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Abstract: The spondyloarthropathies are a group of arthritides which specifically target the 

spine and pelvis with ankylosing spondylitis (AS) being the most prevalent and debilitating 

of these conditions. Unique to AS is the progression to excessive uncontrolled bone formation 

following an initial inflammatory phase that can result in joint fusion and significant disability. 

Spondyloarthritis is estimated to affect 1%–2% of the population, twice as many as rheumatoid 

arthritis and thus constitutes a significant health problem. Currently AS pathogenesis is very 

poorly understood but recent large-scale genetics and gene expression profiling studies have 

identified some of the underlying mechanisms and pathways contributing to the disease. 

Genome-wide association studies have identified a number of candidate genes associated with 

AS sharing the same pathways which are now being targeted for therapeutic intervention. 

However, although such approaches can identify genes contributing to the disease process and 

are very informative as to disease aetiopathogenesis, they cannot profile the actual changes in 

gene/cell activity at any point in the disease process or possibly more importantly at specific 

sites. Such information is generated using expression profiling. A number of expression profiling 

studies have been undertaken in AS, looking at both circulating cells and tissues from affected 

joints. Although some common genes/pathways have been identified, overall the results to date 

have been somewhat disappointing due to differences in experimental design and tissue source 

as well as the low power of the studies. More recent better powered studies have shown some 

potential in developing gene expression profiling as a diagnostic tool in AS. True future success 

will rely on larger genetic and genomic studies and the combination of these datasets in eQTL 

studies requiring significant collaborative efforts. Such larger-scale approaches will also generate 

sufficient power to target specific disease stages and sites.

Keywords: ankylosing spondylitis, genomewide association studies, gene expression, 

microarrays, spondylarthritis, inflammatory arthritis

Introduction
The spondyloarthropathies are estimated to affect 1%–2% of the population almost 

 two-fold higher prevalence than rheumatoid arthritis (RA).1 AS is the prototypic and 

most prevalent spondyloarthropathy and affects between 0.1%–1.4% of the global 

 population. The condition primarily affects the spine and sacroiliac joints of the pelvis, 

causing pain and stiffness and eventual fusion. Asymmetric peripheral joint arthritis 

(∼20%) and episodic acute anterior uveitis (∼40%) are also common and approximately 

10% of AS cases also have either inflammatory bowel disease (IBD) or psoriasis, while 

approximately 70% have sub-clinical gut inflammation. The disease onset is typically 

in the second decade of life and thus the disease has a higher impact relative to later 

onset diseases, such as rheumatoid arthritis, due to its longer disease duration.
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Clinical features
The clinical features of AS can be divided into axial and 

peripheral components. Axial features include spondylitis, 

sacroiliitis and skeletal complications. Peripheral features 

include enthesitis, peripheral arthritis, inflammatory bowel 

disease (IBD) and anterior uveitis.

Axial features
Axial disease most commonly presents as inflammatory lower 

back pain and morning stiffness.2 Morning stiffness lasts 

from one to several hours and is improved by exercise but 

not relieved by rest (as in the case of mechanical back pain).3 

Lower back pain results from inflammation of the SI joints 

and the vertebrae. Sacroiliitis, inflammation of the SI joint, is 

the most common feature of AS. Sacroiliitis can be detected 

by conventional x-ray of the pelvis which shows joint space 

narrowing and eventual sclerosis of the joint (Figure 1).

A distinguishing feature of AS is the site of the initial 

inflammation. This occurs at the entheses, the sites where 

tendons or ligaments join bone resulting in enthesitis one of 

the earliest features of AS (Figure 2). The stooped posture 

characteristic of AS patients is caused by inflammation of the 

spine and formation of syndesmophytes, bone growths origi-

nating from the initial sites of inflammation. In the spine of 

AS patients syndesmophytes form in the intervertebral joints 

and lead to fusion of the vertebrae which sometimes results 

in a classical ‘bamboo spine’ appearance. Fusion of bone 

across intervertebral joints ultimately causes flattening of the 

lumbar spine and limits neck motion and chest expansion. 

Paradoxically for a disease that induces new bone formation 

AS patients frequently exhibit reduced bone mineral density 

leading to osteoporosis driven by the high levels of inflam-

matory molecules associated with the disease.

Peripheral features
Arthritis of peripheral joints including hips, shoulders, 

knees, wrists, ankles and elbows is common in AS.4 

Radiographically the peripheral arthritis in AS is similar to 

that observed in rheumatoid arthritis (RA). However, in AS 

additional ankylosis of wrists, hips, tarsal joints and small 

joints in the fingers and toes is common. Peripheral joint 

arthritis is usually asymmetric.5

Extra-articular features
iBD
A close relationship exists between gut inflammation and 

AS. Approximately two-thirds of AS cases display signs 

of gut inflammation unrelated to clinical gastrointestinal 

symptoms, and AS cases and their first-degree relatives have 

increased gut permeability.6 As will be discussed in more 

detail later many genetic associations are shared between 

AS and both Crohn’s disease and ulcerative colitis, including 

IL-23R, STAT3, CARD9, IL12B, PTGER4, and KIF21B.7 

These findings suggest common pathogenic processes shared 

between IBD and AS. Reactive arthritis, an AS- related 

spondyloarthritis, can result from acute gastrointestinal 

infections, and these findings suggest that the gut is a major 

source of antigenic drive in AS.

Normal lateral
lumbar spine

Normal lateral
cervical spine

Fused lateral
lumbar spine

Fused lateral
cervical spine

Normal SI joint Fused SI joint

Figure 1 Axial inflammation in AS. In normal lumbar and cervical spine x-rays clear 
delineation of the intervertebral spaces is evident. However in severely affected 
fused spinal x-rays extensive bridging across the vertebrae is evident (arrows). In the 
sacroiliac (SI) joints in normal subjects the joint space is clearly visible (arrows) but 
in severely affected cases, fusion is evident with blurring of the joint space (arrows). 
images courtesy of Linda Bradbury at the University of Queensland Diamantina 
institute.

Figure 2 enthesitis of the Achilles tendon. 
Note: Arrows indicate severe inflammation of the Achilles tendon (enthesitis). 
image courtesy of Linda Bradbury at the University of Queensland Diamantina institute.
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However the association between gut and joint disease is 

not fully understood. Activated T cells expressing members 

of the β7 family of integrins, which are involved in homing 

of intestinal lymphocytes, are enriched in the synovium of 

Spondyloarthropathy patients suggesting an intestinal origin 

to these cells.8

Anterior uveitis
Acute anterior uveitis (AAU) affects approximately 40% of 

patients with AS and approximately half of all AS patients 

with AU are B27+.9 AAU is normally unilateral and char-

acterised by red, sore eyes, increased tear production and 

photophobia. AAU does not precede axial or peripheral 

inflammation but is often the first clinical sign presented to 

doctors by patients who may have lived with lower back pain 

for several years.

Cardio vascular disease
Recently it has been reported that AS patients are at 

increased risk for many cardiovascular disorders compared 

with the general population.10 The cardiovascular diseases 

include aortic valvular heart disease, non-aortic valvular 

heart disease, ischemic heart disease and congestive heart 

failure. Risk of developing these cardiovascular diseases is 

greatest in younger AS patients.10 The reasons for increased 

risk of cardiovascular events in AS patients are unclear. 

While it is difficult to determine the contribution of disease 

to mortality rates a recent study compared mortality among 

almost 700 AS patients and age, sex and locality-matched 

controls and found increased mortality in the AS group with 

circulatory disease the most frequent cause of death among 

the AS cases.11

Aetiology and pathology
There is a strong genetic component in the risk of developing 

AS. Studies in twins have estimated heritability of AS 

at .90%.12 HLA-B27 is established as the major genetic 

risk factor and the association between HLA-B27 and AS is 

among the strongest genetic association with any common 

disease. The genetic aetiology of AS will be discussed in 

greater detail below. Males are more frequently affected than 

females at a ratio of 2.5:1. The reasons for this imbalance 

are unclear.

The initial trigger for AS is currently unknown. With 

few exceptions, AS has a worldwide distribution, indicating 

that whatever the trigger it must be ubiquitous. Furthermore, 

epidemics of AS have not been reported. Studies in the B27 

transgenic rat model of AS support the idea of a ubiquitous 

environmental trigger; B27 transgenic rats exposed to normal 

commensal bacteria develop disease while rats maintained in 

germ-free conditions do not.13 It has been suggested that this 

ubiquitous environmental factor may be a  common microbial 

pathogen.14–16 A genetic defect reducing the immune system’s 

ability to clear the pathogen could result in a low-level 

sub-clinical infection which may result in the autoimmune 

response seen through the pathogen presenting self- antigens 

or the pathogen’s antigens mimicking  self-antigens. 

Immune cells express various molecules capable of sens-

ing a wide variety of microbial peptides. These include 

toll-like receptors (TLR), Dectin-1, PAMPs and DAMPs. 

Defects in recognition of microbial products by immune 

cells may contribute to an inflammatory cascade, driven by 

inflammatory cytokines such as IL-23, IL-1 and IL-6. The 

relative contributions of innate and adaptive immunity to 

the pathogenesis of AS is still unclear. Understanding the 

precise role of different immune cell types during different 

stages of disease and at different sites of disease is important 

for understanding how to develop novel targeted therapies. 

Recent studies in our lab have demonstrated that over 25% 

of γδ T cells in the peripheral blood of AS patients with 

active disease express IL-23R, secrete large amounts of 

IL-17 and display a strong Th17 bias.17 This data suggests 

an important role for γδ T cells in pathogenesis of AS. Given 

that γδ T cells bridge the innate-adaptive systems express-

ing myriad activation receptors such as Dectin-1, Toll-like 

receptors and NKG2D as well as IL-23R and IL-1, they 

are attractive candidate cells for further investigation in the 

pathogenesis of AS.

AS has two phases, an initial inflammatory phase fol-

lowed by an osteoproliferative/ankylosing phase where the 

joint fusion is initiated and progresses. The inflammatory 

phase has similarities with other inflammatory arthrites 

such as RA with high levels of pro-inflammatory cytokine 

production and joint damage through osteoclast activity. 

However, the extent of joint destruction though the cytokine/

osteoclast axis is significantly less than in RA with the 

dominant joint impact stemming from ankylosis occurring 

as a result of osteoproliferation. The most common site of 

this excessive bone formation in AS is in the cervical and 

lumbar vertebrae resulting in squaring of the vertebrae and 

eventually formation of syndesmophytes from the vertebral 

corners which can eventually bridge leading to ankylosis. 

Whether the initial inflammation directly links to the sub-

sequent osteoproliferative stages is subject to significant 

debate. There is little evidence for a direct link between the 

two with some evidence that they are temporally distinct.18,19 
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This is supported by studies of the MRI evidence of inflam-

mation and the subsequent development of syndesmophytes. 

These show that whilst there is an increased rate of syndesmo-

phytes formation at vertebral corners with preceding MRI evi-

dence of inflammation, most syndesmophytes arise at corners 

with no prior evidence of inflammation, and most corners 

with evidence of inflammation do not go on to develop 

syndesmophytes.20,21 These studies are consistent with models 

in which inflammation precedes bone formation but in which the 

link between inflammation and bone formation is not as 

direct as, for example, the link between inflammation and 

erosion in RA.22,23 There are therefore two key triggers in AS 

that are currently unknown; the signal for disease initiation, 

and the switch from inflammation to the damaging osteo-

proliferation phase. Elucidation of these triggers would be a 

major advance and identify new therapeutic approaches.

Treatment
The goal of treatment within AS is two-fold: to reduce 

pain and disability and to prevent progression of disease. 

 Current therapies have provided symptom relief and reduced 

disability but have shown no efficacy in preventing or even 

slowing progression of disease. A key issue is the difficulty 

in diagnosing AS. Currently, firm diagnosis of AS requires 

confirmation of joint deterioration by X-ray (Modified New 

York Criteria),24 which only occurs in quite advanced disease, 

leading to an average delay between onset of symptoms and 

diagnosis of 8–11 years. Early diagnosis of AS would allow 

treatment to be commenced before significant joint dam-

age has occurred possibly increasing the potential to slow 

disease progress. Trials investigating the effectiveness of this 

approach are currently underway.

Unlike patients with rheumatoid arthritis, AS patients 

respond well to physical therapy and long periods of 

immobility increase pain and immobility. Supervised group 

physiotherapy shows best symptom relief compared with 

group exercise or home exercise programs.25

Conventional anti-rheumatic drugs such as methotrexate 

and sulfazalazine are ineffective in treatment axial disease 

in AS. However, they show some efficacy in management of 

peripheral and extra-articular features including psoriasis and 

uveitis.26,27 Non-steroidal anti-inflammatory drugs (NSAIDS) 

are the first line of medication for treatment of pain and 

stiffness in AS. NSAIDS such as naproxen provide some 

symptom relief and have been shown to significantly reduce 

inflammatory markers like c-reactive protein in blood of AS 

patients.28 However, long term NSAID treatment has the 

potential for gastrointestinal and cardiovascular toxicity.

The most effective symptom relief is obtained through 

use of the TNF-antagonist family of medications. Anti-TNF 

therapy provides substantial symptom relief and has effects 

on many of the axial, peripheral and extra-articular features 

of AS.29–32 However, while anti-TNF therapy reduces inflam-

mation and prevents further joint destruction33 it neither pre-

vents nor slows bone formation.34–36 Side effects of long-term 

anti-TNF therapy include increased susceptibility to tubercu-

losis infection due to systemic immune suppression.37

Since no treatment to date has been shown to have an 

effect on preventing or slowing the natural course of disease 

there is a very great need for research to determine what 

triggers disease and to better understand the inflammatory 

pathways involved in AS, thereby providing novel therapeu-

tics options. Recent advance in the genetics and genomics 

of AS have highlighted several important pathways involved 

in AS. We review here some of those advances and highlight 

some of the functional consequences of the genetic associa-

tions with AS. Further genetic and gene expression studies 

can generate diagnostic algorithms to aid in early disease 

detection and improved treatment regimes.

AS genetics
As stated above, AS is a largely genetically controlled 

 disease. Familial aggregation indicating the presence of 

shared susceptibility factors has been long observed,38 and 

studies of disease concordance in twins and families have 

shown that disease susceptibility is largely controlled by 

genetic factors.12,39 Twin studies have shown concordance to 

be 75% (6/8) in monozygotic twins, 27% (4/15) for dizygotic 

twins sharing HLA-B27 and 12.5% (4/32) for dizygotic twins 

overall.12 AS is highly heritable, with additive genetic factors 

estimated to account for .90% of susceptibility.12 Age of 

onset (40%) and disease severity, as measured by the widely 

accepted BASDAI (51%) and BASFI (76%) questionnaires, 

are also highly heritable.40,41 Below we discuss some of the 

more established loci contributing to this heritability.

MHC
The most significant AS-associated genetic locus is the major 

histocompatibility complex (MHC) on chromosome 6p. This 

genetic association is predominantly due to the association of 

AS with HLA-B27, however there is evidence for association 

with other MHC alleles.

HLA-B27
The association of HLA-B27 has been recognised since 

the early 1970s,42–44 and is among the strongest genetic 
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associations with a common disease. HLA-B27 is  carried 

by approximately 8% of white Europeans, compared with 

3% to 5% of Han Chinese,45 and is rare in African populations 

(which accounts for the low incidence of AS in Africans).46 

Around 80% to 95% of AS patients are HLA-B27 positive, yet 

only 1% to 5% of HLA-B27 carriers develop AS,47–50 therefore 

screening has not been useful as a sole diagnostic.

There are over 40 different allelic variants of HLA-B27 

reported, all of which are ancestrally related to the B*2705 

variant.51 95% of white British HLA-B27 carriers have this 

subtype.51 while Chinese populations mainly have a mixture 

of B*2704 and B*2705.45 Of the many HLA-B27 subtypes 

identified, the majority are rare and their influence on AS 

has not been investigated.

Although the association between HLA-B27 and AS 

has been known for many years, the mechanism of disease 

association is still unclear. The “arthritogenic peptide” theory 

focuses on the canonical functions of HLA-B27 in antigen 

presentation to cytotoxic T-lymphocytes.52–56 The hypothesis 

suggests that after pathogenic insult, HLA-B27 presents 

a microbial epitope and elicits a CTL response against it. 

However, some of the CTLs may cross-react with any self anti-

gens showing molecular mimicry with the microbial epitope. 

The reaction of CD8+ CTLs with self antigen would result in 

autoimmune tissue injury and inflammation. Association of 

ERAP1, the gene encoding the protein endoplasmic reticulum 

aminopeptidase 1 (ERAP1), with AS is only seen in HLA-

B27 positive cases. This suggests that in HLA-B27- positive 

disease aberrant peptide trimming or presentation by ERAP1 

and HLA-B27 are involved in AS pathogenesis,57 and this will 

be further discussed later.

Non-canonical theories involve properties of HLA-B27 

itself. These include the “misfolded protein”  hypothesis, in 

which the slow folding of the HLA-B27 heavy chain causes 

misfolded proteins that accumulate in the  endoplasmic 

reticulum in the form of covalent homodimers and multim-

ers.58,59 This accumulation of misfolded proteins causes ER 

stress, which results in inflammation through the activation 

of the unfolded protein response (UPR) and the ER-overload 

response (EOR).60

An extension of the misfolding hypothesis is the HLA-

B27 surface homodimer hypothesis.61 Covalently linked 

HLA-B27 homodimers have been found to be expressed 

on the cell surface, however they have not been secreted 

to the cell surface from the ER.62–64 Signalling through 

these non-canonical forms of HLA-B27 may play an 

immunomodulatory role and upset the normal development 

of HLA class-I responses, with unusual signalling causing 

excessive pro-inflammatory cytokine release. Additionally, 

HLA-B27 homodimer expressing APCs have been shown 

to stimulate the survival, proliferation and IL-17 produc-

tion of Th17 cells that express the NK-receptor KIR3DL2 

in AS patients.65 This observation provides a link between 

HLA-B27 and the IL-23 signalling pathway, which will be 

discussed later.

Other MHC genes
As well as the overwhelming association with HLA-B27, AS 

also shows association with other genes in the MHC. The 

MHC class I gene HLA-B60 has been shown to be associated 

with AS in a UK population.66 HLA-B60 shows association 

with both B27-positive and negative AS, and this association 

has been replicated in a Chinese population.67

The MHC class II gene HLA-DRB1 has been found to 

be associated with AS in B27 matched case control studies68 

and twin studies.12 A study of non-B27 MHC associations of 

AS using B27-matched haplotypes in cases and controls has 

shown that HLA-DRB1 is associated with AS irrespective 

of whether the haplotype contained HLA-B27.69 This may 

contribute to disease by causing aberrant presentation to or 

selection of CD4+ lymphocytes.

Non-MHC genes
Very little progress was made in the identification of genes 

associated with AS in the years following the discovery of 

the HLA-B27 association. A number of linkage studies were 

performed, identifying association with the interleukin-1 

(IL-1) gene complex and CYP2D6. There have been  several 

reports of IL-1 complex association with AS,70–72 including 

reported association in a Chinese population.73 The IL-1 gene 

complex includes genes encoding the pro-inflammatory cytok-

ines IL-1α, IL-1β and their naturally occurring inhibitor IL-1 

receptor agonist (IL-1RA). IL-1 is involved in the induction of 

chemokine and adhesion  molecule expression in various cells 

types, and variation within the IL-1 cluster may contribute to 

AS pathogenesis through altered inflammation.

Association with AS has also been found for CYP2D6, 

the gene that encodes cytochrome P450 debrisoquine 

4- hydroxylase.48,74 It is possible that CYP2D6 is involved in 

the metabolism of a ubiquitous environmental factor involved 

in AS, and that reduced enzymatic activity could lead to 

increased disease susceptibility, however this association has 

not been seen in more recent studies.

In recent years there have been a number of studies in 

which non-MHC genes have been reported as being associated 

with AS, most of which have been undertaken in populations 
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of white-European heritage with confirmed disease according 

to the Modified New York Criteria. The first study to convinc-

ingly identify non-MHC associations with AS was a study of 

14,500 non-synonymous SNPs performed by the Wellcome 

Trust Case Control Consortium (WTCCC) and the Australo-

Anglo-American Spondyloarthritis Consortium (TASC), in 

which associations with ERAP1 and IL23R were identified75 

in a cohort of 1000 AS patients and 1500 healthy controls. 

The first genome-wide association study (GWAS) in AS was 

performed by TASC, using Illumina HumHap370 genotyping 

chips in a cohort of 2500 AS patients and 5000 healthy controls, 

with replication in a cohort of 900 cases and 1500 controls. 

This study identified the genes IL1R2 and ANTXR2 as being 

associated with AS, as well as gene deserts at chromosomes 

2p15 and 21q22.76 This was followed by a second GWAS 

performed by TASC and the Wellcome Trust Case Control 

Consortium 2 (WTCCC2),using Illumina 660W-Quad and 

Human 1.2M-Duo chips in a cohort of 3000 AS patients 

and 4800 controls, with replication in a cohort of 2100 cases 

and 4500 controls. Association was found with genes includ-

ing RUNX3, LTBR-TNFRSF1 A and IL12B.57 In addition to 

this there have been a number of smaller studies performed 

in a variety of populations. Table 1 summarizes the genes 

confirmed to be associated with AS with genome-wide 

significance from the GWAS performed to date.

Class i presentation associated  
genes – ERAP1 and RUNX3
ERAP1 was first reported to be associated with AS in the 

WTCCC/TASC nsSNP study,75 and this association has been 

confirmed both the TASC76 and WTCCC2/TASC GWAS,57 

as well as in a number of different ethnicities including 
 Chinese,77,78 Portuguese,79 Korean80 and Hungarian.81 ERAP1 

has also been shown to be associated with psoriasis in both 

white European82 and Chinese83 populations.

There are two known roles of ERAP1, both of which may 

explain the association with AS. ERAP1 is involved in the 

trimming of peptides within the endoplasmic reticulum to 

optimal length for MHC class I presentation.84,85 The strong 

association with HLA-B27 indicates that AS is primarily an 

MHC class I mediated disease, but the way B27 increases 

disease susceptibility is currently unknown. If the association 

of ERAP1 with AS relates to peptide presentation, this may 

help explain the association with HLA-B27 (Figure 3). The 

second function of ERAP1 is the cleavage of cell surface 

receptors. ERAP1 has been shown to cleave the cell surface 

receptors for the pro-inflammatory cytokines IL-1 (IL-1R2),86 

IL-6 (IL-6Rα)87 and TNF (TNFRSF1A),88 downregulating 

their signalling. Interestingly, both IL1R276 and TNFRSF1A57 

have been shown to be associated with AS. Genetic variants 

altering the receptor shedding function of ERAP1 could 

potentially have pro- or anti-inflammatory effects through 

this mechanism, however studies in mice have shown no dif-

ference in receptor shedding between Erap1-/- and C57BL/6 

control mice.57

The primary AS-associated SNP in ERAP1 is rs30187, 

which is an nsSNP encoding the protective p.Lys528Arg 

amino acid change. There is also an independent secondary 

association observed with the nsSNPs rs17482078 

(p.Arg725Gln) and rs10050860 (p.Asp575 Asn), however 

these two variants are in complete linkage disequilibrium 

(LD) and cannot be split genetically.57 The crystal structure of 

ERAP1 has recently been published,57,89 and has revealed the 

location of these altered residues around the substrate binding 

and regulatory sites of ERAP1. Peptide trimming assays 

performed using recombinant ERAP1 in vitro have shown 

that the protective rs30187 and rs17482078 variants had 

∼40% slower rates of trimming than wild-type,57 suggesting 

that they are both loss-of-function variants. It has also been 

shown that while wild-type ERAP1 is able to trim peptides to 

8- or 9-mers, the rs30187 variant stops at 11-mers.90

Gene-gene interaction between HLA-B27 and ERAP1 

has been observed, with ERAP1 association only observed 

with AS in HLA-B27 positive individuals.57 This restric-

tion in association supports the models in which abnormal 

peptide trimming or presentation by ERAP1 and HLA-B27 

contribute to HLA-B27 disease. This suggests that inhibition 

of ERAP1 may be effective in HLA-B27 positive AS.

Table 1 Confirmed candidate genes associated with AS with 
genomewide significance identified through GWAS studies1,2

Chr SNP 
rsID

Putative gene  
of interest

P value

1p31 rs11209026 IL23R 2.3 × 10-17

1q32 rs2297909 KIF21B 5.2 × 10-12

1p36 rs11249215 RUNX3 9.2 × 10-11

2q11.2 rs2310173 IL1R2 4.8 × 10-7

2p15 rs10865331 – 6.5 × 10-34

4q21 rs4389526 ANTXR2 9.4 × 10-8

5q15 rs30187 ERAP1 1.8 × 10-27

5q33 rs6556416 IL12B 1.9 × 10-8

5p13 rs10440635 PTGER4 2.6 × 10-7

6p21 rs4349859 HLA-B ,10-200

9q34 rs10781500 CARD9 1.1 × 10-6

12p13 rs11616188 TNFRSF1A 4.1 × 10-12

17q21 rs8070463 TBKBP1 5.3 × 10-8

21q22 rs378108 – 2.1 × 10-11

Abbreviation: GWAS, genome-wide association study.
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RUNX3 is a key gene involved in CD8 lymphocyte 

differentiation. This gene was identified as being associated 

with AS in the TASC/WTCCC2 GWAS,57 and this associa-

tion supports the hypothesis that HLA-B27 contributes to 

AS pathogenesis through a mechanism involving peptide 

presentation to CD8 lymphocytes. It has been shown that AS 

cases have reduced CD8 lymphocyte counts, as do healthy 

individuals who carry the AS-associated SNPs.57 These 

findings suggest that CD8 lymphocytes are involved in AS 

pathogenesis, likely in response to presentation of antigenic 

peptides by HLA-B27 after antigen processing by ERAP1.

IL-23 signalling pathway genes – IL23R, 
IL12B, STAT3
IL23R encodes the receptor for the cytokine interleukin 23 

(IL-23), which is a key regulatory cytokine essential for the dif-

ferentiation of Th17 cells (Figure 3). The association of IL23R 

suggests that Th17 cells are involved in the pathogenesis of AS 

in white European populations, as well as other IL23R associ-

ated diseases. IL23R has been found to be associated with a 

number of diseases in White European populations, including 

Crohn’s disease,91,92 psoriasis,93 and psoriatic arthritis.94 These 

diseases are all closely clinically related members of the sero-

negative group of autoimmune diseases, and this suggests that 

IL23R may partially explain their coexistence.

The association of IL23R was first reported in the 14,500 

nsSNP study75 and has been subsequently confirmed by 

two GWAS,57,76 as well as in Portuguese79 and Spanish95 

populations. Studies in Han Chinese77,78 and Koreans96 have 

shown no association with IL23R, and in these studies the 

primary associated nsSNP in white Europeans, rs11209026, 

was observed to be non-polymorphic. IL23R has also 

been shown to be not associated with Crohn’s disease in 

a Japanese population, in which rs11209026 was also not 

polymorphic.97 However, it is possible that there are rare 

AS-associated variants of IL23R in East Asian populations, 

and we have next-generation sequencing data that suggests 

that this is the case in a Han Chinese population (submitted 

for publication).

The primary AS-associated nsSNP in IL23R codes for a 

Gln381Arg substitution in exon 9, and this variant is protec-

tive against disease. There is also an independent secondary 

association with rs11209032, which lies upstream of IL23R, 

and this variant increases disease susceptibility. There have 

APC

CD8 T cell
TCR
complex

APC

ER

ERAP1

IL-23

IL
12

B

IL
23

A

IL
23

A

IL
12

R
β1

IL
23

R

D
ec

ti
n

-1

P
ep

ti
d

e

IL-17

Processed

peptide

IL-23

IL
12

B

PGE2

APC or
CD4 T cell

Th17 cell

Nucleus

STAT3

STAT3

TYK2 JAK2

STAT3

STAT3

CARD9

P

P

P

P

STAT3

HLA-B27

RUNX3

CD8 lymphocyte
differentiation

Transcription

β-Glucan

P
T

G
E

R
4

Figure 3 Possible functional roles of AS-associated genes. Differentiation and function of T-cells is driven by antigen presenting cells, with IL-23 production being a key driver 
of Th17 cell function. β-glucan stimulation of the dectin-1 receptor signals through CARD9, which can drive expression of prostaglandin E2 (PGE2), which stimulates IL-23 
production through it’s receptor prostaglandin E receptor 4 (subtype EP4) (PTGER4). IL-23 signals through the IL-23 receptor (IL23R), with signal transduction proceeding 
through JAK2, TYK2 and STAT3. Th17 activity can be further regulated by IL-1β, for which IL-1R2 acts as a high affinity decoy receptor. Another possible contributor to AS 
susceptibility is antigen presentation in the endoplasmic reticulum (ER), where ERAP1 trims antigens for peptide presentation by MHC class I molecules, such as HLA-B27. 
Altered antigen processing could alter antigen presentation, which could have an effect on RUNX3 mediated CD8 lymphocyte differentiation.
Abbreviations: APC, antigen processing cells; TCR, T-cell receptor.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances in Genomics and Genetics 2011:1submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

16

Kenna et al

been studies in which the function of the p.Gln381 Arg 

variant have been investigated.98,99 In these studies it has been 

shown that the p.Gln381Arg variant was a loss-of-function 

change and resulted in decreased levels of IL-23 signalling. 

This resulted in lower levels of IL-23 mediated IL-17 and 

IL-22 production, as well as lower levels of circulating Th17 

and Tc17 cells. This is consistent with the increased Th17 

lymphocyte numbers65,100,101 and serum IL-17 levels102,103 

observed in AS patients. However, IL23R is also expressed 

on a number of other cell types, including γδ T cells, NK 

cells and NKT cells,104–106 and it is not clear which cell type 

is primarily affected by the disease-associated variant. Our 

data has shown there are increased levels of IL-23R+ γδ 

T cells in the peripheral blood of AS patients compared to 

healthy controls, suggesting that these cells may play a role 

in disease pathogenesis.17

The IL-12p40 subunit shared between IL-12 and IL-23 

is encoded by the gene IL12B. This gene was previously 

reported as having suggestive association with AS,7 and 

this association was later confirmed at the genome-wide 

level,57 further implicating the role of IL-23 signalling 

in AS  pathogenesis. IL12B has also been previously 

reported as being associated with both Crohn’s disease 

and  psoriasis.91,93,107

STAT3 has been shown to be associated with AS in 

both white European7 and Han Chinese78 populations, 

as well as being previously shown to be associated with 

Crohn’s disease.108 STAT3 is a critical transcription fac-

tor in the differentiation of Th17 cell populations, and is 

found directly downstream of IL-23R in the IL-23 signal-

ling cascade (Figure 3).109,110 Loss of function mutations 

in STAT3 cause Job syndrome (OMIM 147060), which 

is characterised by a loss of Th17 cells and is associated 

with recurrent, severe infections with extracellular bacteria 

and fungi.109–111

Fungal response – CARD9 and PTGER4
CARD9 and PTGER4 were both identified as being associated 

with AS in the TASC/WTCCC2 GWAS57 and have both 

previously been shown to be associated with Crohn’s disease.112,113 

CARD9 mediates signals from the innate immunity receptors 

dectin-1 and -2, which recognise β-glucan, a component of 

fungal and some bacterial cell walls. This induces the production 

of PGE
2
, which is the ligand for the prostaglandin E receptor 4, 

EP4 subtype, which is encoded by PTGER4. PTGER4 then 

induces the production of IL-23 and IL-17, promoting the 

expansion of Th17 lymphocytes (Figure 3).114 It has been 

reported that when SKG mice are treated with β-glucan they 

develop spondyloarthritis and Crohn’s disease,115 and that this 

model is characterised by activation of Th17 cells.116 This model 

suggests that involvement of the IL-23 signalling pathway in AS 

pathogenesis may be triggered by ubiquitous pathogens carrying 

β-glucan. PTGER4 has also been shown to play an anabolic role 

in bone remodelling,117,118 making it a good candidate for a role 

in the bone formation that characterises AS.

Other associated genes
IL1R2
The IL-1 gene cluster on chromosome 2q has been repeatedly 

reported as being associated with AS, with association 

observed with IL1A.119 Neither the WTCCC/TASC nsSNP 

study nor the TASC or TASC/WTCCC2 GWAS identified 

association at the IL-1 gene cluster, however the TASC 

GWAS did identify and confirm association with IL-1 

receptor, type II, IL1R2.76 Although the strongest  association 

was observed with IL1R2, the association peak is quite broad, 

and may also include association at IL1R1.

IL-1R2 binds IL-1α and IL-1β with high affinity, acting as 

a decoy receptor after cleavage from myeloid and lymphoid 

cell membranes, possibly by ERAP1.86 Further investigation 

is required to determine the disease mechanism.

ANTXR2
ANTXR2 is the gene encoding the protein capillary morpho-

genesis protein-2 (CMG2), and was identified as being asso-

ciated with AS in both the TASC76 and the TASC/WTCCC2 

GWAS.57 Recessive mutations of ANTXR2 cause juvenile 

hyaline fibromatosis (OMIM 228600) and infantile systemic 

hyalinosis (OMIM 236490), but it has not been previously 

associated with any complex diseases. It is not clear how this 

gene functionally contributes to AS pathogenesis.

2p15 and 21q22 gene deserts
The 2p15 and 21q22 intergenic regions or “gene deserts” 

have been found to be strongly associated with AS in both 

the TASC76 and TASC/WTCCC257 GWAS. There are no 

genes within 100 kb of the 2p15 peak associated region. The 

proteasome assembly chaperone 1 gene PSMG1 lies nearby 

the 21q22 locus, however it is separated by a recombination 

hotspot and it is therefore unlikely that any SNP at 21q22 

is in LD with any SNP in PSMG1. Possible mechanisms by 

which these associations contribute to disease include long-

range cis-acting regulatory regions controlling expression of 

nearby genes, or effects on non-coding RNA.
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KIF21B
The gene KIF21B encodes for a member of the family of 

kinesin motor proteins, and has been previously shown to be 

associated with Crohn’s disease. KIF21B was first identified 

as being associated with AS in a study in which genes 

previously shown to be associated with Crohn’s disease 

were investigated in an AS cohort,7 and was confirmed 

in the TASC/WTCCC2 GWAS.57 Kinesins are used for 

essential component transport along dendritic and axonal 

microtubules by neurons. The Kinesin family member 

KIF5A has been associated with rheumatoid arthritis120 and 

type-1-diabetes,121 as well as being close to a locus associated 

with multiple sclerosis.122 If the association of KIF5A is 

confirmed as true, this suggests alternate roles for kinesin 

family members.

TNFRSF1A
The association of TNFRSF1A further supports the involvement 

of TNF pathways in ankylosing spondylitis pathogenesis. In 

addition to showing association with AS, TNFRSF1A has been 

previously shown to be associated with both Crohn’s disease 

and ulcerative colitis.123,124 Additionally, a mouse model with 

constitutive over expression of TNF leads to inflammatory 

bowel disease, and sacroiliitis resembling AS, in a manner 

dependent on the expression of TNFR1,125 supporting a 

role for TNFRSF1A in AS pathogenesis. TNFRSF1A has 

also been shown to be associated with AS in a Han Chinese 

population,78 increasing the likelihood of TNFRSF1A being 

a true AS susceptibility gene.

Association has also been observed with TBKBP1, 

which encodes the TNF receptor signalling pathway mem-

ber TBK binding protein.57 Suggestive association has also 

been observed with TRADD, the TNF receptor associated 

death domain protein,57,75 and further research is needed to 

elucidate the actual disease mechanism responsible for these 

associations.

Genomic studies
Expression profiling
Although significant effort has gone into genetic studies of 

the spondylarthropies, particularly AS including the several 

large scale GWAS studies described above, large scale 

gene expression profiling studies have been somewhat less 

extensive. Other similarly prevalent inflammatory conditions 

such as RA and Lupus have been the subject of much more 

extensive study, with over 10 such studies in both diseases 

in the last two years alone.

Undertaking whole genome expression studies generates 

powerful datasets that can inform on a number of disease 

aspects;

1. Identification of genes involved in the disease pathology 

which can inform on;

a. The genes directly contributing to disease

b. Identify pathways that can be targeted therapeutically

c. Identify environmental factors that contribute to 

pathology

2. Characterise gene changes through disease progression 

to identify specific gene involvement at different disease 

stages

3. Elucidate cell- or tissue-specific genes participating in 

the disease process

4. Identify biomarkers which can be measured to:

a. Diagnose early disease

b. Catalog disease progression

c. Monitor treatment response.

Expression studies in ankylosing 
spondylitis
In most large-scale genetic studies germline DNA is used 

which can be simply extracted from blood or saliva samples. 

For the majority of these studies in relatively common 

diseases it is assumed causative mutations are germline 

making the tissue source less of a consideration. In cases of 

rarer genetically mosaic conditions such as Melorheostosis, 

issue of tissue source become extremely important. For 

expression profiling studies however sample source and han-

dling are always key considerations. The fact that expression 

profiling “snapshots” the cellular activity in the sample 

requires consideration to be given to the;

1. Disease and treatment status of the individual

2. Relevance of sample tissue site to disease presentation

3. Handling of tissue sample to minimise potential RNA 

degradation.

As described earlier there are two aspects to AS pathology, 

an initial systemic inflammation and the osteoproliferation 

and joint ankylosis characterising late disease. To monitor 

these quite different processes, careful consideration has 

to be given to the suitability of tissue sample. Systemic 

inflammation can be studied looking at the immune 

component of the blood, either through RNA extracted 

from whole blood or the peripheral blood mononuclear cell 

(PBMC) fraction which are relatively accessible. To study 

the joint disease processes is considerably more difficult. 

Biopsies of inflamed or ankylosed joints are rarely performed. 
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In cases of severe joint fusion, tissue may be obtained during 

surgery and usually only warranted in cases of very advanced 

disease where early key disease-causing changes will not 

be present.

Disease-site studies
Due to the rarity of informative axial disease-site samples 

in AS only one expression profiling study in these tissues 

has been reported. Using sacroiliac joint aspirates from SpA 

patients, Rihl et al identified sacroiliitis candidate genes 

and then validated these candidates in knee synovial fluid 

biopsies from patients with peripheral synovitis.126 They 

identified interleukin-7 (IL7) as the best candidate gene but 

the small size of the study, only 3 spondyloarthropy (SpA) 

cases and no axial tissue controls, and the small gene array 

(1200 genes) means these preliminary findings require further 

confirmation.

Despite axial inflammation being the hallmark of AS, 

significant peripheral pathology is also found in many 

patients. Knee synovial biopsies present a more accessible 

and less invasive tissue candidate for assessment of 

expression profiles at joint disease sites. To date only two 

small scale studies have been published using “macroarrays” 

(600 or 1200 genes). Both of these studies emanated from 

David Yu’s group at UCLA, one comparing osteoarthritis 

(OA) and SpA knee synovial biopsies127 and the other 

comparing SpA and RA synovial fluid mononuclear cells 

(SFMCs).128 In the SFMC study, similar patterns of inflam-

matory cytokines were expressed. One strong candidate 

gene was identified, the unfolded protein response (UPR) 

gene, immunoglobulin heavy chain binding protein (BiP). 

The UPR has been proposed as a mechanism by which 

HLA-B27 might mediate its role in AS.129 In the synovial 

biopsy study, SpA and OA samples could be differentiated 

by their expression profiles, however candidates were not 

validated.

Our group has recently undertaken an expression 

profiling study in SpA synovial biopsies using a different 

approach. Rather than using fresh-frozen biopsies we have 

utilised Illumina’s Whole-Genome DASL® (cDNA- mediated 

Annealing, Selection, Extension, and Ligation [Illumina Inc, 

San Diego, CA]) Gene Expression Assay which has been 

specifically developed for whole-genome expression profiling 

of degraded RNA samples from archived tissue biopsies. We 

analyzed the expression profile of 24000 cDNAs in synovial 

biopsy samples from seronegative spondyloarthropy, AS and 

osteoarthritis patients and normal control samples (submitted 

for  publication). Several interesting candidate genes were 

identified. Matrix metalloproteinase 3 (MMP3), a gene 

associated with inflammation and bone and cartilage remod-

elling was strongly upregulated and immunohistochemical 

confirmation showed MMP3 expression was particularly 

high in AS biopsies. MMP3 has previously been identified 

as a circulating biomarker of AS.23,130,131 Dickkopf-3 (DKK3), 

a Wnt pathway inhibitor, was downregulated. With the Wnt 

pathway having being recently hypothesised as playing a 

key role in AS-associated osteoproliferation132–134 this was 

particularly interesting. Gene ontology analysis also showed 

altered immune and inflammation pathways and more 

interestingly changes in extracellular matrix and osteoblast 

associated pathways.

Use of peripheral joint samples for expression profiling 

in AS is not ideal and interpretation of these findings must be 

undertaken carefully. Unfortunately however axial samples 

are extremely rare. They are certainly valuable in identifying 

unique profiles for AS in relation to RA and/or OA samples to 

eliminate general inflammatory/joint damage genes. Further, 

many of the early changes in inflammation-mediated cell 

activity initiating tissue damage would be similar in both 

peripheral and axial joints.

With the limited number of disease-site studies having 

been undertaken in AS/SpA, little consensus on key genes 

have been found. Even using peripheral joint samples, experi-

mental cohorts are small and usually lack sufficient numbers 

to allow independent validation. To generate sufficient power, 

consortium approaches should be considered and utilisation 

of technologies such as DASL to probe archived samples 

would further increase the numbers of samples available 

to profile.

Circulating cell studies
As described above, there is also a systemic immune-

mediated inflammatory component in AS in addition to the 

osteoproliferation seen in the axial joints. Thus peripheral 

blood presents an inviting target tissue to try and elucidate the 

underlying gene changes that contribute to the early aspects 

of AS/SpA. The comparative ease with which samples of 

peripheral blood can be obtained has also meant that expres-

sion profiling studies using this RNA source in AS/SpA (as 

well as many other immune-mediated diseases) have been 

better powered and more numerous than those described 

above in joint tissue.

In AS the circulating immune cells may reflect the early 

changes that contribute both to disease susceptibility and also 

early stage progression. Most studies to date have utilised 

the peripheral blood mononuclear cell (PBMC) fraction from 
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whole blood which contains the circulating white blood cells 

including B, T and NK cells, monocytes and granulocytes. 

Although a widely utilised standard protocol, purification 

of PBMCs does take several hours and needs to be carried 

out within 48 hours of blood collection, preferably within a 

few hours. This is particularly true for transcriptomics where 

differences in cell handling could cause significant shifts in 

gene expression patterns. PBMCs can therefore by unsuit-

able for studies involving multiple centers or tissue sampling 

from more remote or distant  locations. An alternative blood-

derived RNA source is to use whole blood. Two kits have been 

specifically developed for transcriptomic studies in whole 

blood with the blood collected into an RNA preservative 

which stabilises the RNA allowing shipping/initial storage at 

room temperature with minimal degradation (PAXgene from 

Qiagen [Valencia, CA] or Tempus from Invitrogen/Applied 

Biosystems [Life Technologies, Grand Island, NY]).

Three whole genome expression profiling studies have 

been published using whole blood in spondylarthropy all 

using the PAXgene technology.135–137 Sharma et al compared 

healthy controls and spondyloarthropy patients but used a 

slightly unusual approach. Rather than analysing a main 

sample group by microarray then confirming candidate genes 

by qPCR in a second cohort, they split the sample groups into 

a discovery and a validation set and microarrayed both groups 

and compared differentially expressed genesets.137 However, 

the control and patient groups had significant imbalances 

in their gender mix, as well as no joint disease scores being 

ascertained making interpretation difficult. Both Assassi et al 

and Pimental-Santos et al focussed on AS, using patients with 

confirmed AS according to the Modified New York Criteria, 

with Assassi also comparing their datasets with those from 

systemic lupus erythematosus (SLE) and systemic sclerosis 

(SSc) patients.135,136 Both these studies undertook an initial 

microarray study and confirmed candidate genes by qPCR in 

a larger 2nd cohort. The Pimentel-Santos study was the largest 

study with 18 patients and 18 controls in the initial microarray 

cohort and validated in 156 patients and controls using Taqman 

Low Density Arrays (TLDAs). Interestingly all three studies 

identified elements of the innate immune system to be differen-

tially regulated. TLRs 4 and 5,135,136 NLRP2137 and CLEC4D136 

were all shown to be differentially expressed. Interestingly 

TLR4 was also shown to be up regulated at both RNA and 

protein level in AS PBMCs in a candidate gene study138 as well 

as in degenerative intervertebral discs.139 A role for the innate 

system in AS has long been postulated due to the proposed 

link between an as yet unknown pathogen and disease onset.140 

SPARC, a bone matrix protein, was also upregulated in two 

of the studies136,137 which suggests dysregulation of the bone 

matrix which might contribute to the joint ankylosis.

In other immune conditions many studies have been 

undertaken using PBMCs however this is not the case for 

SpA/AS. The first SpA expression profiling study used a 

small (588-gene) array comparing a small control, SpA, 

RA, and psoriatic arthritis patient cohort (n = 6–7).141 An 

arthritis-specific gene signature was identified but only one 

gene, myeloid cell nuclear differentiation antigen (MNDA), 

was able to distinguish SpA from the other arthrites.

Colbert and colleagues adopted a different approach 

undertaking a large whole genome study (∼40000 cDNAs) 

using purified macrophages derived from normal and AS 

PBMC samples.142 They demonstrated a ‘reversed’ IFNγ 

signature, with reduced expression of both IFNγ and IFNγ-

induced genes.

Gene expression profiling is also a powerful tool to 

 follow response to treatment. Haroon et al used whole 

genome expression arrays to identify a response to anti-

TNF  treatment.143 A subset of 1428 genes was differentially 

expressed in response to treatment and downregulation of 

4 inflammation-associated genes, including LIGHT, whose 

downregulation has also been associated with RA suggest-

ing this gene maybe generally associated with inflammatory 

processes,144 was confirmed.

Only recently however have large-scale whole genome 

expression profiling studies on the complete PBMC popu-

lation been undertaken in AS or SpA by ourselves145 and 

David Yu’s group at UCLA.146 Using Illumina’s HT-12 whole 

genome arrays we compared expression profiles of PBMCs 

from 18 active AS patients (confirmed by Modified New York 

Criteria) and 18 age- and gender-matched controls identifying 

a 452-gene signature delineating AS and control samples 

with 94% accuracy. Downregulation of four immune/ 

inflammation candidate genes, NR4A2, TNFAIP3, CD69, 

and RORA, was validated by qPCR. The expression pattern 

of these four genes generated a diagnostic potential of ∼80% 

for AS which has the potential to be used to distinguish 

inflammatory from non-inflammatory back pain.

The downregulation of these candidate genes, together 

with other immune genes, suggests a defect in the capacity 

of the immune response. In most inflammatory condi-

tions an upregulation of inflammation-associated genes 

would be expected, such as in RA and systemic lupus 

erythematosus.147–151 Our results however are consistent with 

the macrophage study described above which also detailed a 

decreased immune response.142 They also saw a decrease in 

TNFAIP3 expression in AS patients.
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Down-regulation or muting of the immune response 

is compatible with one of the hypotheses proposed for the 

underlying pathology causing AS, in which a ubiquitous 

environmental factor acts as a trigger in patients genetically 

disposed to the disease (such as carrying the HLA-B27 allele 

together with other susceptibility alleles from other genes 

such as IL23R and ERAP1).152 A microarray study on whole 

blood samples from psoriatic arthritis patients, a related 

spondyloarthropy, also showed a general down-regulation in 

immune-associated genes suggesting inappropriate immune 

control.153

In addition to comparing AS and control groups, 

Gu et al also looked at undifferentiated SpA (uSpA) 

patients.146 Expression changes were significantly greater 

in the uSpA patients compared to controls than for the 

AS samples. Given that uSpA is considered a less severe 

disease this was somewhat unexpected. Very few genes 

altered in AS with most of those being up-regulated 

including NR4A2 which was downregulated in our study.145 

The Gu et al study was undertaken in a Chinese patient 

cohort which might explain the different findings to our 

Caucasian cohort study.

Table 2 summarises the most interesting genes identified 

through whole genome expression profiling studies in well-

powered studies.

As mentioned above, expression profiling can gener-

ate powerful diagnostic algorithms. In AS, advanced joint 

damage is required for firm diagnosis (Modified New York 

Criteria) to gain subsidized access to the most effective (and 

expensive) treatments. A need for a reliable early diagnostic 

in AS is thus very pressing. Both ours145 and David Yu’s146 

studies showed diagnostic power . 80% to predict disease 

based on the expression profiles.

The results to date have shown a disappointing lack of 

overlap between the whole blood and PBMC expression 

studies. Several studies have reported differences in the 

expression profile of PBMCs vs whole blood.154–157 Larger 

cohort studies are required with whole blood profiling the 

more convenient vehicle to expedite the multicenter approach 

needed to generate sufficient power.

To date a number of disparate expression profiling studies 

have been undertaken in AS. Although a number of poten-

tially interesting gene changes have been identified, there 

is a lack of consensus in the mechanisms highlighted save 

for an indication of a reduced immune response. A similar 

problem confronted genetic studies several years ago and this 

was overcome by large-scale collaborative studies generating 

large homogenous sample cohorts and enabled strong repro-

ducible candidate gene-associations to be identified. Similar 

issues need to be addressed for future expression profiling 

studies in AS. Significant thought must be given to assem-

bling large informative sample cohorts that reflect the stage 

of disease being investigated. These cohorts need to consist 

of homogenous case collections targeting specific disease 

Table 2 Candidate genes associated with AS identified through genome-wide expression studies

Gene Samples Tissue Platform Regulation References

MMP3 AS-SpA vs normal-OA Synovial biopsy illumina DASL Up Submitted for 
publication

DKK3 AS-SpA vs normal-OA Synovial biopsy illumina DASL Down Submitted for 
publication

TLR4 AS vs controls Whole blood (PAXGene) illumina HT12 Up 135,136
TLR5 AS vs controls Whole blood (PAXGene) illumina HT12 Up 135,136
NLRP2 SpA vs controls Whole blood (PAXGene) Affymetrix HG-U133 plus 2.0 Down 137
CLEC4D AS vs controls Whole blood (PAXGene) illumina HT12 Up 136
SPARC SpA vs controls AS vs  

controls
Whole blood (PAXGene) Affymetrix HG-U133 plus 2.0 

illumina HT12
Up 136,137

IFN-regulated genes AS vs controls Purified macrophages Affymetrix HG-U133 plus 2.0 Reverse  
iFN signature

142

LIGHT AS patients with and without  
anti-TNF treatment

whole blood Affymetrix HG-U133 plus 2.0 Down 143

NR4A2 AS vs controls PBMC illumina HT12 Down 145
TNFAIP3 AS vs controls PBMC 

Purified macrophages
illumina HT12 
Affymetrix HG-U133 plus 2.0

Down 142,145

CD69 AS vs controls PBMC illumina HT12 Down 145
RORA AS vs controls PBMC illumina HT12 Down 145
NR4A2 AS vs uSpA vs controls PBMC Illumina Ref-8 Up 146
RGS1 AS vs uSpA vs controls PBMC Illumina Ref-8 Up 146
Abbreviations: PBMC, peripheral blood mononuclear cells; AS, ankylosing spondylitis; SpA, spondyloarthropathy; USpA, undifferentiated spondyloarthropathy; 
OA, osteoarthritis; iFN, interferon.
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stages, such as early inflammation or late-stage ankylosis, to 

stand the best chance of being informative. For the develop-

ment of diagnostic tests, further studies need to be conducted 

on the suitability of whole blood RNA as a sample source 

reflective of disease status, as this approach is much more 

practical for use in clinical practice. Given the scarcity of 

clinically relevant samples, collaborative approaches would 

enable such powerful studies. Archived samples should also 

be utilized using the appropriate technologies developed for 

such approaches.

With next generation sequencing enabling whole tran-

scriptome studies the future of expression profiling looks 

to lie in this direction. Costs are rapidly decreasing making 

large scale studies viable for well-funded labs. RNAseq will 

allow the full catalog of splice variants, non-coding RNAs 

and microRNAs to be elucidated and some of these novel 

species may explain some of the strong GWAS hits in “gene 

deserts”.

Conclusion
Although a number of strong candidate genes have been 

identified from well-powered GWAS studies there appears 

to be little correlation with the gene expression profiling 

studies published to date.

This could be due to;

1. Genetic studies identify for the most part susceptibility 

genes and expression studies are frequently in patients 

with established disease. Many alterations in these genes 

may be finished by the time the expression studies are 

undertaken

2. Genetic studies may identify genes in which function 

rather than absolute expression level is altered

3. Genetic disposition to a disease may be the result of very 

small changes in a number of genes, each of which is 

below the threshold of detection by expression profiling 

but cumulatively might generate significant downstream 

effects which are picked up by the expression studies.

To date no expression quantitative trait loci (eQTL) 

 studies have been published in AS or SpA. There is now 

a significant body of GWAS and expression profiling 

data to enable such studies. Such approaches correlating 

genetic variants with both cis- and trans expression may 

further explain to current GWAS/expression profiling dis-

connect and further reveal the pathways and mechanisms 

underlying AS.
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