MET-selective inhibitors (Tepotinib and 
Capmatinib) produce potent inhibition of advanced HCC with high MET while reducing off-target toxicity.130 The 
selective FGFR4 inhibitor Fisogatinib (also known as BLU-554)131 and the TGF-β receptor 1 inhibitor Galunisertib have 
also been found to be efficacious in advanced HCC.132 In addition, targeted combination therapies provide additional 
treatment options for patients with advanced HCC who cannot tolerate ICB therapy.

Antibody-Drug Conjugate (ADC) and Bispecific Antibody (BsAb) Therapy for HCC
ADCs contain monoclonal antibodies for targeted delivery and cytotoxic payloads for targeted destruction of malignant 
cells, allowing for selective delivery of cytotoxic drugs to tumor cells in the most appropriate manner.133 The 
transmembrane tight junction protein Claudin 6 (CLDN6) has been identified as a therapeutic target. An anti-CLDN6 
monoclonal antibody conjugated with the cytotoxic agent (Mertansine) DM1 (CLDN6-DM1) has demonstrated potent 
antitumor effects, both as a standalone treatment and in combination with sorafenib.134 SHR-A1403 is a novel c-Met 
ADC consisting of an anti-c-Met monoclonal antibody conjugated with a novel cytotoxic microtubule inhibitor which 
showed significant anti-tumor activity in cancer cell lines, xenograft mouse models, and HCC PDX models.135 

A humanized anti-c-Met antibody conjugated with oxaliplatin significantly improves cytotoxicity against c-Met- 
positive tumors.136

Bispecific antibodies (BsAb) combine the binding specificity of two different monoclonal antibodies, one activating 
receptors on killer effector cells and the other binding TAAs to initiate tumor cytotoxicity.137 In xenograft HCC models, 
GPC3/CD47 BsAb was superior to monotherapy or the combination of anti-CD47 and anti-GPC3 monoclonal 
antibodies.138 Tetravalent BsAb h8B-BsAb against GPC3 and CD3 antigens significantly induces tumor regression in 
HCC xenograft mouse models.139 In HBV-related HCC, anti-HBx/anti-CD3 BsAb was able to retarget effector cells 
in vitro and in vivo to lyse HBxAg-positive HCC cells.140

Table 3 CAR-T and TCR-T Cell Therapy

Cell Types Targets Phase Participants ClinicalTrials.gov Start Date Status

CAR-T GPC3 I 20 NCT04121273 October 5, 2019 Recruiting
CAR-T B7H3 (CD276) I/II 15 NCT05323201 February 10, 2022 Recruiting

CAR-T GPC3 I 38 NCT05003895 December 8, 2021 Recruiting

CAR-T c-Met/PD-L1 I 50 NCT03672305 October 1, 2018 Not yet recruiting
CAR-T CD147 I 34 NCT03993743 May 27, 2019 Recruiting

CAR-T NKG2D I 10 NCT04550663 September 25, 2020 Not yet recruiting

CAR-T Mucin 1 I/II 20 NCT02587689 October 2015 Recruiting
TCR-T NY-ESO-1 II 11 NCT01967823 October 24, 2013 Completed120

TCR-T AFP I 9 NCT03971747 August 6, 2019 Completed121

TCR-T HBV I 10 NCT04745403 May 20, 2022 Recruiting

TCR-T (SCG101) HBV I/II 46 NCT05417932 July 19, 2022 Recruiting

CAR-T/TCR-T DR5 I/II 50 NCT03941626 September 1, 2019 Recruiting
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Immunotherapy Combined with Targeted Therapy for HCC
Anti-angiogenesis and ICIs are pivotal components of anti-HCC therapy. A large number of studies have confirmed that 
the combination of the two regimens is better than the single regimen, which can significantly increase the clinical 
benefits of HCC. Atezolizumab combined with Bevacizumab (“T+A” combination) is the first combination regimen that 
goes beyond the efficacy of sorafenib and has been approved by the FDA for first-line treatment of advanced HCC.141 

Lenvatinib combined with pembrolizumab (“cola” combination) significantly prolongs the mOS of patients with 
unresectable HCC.142 In patients with resectable HCC, perioperative camrelizumab plus apatinib results in promising 
therapeutic efficacy.143 Table 4 lists several clinical trials related to combination therapy, which are expected to bring 
more treatment options to HCC.

Future Directions
Cell resistance to targeted drugs is a major challenge for targeted therapy for HCC. Multi-target drug combinations can 
reduce the dose of a single drug while maintaining or enhancing antitumor activity and reducing the occurrence of 
adverse drug reactions and drug-resistant mutations.151 Furthermore, the identification of new therapeutic targets is of 
paramount importance, as there is currently a shortage of targeted drugs for dominant mutational drivers in HCC, such as 
TERT promoter mutations,152 CTNNB1 mutations,153 and TP53 mutations.154 The long-term effectiveness and durability 
of responses to immunotherapies remain areas of uncertainty. Identifying biomarkers and molecular signatures that 
reliably predict responses to specific immunotherapeutic agents is imperative for personalized treatment approaches. 
Tumor mutation load,155 circulating tumor cells,156 and circulating tumor DNA157 are both promising candidate 
biomarkers. In addition, the development of advanced immunomodulatory agents, such as CAR-T, TCR-T, therapeutic 
vaccines, and oncolytic viruses, holds promise for achieving deeper and more durable responses in a subset of HCC 
patients.

Conclusion
HCC is characterized by its aggressive and advanced-stage presentation upon diagnosis, posing significant challenges to 
curative interventions. TME is a complex immune system that plays an important role in promoting tumor cell 
proliferation, metastasis, and immune evasion. Notably, targeted therapy and immunotherapy following traditional 
chemotherapy, radiotherapy, and surgical treatment have achieved remarkable efficacy in advanced HCC by reprogram-
ming the immunosuppressive TME. However, the application of these therapies is limited by the inter-individual and 

Table 4 Immunotherapy Combined with Targeted Therapy for HCC

Drugs Phase Participants ClinicalTrials.gov Start Date Status Reference

Camrelizumab + Apatinib II 20 NCT04297202 December 1, 2019 Recruiting [143]
Cabozantinib + Atezolizumab III 740 NCT03755791 June 10, 2018 Active, not recruiting [144]

Regorafenib + Pembrolizumab I 58 NCT03347292 June 18, 2018 Completed

Regorafenib + Avelumab I/II 482 NCT03475953 May 4, 2018 Recruiting [145]
Cabozantinib + Nivolumab I 15 NCT03299946 May 14, 2018 Completed [146]

Cabozantinib + Durvalumab I/II 117 NCT03539822 October 22, 2018 Active, not recruiting

Ramucirumab + Durvalumab I 85 NCT02572687 February 19, 2016 Completed
Bevacizumab + Erlotinib II 45 NCT01180959 April 14, 2011 Completed [147]

Sorafenib + Nivolumab II 24 NCT03439891 April 16, 2018 Active, not recruiting
Tivozanib + Durvalumab I/II 42 NCT03970616 September 30, 2019 Terminated [148]

Tislelizumab + Lenvatinib II 30 NCT04834986 April 30, 2021 Not yet recruiting

Camrelizumab + Apatinib II 40 NCT04826406 February 3, 2021 Recruiting
Atezolizumab + Bevacizumab III 668 NCT04102098 December 31, 2019 Active, not recruiting [149]

Durvalumab + Tremelimumab III 1324 NCT03298451 October 11,2017 Active, not recruiting [150]

Donafenib + Sintilimab II 30 NCT05162352 December 4, 2021 Recruiting
Camrelizumab + Apatinib III 674 NCT04639180 April 1, 2021 Not recruiting
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even intra-tumoral heterogeneity of HCC, as well as the absence of reliable biomarkers for predicting therapeutic 
responses, drug resistance, and immune tolerance. In the future, new therapeutic targets, reliable predictive biomarkers, 
and more rational and efficient combination therapy regimens will greatly improve the survival of HCC patients, 
especially those with advanced HCC. A better understanding of the interactions between TME and HCC cells is essential 
for developing novel effective therapeutic approaches for HCC.
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