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Purpose: Pyroptosis, a new form of inflammatory programmed cell death, has recently gained attention. However, the impact of the 
expression levels of pyroptosis-related genes (PRGs) on the overall survival (OS) of osteosarcoma patients remains unclear. This study 
aims to investigate the impact of the expression levels of PRGs on the OS of pediatric and young adult patients with osteosarcoma.
Patients and Methods: Transcriptome matrix datasets of normal muscle or skeletal tissues from the Genotype-Tissue Expression 
(GTEx) project and osteosarcoma specimen the National Cancer Institute’s (NCI) Therapeutically Applicable Research to Generate 
Effective Treatments (TARGET) database were used to identify pyroptosis-related genes (PRGs) associated with prognosis. The 
National Center for Biotechnology Information’s (NCBI) GSE21257 dataset was employed to validate the predictive value of the 
pyroptosis-related signature (PRS). Additionally, reverse transcription polymerase chain reaction (RT-qPCR) experiment was per-
formed in normal and osteosarcoma cell lines.
Results: The study identified 18 differentially expressed PRGs (DEPRGs) between normal muscle or skeletal tissues and tumor 
samples. Multiple machine learning techniques were used to select PRGs, resulting in the identification of four hub PRGs. A PRS- 
score was calculated for each sample based on the expression of these four hub PRGs, and samples were categorized into low and high 
PRS-score level groups. It was confirmed that metastatic status and PRS-score level are independent prognostic predictors. 
A nomogram model for predicting OS of osteosarcoma patients was constructed. Single-cell RNA-sequencing data display the 
expression patterns of the hub PRGs. RT-qPCR data results were found to be consistent with the differential expression analysis 
performed on TARGET and GTEx samples.
Conclusion: The study developed a novel pyroptosis-related gene signature that can stratify pediatric and young adult osteosarcoma 
patients into different risk groups, thus predicting their response to immunotherapy and chemotherapy.
Keywords: TARGET, nomogram model, immune microenvironment, drug sensitivity

Introduction
Osteosarcoma, the most common primary malignant bone tumour among all ages, often occurs in children and 
adolescents. It accounts for around 5% of all childhood cancers.1 The most frequent primary sites of osteosarcoma are 
distal femur, proximal tibia, and proximal humerus.2 When the cancer is diagnosed, 15–20% of patients already have 
shown macroscopic evidence of metastases, most (85–90%) of which occur in their lungs.3,4 Before the 1970s, surgical 
resection is the primary treatment for osteosarcoma. Notably, the introduction of chemotherapy since the 1970s has 
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tremendously improved long-term survival rates of patients with osteosarcoma, which have risen from less than 20% to 
65–70%.3

Programmed cell death (PCD) is an essential part of human development and tissue homeostasis enabling the removal 
of unwanted cells.5 Pyroptosis, a newly-discovered type of PCD,6 is a highly inflammatory process in which cells lose 
their cytomembrane intactness.7 This form of cell death, characterized by swelling, bubble-like protrusions, and shedding 
of membrane vesicles, leads to the release of intracellular contents and entry of annexin V.5,8 Recent studies have 
revealed the critical role of pyroptosis in tumour biology, particularly in osteosarcoma, where it has been associated with 
patient survival and disease progression. Additionally, the role of pyroptosis in osteosarcoma development, although not 
fully understood, is becoming increasingly recognized, emphasizing the need for further research in this area.9,10 

Pyroptosis is mediated by gasdermin (GSDM) proteins, triggering immune cell activation and infiltration.11–13 The 
expression of GSDMD, in particular, is essential for the anti-tumour function of CD8+ T cells,14 and GSDME may act as 
a tumor suppressor.15 Evidence shows that pyroptosis plays a pivotal role in the pathogenesis and progression of 
osteosarcoma, influencing responses to chemotherapy.16

Given these advancements in molecular biology and bioinformatics, the identification of diagnostic and prognostic 
genomic biomarkers, including pyroptosis-related genes (PRGs), offers new opportunities for research.17 The exact 
mechanism by which PRGs influence the development of osteosarcoma remains an area of active investigation. Accurate 
models predicting outcomes in children with osteosarcoma are still lacking. Considering the limitations of existing 
osteosarcoma therapies, novel targeted therapeutics, particularly those addressing pyroptosis pathways, should be 
explored to enhance clinical outcomes.

Aimed at developing a nomogram-based prognostic model utilising PRGs for pediatric and young adult patients with 
osteosarcoma, this study conducted a comprehensive analysis of PRG expression in pediatric and young adult patients with 
osteosarcoma in this population. The results indicate that the pyroptosis-related signature (PRS) can serve as an independent 
prognostic factor for these patients. Additionally, this study explored variations in the immune microenvironment, in silico 
sensitivities, and responses to immunotherapy and chemotherapy, offering potential insights for osteosarcoma treatment.

Materials and Methods
Dataset Source
The datasets for the study were obtained from various databases. Whole-transcriptome sequencing [total RNA sequen-
cing (RNA-Seq)] data of pediatric and young adult patients with osteosarcoma combined with their clinical character-
istics were downloaded from National Cancer Institute’s (NCI) Therapeutically Applicable Research to Generate 
Effective Treatments (TARGET) database (platform: Illumina HiSeq 2000) via the Genomic Data Commons (GDC) 
portal (https://portal.gdc.cancer.gov/). The TARGET set was used as a training set and the creation of the PRS and the 
predictive model was performed on it.

In this research, Genotype-Tissue Expression (GTEx) project was employed as a reference resource of gene 
expression levels from “normal”, non-diseased tissues18 in this research. The expression data of normal muscle and 
skeletal samples (n = 803) within the Developmental GTEx (dGTEx) collection of RNA-seq experiments (platform: 
Illumina HiSeq 2000) were obtained from the GTEx portal (https://gtexportal.org/home/).

In order to externally validate the prognostic accuracy of the PRS established in the TARGET cohort, an independent 
validation set was used. The dataset GSE21257 (platform: GPL10295, Illumina human-6 v2.0 expression beadchip) consisted 
of expression data and survival information of patients with osteosarcoma was retrieved from National Center for 
Biotechnology Information’s (NCBI) Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo). To 
gain further insights into the OS tumour microenvironment and cellular heterogeneity, GSE162454 dataset comprising single- 
cell RNA sequencing (scRNA-seq) data was also downloaded from the GEO database.

Study Population
Cases whose survival information was not clearly recorded or OS time was less than 30 days were excluded from the 
training cohort and validation set. The final study population included a total of 137 patients, with 84 patients in the 
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training set (the TARGET cohort) and 53 patients in the validation set. In the analysis of scRNA-seq data, six primary 
tumor samples were obtained from six patients with osteosarcoma.

Cell Culture and RT-qPCR
The differential expression of hub PRGs was detected in two cancer cell lines compared to the normal cell line using the 
reverse transcription polymerase chain reaction (RT-qPCR) experiment. Human normal osteoblast cell line hFOB1.19 
and osteosarcoma cell lines, 143B and U-2 OS were used for this study. hFOB 1.19 cells were obtained from Procell Life 
Science & Technology Co., Ltd. (Wuhan, China), 143B cells from iCell Bioscience Inc. (Shanghai, China), and U-2 OS 
from National Collection of Authenticated Cell Cultures (Shanghai, China). hFOB 1.19 cell line was grown in 
Dulbecco’s modified Eagle medium (DMEM) (Hyclone, Logan, USA) (1:2) supplemented with 10% fetal bovine 
serum (FBS) (Gibco, Brazil), 0.3mg/mL G418 disulfate solution, and 1% penicillin/streptomycin, 143b in DMEM 
(1:2–1:3) supplemented with FBS, U-2 OS cell line in Roswell Park Memorial Institute-1640 (RPMI-1640) (Hyclone, 
Logan, USA) (1:2–1:3) supplemented with FBS. The hFOB1.19 cell line is cultured in a humidified atmosphere 
consisting of 95% air and 5% CO2 at a temperature of 34 °C. The 143B and U-2 OS cells are cultured with the same 
humidity and CO2 concentration, but at a temperature of 37 °C.

Total RNA was isolated from individual cell lines with TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) according to 
the manufacturer’s protocol. The integrity of the RNA was assessed by agarose gel-electrophoresis. The expression levels 
of mRNA encoding hub genes were determined by RT-qCR with GAPDH transcripts as a reference. cDNA was 
synthesised from 1 μg of total RNA with PrimeScrip II Reverse Transcriptase (200 U/μL) (Takara, Japan) in accordance 
with the protocol recommended by the supplier. qPCR reactions of 10 μL of SYBR FAST qPCR Master Mix (Kapa 
Biosystems, Woburn, MA, USA), 1 μL of template, 8 μL of ddH2O (DNase/RNase-Free), and 0.5 μM of forward and 0.5 
μM of reverse primers specific for GAPDH and for each hub genes encoding cDNA. After initial denaturation at 94 °C 
for 3 min, cDNA was amplified by 40 PCR-cycles (denaturation at 95 °C for 5s, primer pair-dependent annealing at 56 
°C for 10s, and elongation at 72 °C for 25s) followed by final elongation at 65 °C for 5s. Each cell line was tested using 
three samples, and each sample was tested in triplicate for all experiments. The primer pairs are presented in Table 1.

Statistical Analysis
The Kaplan–Meier (K–M) plot of survival and the Cox hazard ratio (HR) regression model are widely used to identify 
factors associated with a time-to-event response variable. In this study, overall survival (OS) was used as the endpoint. 
HR values from K–M survival curves or Cox HR regression model were used to represent the relative difference between 
the exposed group and the reference group. A hazard ratio of 1 indicates a lack of association with risk, an HR value 
greater than 1 suggests an increased risk, and an HR value below 1 indicates a smaller risk. The K–M survival difference 
between subgroups was compared using Log rank test.

Table 1 Reverse Transcription Polymerase Chain Reaction (RT-qPCR) Primer Sequences

Primer Sequence Target Amplicon 
Length (bp)

TNFRSF21 Forward AGGGAGGTTGCTGCTTTC 338

TNFRSF21 Reward TCCGACTCATCCACGAAG

GSDMA Forward AGCAGACCACCCATTCCT 248
GSDMA Reward CATCTTTGCCTTTGACCAT

GZMA Forward TCTCAGTTGTCGTTTCTCTCC 237

GZMA Reward TTGGCTCTTCCCTGGTTAT
CHMP4C Forward TTGGCTTTGGTGATGACTT 146

CHMP4C Reward TGGTTTTCTATTTGGCTGTG

GAPDH Forward GGGAAACTGTGGCGTGAT 299
GAPDH Reward GAGTGGGTGTCGCTGTTGA
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Statistical analyses were performed with R v. 4.2.2 (R Foundation for Statistical Computing, Vienna, Austria). All 
p-values are two-sided. 95% confidence interval (CI) of hazard ratio (HR) values, Harrell’s concordance index (C-index) 
values, area under the curve (AUC) values of the time-dependent receiver operating characteristic (ROC) curve and 
integrated Brier score (IBS) were adopted. A signature with an AUC value of ROC curve above 0.6 and a p-value from 
the survival analysis below 0.05 was considered predictive.

Preprocessing of Clinical Information, RNA-Seq Data, and scRNA-Seq Data
For the training set and validation cohort, the cutoff of age was 13 y/o, which was determined using the “surv_cutpoint” 
function from the “survminer” package.19 As osteosarcomas often occur in lower extremities,20 the tumour primary site 
variable was classified into two subgroups: lower extremities and other sites (other sites or unknown for the GEO 
dataset).

The duplicate ensembles/probes mapping to the same gene symbol were averaged by the “avereps” function from the 
“limma” package.21 The log2-transformed tables of (fragments per kilobase of transcript per million fragments mapped 
[FPKM] + 1) and (transcripts per kilobase million [TPM] + 1) for the TARGET samples, as well as the data of normalised 
probe intensity for the GEO cases, were each subjected to quantile normalization using the “normalizeBetweenArrays” 
function from the “limma” package.21 When the GTEx read count matrix and the TARGET table were merged, only the 
shared gene symbols in the two datasets were retained. In addition, the “edgeR” package was used to standardised read 
counts of GTEx cohort and TARGET set, filter out lowly expressed genes, and correct the batch effect.

The scRNA-seq data quality control was performed using the “Seurat” package22 and the batch effects between 
samples were corrected using the “harmony” package.23 Filtering of the expression matrices was also done to ensure 
high-quality scRNA-seq data. Genes that expressed in less than 10 cells and cells that individually had less than 200 
detected genes were excluded. The raw read counts obtained from single-cell RNA sequencing (scRNA-seq) were first 
transformed into log-normalized values employing the “NormalizeData” function, followed by scaling using the 
“ScaleData” function. Both of these functions are integral components of the “Seurat” package.22 The “SCTransform” 
method from the “sctransform” package24 and Gamma-Poisson generalised linear model (GLM) regression from the 
“glmGamPoi” package25 were then used to further normalise the data.

Comparison of Baseline Characteristics
The continuous non-normally distributed variable determined by the Shapiro–Wilk test is presented as the median 
[interquartile range (IQR)], and categorical variable as the number of cases (percentage). Bivariate associations between 
OS status and patients’ baseline characteristics (age, gender, tumour stage or grade, primary tumour site, metastatic 
status) in the TARGET cohort and GEO dataset were tested. The analysis of differences in categorical factors was 
conducted using Pearson’s chi-square test. However, if the expected count for any given cell was less than 5, Yates’ chi- 
square test was employed instead. A table of baseline characteristics was generated by “tableone” package.26

Identification, Biological Interaction Analysis, and Consensus Clustering of DEPRGs
A total of 79 PRGs, as detailed in Supplementary Table 1, were identified by summarizing previous studies27–33 and 
through the inclusion of a Gene Ontology (GO) term (GOBP_PYROPTOSIS) and a Reactome Pathway Database 
pathway (REACTOME_PYROPTOSIS) associated with pyroptosis. The gene lists of the GO terms and Reactome 
Pathways were downloaded from the MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb). The differentially 
expressed PRGs (DEPRGs) between 803 normal muscle or skeletal samples in the GTEx cohort and 84 tumour tissues in 
the TARGET cohort were identified using a moderated independent sample t-test from the “limma” package.21 Genes 
with a false discovery rate (FDR) adjusted p-value < 0.05 and an absolute value of log2(fold-change) [log2(FC)] > 2 were 
considered significantly differentially expressed. The final DEPRG list is the intersection of the resultant DEG list and the 
PRG list. To visualise the results of differential expression analysis, heatmap and volcano plots of DEPRGs were 
generated by using the “ggplot2” package.34

Spearman rank correlation coefficients (r) calculated by the “Hmisc” package were used to quantify DEPRGs’ co- 
expression. p < 0.05 and |r| > 0.3 were used as cutoffs to indicate that two DEPRGs are co-expressed. All links between 
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pairs of co-expressed DEPRGs were combined to construct a co-expression network. In addition to the co-expression 
network, the genes resulting from the differential expression analysis were also submitted to the Search Tool for the 
Retrieval of Interacting Genes database (STRINGdb, https://string-db.org/) version 12.0.35 This web tool includes 
protein–protein interactions (PPI) for the species Homo sapiens and was suitable for this study as the interactions 
were derived from systematic text-mining of a large amount of scientific literature. To fully investigate the PPI data, the 
exploration was configured to include all source parameters. PPIs with a confidence score of at least 0.400 were included 
in the network generation. The resulting PPI network was visualized using STRINGdb.36 Meanwhile, this repository was 
also used to perform a local network cluster (STRING) analysis. It is also noteworthy that transcription factors (TFs) are 
cis-acting “switches” that bind to TF binding sites (TFBSs) to modulate gene expression.37 The construction of a TF– 
mRNA regulatory network can help to clarify the complex regulatory relationships involved in various biological 
processes. Therefore, the ChIP-X Enrichment Analysis 3 database (https://maayanlab.cloud/chea3/) was utilised to 
conduct gene set enrichment analysis (GSEA) on DEPRGs against previously published ChIP-seq data (the literature 
ChIP-seq dataset) using Fisher’s exact test (FET).38 Among the set of TFs, cut-off FET p value was set to less than 0.05. 
The resultant TFs and the DEPRGs that are regulated by them were used to create a TF–DEPRG regulatory network. The 
DEPRG co-expression network and TF–DEPRG regulatory network were visualised with the assistance of the “ggraph” 
package.39

Then, the “ConsensusClusterPlus” package40 was utilised to generate consensus of samples according to the 
expression values of the DEPRGs and produce graphical plots indicating optimal number of groups (k). The K–M plot 
was visualised using the “survminer” package.19 The p value from the “survfit” object generated by the “survival” 
package41 was obtained using the “logrank_test” function from the “coin” package.42 A p-value in the survival analysis 
below 0.05 was considered significant.

Hub PRG Selection and Development of PRS–Score
Normalised log2(TPM+1) matrix was processed by the following machine learning (ML) methods to select the hub 
PRGs. Minimum redundancy maximum relevance (mRMR) method provided by the “mRMRe” package43 was applied to 
select 15 nonredundant genes into a subset. Uni- and multivariate Cox HR regression analyses and C-index value 
calculations were conducted with the “survival” package.41

Gene signatures with p <  0.05 and C-index > 0.6 at univariate analysis were considered as PRGs related to OS. These 
genes entered into a least absolute shrinkage and selection operator (LASSO)–penalised Cox HR regression (LASSO- 
Cox) model. At the same time, these signatures were also entered into a linear support vector machine (SVM) recursive 
feature elimination (SVM–RFE) regression model.44 In order to select the best hypermeter for the LASSO-Cox and 
linear SVM–RFE models, nested resampling cross-validation (CV) with a 5-fold inner loop for tuning hyperparameters 
was done; the outer loop also consisted of 5-folds with the held-out data used as a test set for unbiased performance 
estimation. In each inner loop for the LASSO-Cox model, an initial feature selection by survival C-index was also 
implemented to further reduce the feature space and tendency for overfitting. The optimal λ was determined using 5-fold 
CV. During each inner loop of the SVM–RFE model, a backward feature selection with 5-fold CV was executed under 
the guidance of the importance score ranking and the mean AUC value of subsets with the same number of variables. In 
addition, the significance of individual gene expression of PRGs related to OS toward the SVM classifier was determined 
by calculating the mean absolute Shapley additive explanation (SHAP) value of the feature across all samples (mean | 
ΔP|), where each SHAP value (ΔP) represents the contribution of a genetic variable toward the predicted probability of 
OS for an individual sample.45 SHAP values were calculated using 1000 Monte-Carlo sampling repetitions with the 
“fastshap” package46 and visualized as a bee swarm plot using the “shapviz” package.47 Finally, the LASSO-Cox and 
SVM–RFE models selected the most valuable features by applying optimal hyperparameters on the full TARGET 
dataset. Subsequently, the two sets were intersected to have a single subset of the genetic features. The two ML methods 
were done utilising the packages including “mlr3”,48 “mlr3proba”,49 “mlr3verse”,50 and “mlr3extralearners”.51

The multivariate Cox regression model relies on the assumption of proportional hazards (PH) across different 
variables.52 A multivariate Cox proportional hazards regression model was constructed based on the gene set selected 
by multiple ML methods. To test whether each feature in the model met the PH assumption, the “Cox’s.zph” function 
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from the “survival” package41 was employed. Any gene that violated this assumption, as indicated by a p-value less than 
0.05, was subsequently excluded from the model. A bi-directional stepwise procedure is a combination of forward 
selection and backward elimination.53 The screened variables from the last step were utilised to implement a multivariate 
Cox HR regression analysis with two-directional stepwise selection by the “StepReg” package.54 The stepwise approach 
started with the full model. Terms were automatically and sequentially removed and then reintroduced at each step of the 
algorithm, which was aimed at obtaining the minimum of corrected form of Akaike information criterion (AICc). 
Eventually, the genes in the resultant model were identified as hub PRGs.

The role of multiple hub PRGs in determining the risk of death in the TARGET cohort was modelled using 
multivariate Cox HR regression analysis. Each regression coefficient describes how a patient’s values of the correspond-
ing predictor variable affects his/her death risk.55 To predict the risk in accordance with expression level [normalised log2 

(TPM+1)] of the hub PRGs, a continuous risk score, namely pyroptosis-related signature PRS-score, for each patient will 
be calculated as:

where PRS-scorei is the risk score for sample i, βij is the estimate (coefficient) computed from multivariate Cox HR 
regression models for sample i’s hub PRGj, and expij is the expression level of sample i’s hub PRG j. At the same time, in 
order to validate that the equation can accept FPKM RNA-seq, the PRS-score for each sample using normalised log2 

(FPKM+1) data as the hub PRGs’ expression level was also calculated.
The correlation coefficients between the expression levels [nomalised log2(TPM+1)] of hub PRGs and PRS-score in 

the TARGET cohort were calculated by the “Hsmic” package,56 and then was illustrated using the “circlize” package57 

and “ComplexHeatmap” package.58

For the purpose of translating a continuous variable into a clinical decision, many medical researchers determined 
a cutoff point to stratify patients into two groups with each requiring a different kind of treatment.59 To divide the 
TARGET cohort into low and high PRS-score level groups, the “surv_cutpoint” function from the “survminer” package19 

was utilised to determine the cutoff point for PRS-score variable. Samples with scores above the cutoff point were 
considered to have a high PRS-score level, while those below the cutoff point were considered to have a low PRS-score 
level. Independent t-test was also used to determine if there were differences in the expression level of hub genes 
between the high and low PRS-score level. Genes with an FDR adjusted p-value < 0.05 were identified as differentially 
expressed in the two groups. In the meanwhile, the PRS-score for each patient in GSE21257 cohort was calculated using 
the same coefficients and data of normalised probe intensity of hub PRGs. Since FPKM data and probe intensity totally 
differ from TPM data, the cutoff point to stratify the samples in the TARGET cohort based on the normalised log2(FPKM 
+1) table and the patients in GSE21257 cohort based on the normalised probe intensity matrix were recalculated using 
the same R function and arguments.

Evaluation of the Prognostic Accuracy of PRS–Score
The expression levels of hub PRGs between high and low PRS-score group of the TARGET cohort were compared using 
independent t-tests, and the p-values were FDR adjusted. Moreover, the prediction accuracy of the PRS-score was then 
internally and externally validated. Since the weighted expression levels of hub genes would continuously increase with 
the rank of patients’ risk, the performance of PRS-score in both the entire TARGET and GSE21257 cohorts was assessed 
and evaluated as the AUC values of 1-, 2-, 3-, 4-, and 5-year time-dependent ROC as implemented in the “timeROC” 
package.60 In order to compare the survival curves of the different PRS-score level groups in each cohort, K–M survival 
analysis was performed on the TARGET cohort and GEO. The overall survival of patients between the high- and low-risk 
level groups in each cohort was compared with the help of the “coin” package.42 A p-value of < 0.05 denoted 
a statistically significant result. Since the weighted expression levels of hub PRGs would continuously increase with 
the rank of patients’ risk, the performance of risk score in both the entire TARGET and GSE21257 cohorts was assessed 
and evaluated as the AUC values of 1-, 2-, 3-, 4-, and 5-year time-dependent ROC as implemented in the “timeROC” 
package.60 Moreover, to validate that the risk predictor can work well in predicting OS possibilities in subgroups 
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stratified by demographic characteristics (ie, age and gender), 1-, 2-, 3-, 4-, and 5-year time-dependent ROC curves with 
their AUC values were also plotted.

The pyroptosis-related signature and other clinical feature(s) confirmed to be independent OS predictors were utilised 
to develop a nomogram-based prognostic model for predicting OS of pediatric and young adult osteosarcoma patients. To 
further investigate the association between PRGs and patients’ demographic or clinical information, differential analysis 
was performed on the expression level of each hub PRG and PRS-score against significant demographic or clinical 
factors in the multivariable Cox HR regression. Normally distributed data were compared using an independent t-test and 
non-normally distributed data were compared using a Wilcoxon rank test.

Additionally, nomogram-based predictive model performances were evaluated using the C-index for the model’s 
discriminatory power, IBS for mean squared prediction error, calibration curve for accuracy and calibration, and decision 
curve analysis (DCA) for utility. Similar to AUC of ROC, a C-index value of nomogram ranging from 0.5 to 1 assesses 
how well the model distinguishes between those with and without a dead outcome.61 The discrimination of the 
nomogram was evaluated on the training cohort and then validated on the validation set. IBS is an overall measure for 
the prediction of the model at all times.62 IBS of the nomogram model was computed using the “ipred” package63 with 
the parameter nbagg = 1 (a single survival tree). The upper and lower 95% CI were calculated by 1000-time bootstrap 
sampling using the “boot” package.64 In practice, a model with a C-index greater than 0.6 and an IBS below 0.25 was 
deemed useful. Meanwhile, calibration plots were generated based on 1000 bootstrap samples from both the TARGET 
and GSE21257 cohorts to compare the K–M method estimated and nomogram-predicted 1-, 2-, 3-, 4-, and 5-year OS 
rates.65 The calibration curve analyses in the training cohort and the validation set were carried out using the “rms” 
package.66 Time-dependent C-index values involving CV with 1000 bootstrap samples of each Cox regression model 
(Clinical model, PRS-score level model and nomogram model) were calculated and visualised utilising the “pec” 
package.67 Another novel discriminative performance measurement method, DCA, was simultaneously employed to 
internally validate the nomogram. Decision curves were constructed using the “stdca.R” script68 to evaluate the 1-, 2-, 3-, 
4-, and 5-year performance of each model on the training set.

GO and KEGG Enrichment Analyses
Functional enrichment analyses were conducted with the objective of offering a functional interpretation for a group of 
genes sharing a common characteristic, such as differential expression.69 As such, significantly enriched GO terms and 
Kyoto Encyclopedia of Genes and Genomes (KEGG, https://www.kegg.jp/) pathways70 (FDR adjusted p-value < 0.05) 
were identified using hypergeometric distribution test [over-representation analysis (ORA)] and GSEA with the help of 
the “clusterProfiler” package.71 The GO database is categorised into three primary sections: cellular component (CC), 
molecular function (MF), and biological process (BP). The top 30 (if available) most significant terms in each GO 
category and pathways in the KEGG collection were ranked by risk ratio and visualised as lollipop charts using the 
“ggplot2” package.34 The KEGG pathway database comprises a set of pathway maps drawn by hand. For human species 
(Homo sapiens), these maps are divided into four distinct types: Environmental Information Processing, Cellular 
Processes, Organismal Systems, and Human Diseases. KEGG pathways that fall under the Human Diseases category 
were excluded from this analysis.

log2(FC) values between high and low PRS-score level groups were calculated from voom-transformed read count 
values with the “limma” package.21 After that, statistical significance of over-representation of the significantly down- 
regulated genes (log2(FC) < 0 and FDR adjusted p < 0.05) and up-regulated [log2(FC) > 0 and FDR adjusted p < 0.05] 
and between the two PRS-score level groups in GO terms and KEGG pathways was determined using ORA. From the 
top 30 significantly enriched KEGG pathways, those that involved the four hub genes or their gene family counterparts or 
those that were related to the skeleton were selected. Bayesian network diagrams were plotted using the “bngeneplot” 
function of the “CBNplot” package.72 The genes in these pathways serve as nodes, and expression levels serve as edges.

KEGG pathway GSEA was also performed using the differential expression ranking metric method.73 Then, the 
“aPEAR” package74 was used to leverage similarities between the significantly enriched KEGG pathways, and the 
“ggraph” package39 was utilised to represent the result as a network of interconnected clusters.
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Analysis of Tumour Immune Microenvironment and Prediction of Response to ICB 
Therapy
In order to investigate immune contexture in 84 osteosarcoma samples from the TARGET programme, cell-type 
identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm75 was used to process the 
gene expression matrix built from TPM data using the CIBERSORT R script v. 1.04 (University of Stanford, Stanford, 
CA, USA) with 1000 permutations. The output result of the CIBERSORT analysis describes the expression fingerprints 
of 22 immune cell phenotypes, including different cell types and functional states. The analytical tool estimates the cell 
fractions using ν-support vector regression (ν-SVR).76 For each type of immune cell, Wilcoxon rank sum test provided by 
the “rstatix” package77 was used to calculate the statistical significance of the difference between the two groups. 
Moreover, association strengths between the expression levels of hub genes presented in TPM and the fraction of 22 
immune cells that showed significant difference between two PRS-score level groups were explored utilising Spearman 
rank correlation analysis. p-values below 0.05 were defined as statistically significant.

Immune Cell Abundance Identifier (ImmuCellAI) is a tool that can predict the response to immune checkpoint 
blockade (ICB) therapy.78 The gene expression data of the TARGET cohort were analysed by the ImmuCellAI tool using 
the ImmuCellAI web application at http://bioinfo.life.hust.edu.cn/ImmuCellAI, following the developer’s instructions. 
Immunotherapy responses outcome (0 = negative and 1 = positive) and scores of TARGET patients were retrieved from 
the output table. The association between PRS-score and ICB therapy score was assessed using the Spearman rank 
correlation coefficient. A p-value below 0.05 was considered indicating a significant correlation between the two 
variables. Apart from that, a logistic regression analysis was conducted to investigate the relationship between PRS- 
score and the ICB therapy outcome. An ROC curve was generated from this model, and the AUC was calculated. An 
AUC greater than 0.6 indicated that PRS-score had good discriminatory power in predicting the ICB response outcome.

Analysis of scRNA-Seq Data
The “Seurat” package22 was used to perform Uniform Manifold Approximation and Projection (UMAP) analysis on cell- 
topic distributions to further reduce the dataset to two dimensions and then apply a density-based clustering method 
proposed by Macosko, et al79 to identify potential clusters. The clustering results from the scRNA-seq dataset are 
visualised using the “ggplot2” package.34 Subsequently, cell types were annotated based on the accurate clustering of the 
cells using the LM22 gene signature file for CIBERSORT immune cell types75 in the “MAESTRO” package.80 

Additionally, markers from the research conducted by Zhou et al81 were also used. The minimum number of overlapped 
gene signature was set to 1, and if the score of all input signatures was less than 1, the cluster will be annotated as 
“Others”. Finally, the expression level of each hub PRG in main cell clusters was visualised by the “ggplot” function 
from the “ggplot2” package34 and “Dotplot” function provided by the “Seurat” package.22

In-Silico Drug Sensitivity Prediction
The “pRRophetic” package82 was used to fit models for baseline gene expression [log2(TPM+1)] and then yield in vivo 
drug sensitivity [also known as the half-maximal inhibitory concentration (IC50)] predictions.

Afterwards, differences in IC50 value of 251 drugs from the Cancer Genome Project (CGP) 2016 database83 between 
the high and low PRS-score level groups were statistically analysed with the help of Wilcoxon rank-sum test. A lower 
IC50 value [-log10(IC50)] means that the drug could work at a lower concentration. The co-relationship between 
predicted and measured drug sensitivity values was measured by Spearman correlation test. Two of the above- 
mentioned tests were performed using the “stats” package,84 and the drugs whose p-values from the two tests were 
both less than 0.001 could be candidates for the treatment of either low or high PRS-score level group.

RT-qPCR Data Analysis
RT-qPCR data were calculated by the comparative cycle threshold (Ct) (ΔΔCt) method, using GAPDH as the internal 
control. The relative expression level of each hub gene was shown as a 2–ΔΔCt value and was normalised to the control 
cell value, which was set to be 1. To analyze the differential expression of the hub gene in cancer and normal cell lines, 

https://doi.org/10.2147/JIR.S440425                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 424

Guo et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://bioinfo.life.hust.edu.cn/ImmuCellAI
https://www.dovepress.com
https://www.dovepress.com


pairwise independent t-tests were performed and p values were adjusted for multiple testing using FDR method by the 
“rstatix” package77 and visualised as a bee swarm plot using the “ggplot2” package34 and “ggbeeswarm” package.85

Results
Patient Demographics
Of the 84 pediatric and young adult patients diagnosed with osteogenic sarcoma in the TARGET cohort, the median age 
was 14 [IQR: 12–17] y/o. Fifty-five were alive with disease (65.48%), and 29 (34.52%) were died. The distribution of 
gender was almost equally distributed with 37 participants (44.05%) being female and 47 participants (55.95%) being 
male. Complete demographic and pathological information of the TARGET cohort (training set) and GSE21257 set 
(validation set) is displayed in Table 2.

Identification, Construction of Biological Network, and Consensus Clustering of 
DEPRGs
Initially, to explore PRG dysregulation occurring in pediatric and young adult patients with osteosarcoma, a comparison 
of gene expression profiles between normal tissues from the GTEx (n  =  803) cohort and malignant samples from the 
TARGET dataset (n  =  84) was conducted. The results are presented in Supplementary Table 2 and Figures 1A–C. As 
illustrated in the Venn plot (Figure 1A) and the volcano plot (Figure 1B), the analysis of differential expression has 
revealed that 18 out of the 79 PRGs present in the combined RNA-seq dataset are associated with cancer, comprising 7 
down-regulated PRGs [log2(FC) < −2, FDR adjusted p < 0.05, sky blue scatters in Figure 1B] and 11 up-regulated PRGs 
[log2(FC) > 2, FDR adjusted p < 0.05, tomato red scatters in Figure 1B]. The cluster heatmap (Figure 1C) based on the 
expression of DEPRGs also displays similar information on the whole. Steel blue colour means down-regulation and red 
colour signifies up-regulation. The rows of RNA-seq heat map represent PRGs, and the columns represent samples. Each 
cell is colorised based on the level of expression of that gene in that sample. Gene symbols (steel blue: down-regulated 
PRGs, red: up-regulated PRGs) with corresponding statistical significance symbols are shown on the right part of the 
illustration.

The co-expression network of DEPRGs was constructed using the outcome of Spearman correlation test in accor-
dance with the selection criteria (p < 0.05 and |r| > 0.3). As shown in Figure 1D and Supplementary Table 3, the resulting 
network contains 13 DEPRGs (3 down-regulated PRGs represented by blue circles and 10 up-regulated PRGs repre-
sented by red circles) connected by 26 expression interactions. Two of the total connections are negative, indicated by 
sky blue lines, while 24 are positive, represented by orange lines. In the DEPRG co-expression network, the genes with 
the most co-expression partners are the GSDMA, IL1B, and TREM2, each of which has six positively correlated pairs.

To further estimate the connections of typical DEPRGs, protein–protein association data of 18 DEPRGS were 
extracted from STRING v. 12 (Figure 1E and Supplementary Table 4). The mined PPI result consisted of a total of 44 
PPIs as shown in Figure 1E (p < 0.001). The colored halos around the protein bubbles are displayed in a color gradient 
from sky blue to tomato red according to the log2(FC) from the differential expression analysis. Sky blue represents 
a down-regulated expression, and tomato red signifies an up-regulated expression. Manual curation of the PPI data 
revealed that two out of 18 proteins individually had >6 interacting partners in the network. AIM2 has nine partners, and 
CASP5 has eight. Additionally, two members of the chromatin modifying protein (CHMP) family, namely CHMP2A and 
CHMP4C, were found to interact with each other, and they together form a separate interaction pair. Additionally, the 
TP63 gene did not interact with any other genes. To further elucidate the functional implications of these DEPRGs, 
protein enrichment analysis was simultaneously performed. As shown in Figure 1F, eight DEPRGs are involved in four 
local network clusters (STRING). The first three clusters are closely related to the inflammasome complex, indicating 
a strong association of these genes with inflammatory response and pyroptosis. The presence of GSDM and domain in 
apoptosis and inflammation (DAPIN) domain proteins in the first two clusters suggests a role in pore formation and cell 
death execution. The fourth cluster is associated with tumour necrosis factor (TNF)-related apoptosis-inducing ligand 
signaling (TRAIL), which is known to be involved in apoptosis, and possibly indicates a cross-talk between apoptosis 
and pyroptosis pathways.
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Table 2 Demographic and Clinical Information of the TARGET Cohort (Training Set) and GSE21257 Cohort (Validation Set)

Characteristics TARGET Cohort (Training Set) GSE21257 Cohort (Validation Set)

Overall Alive Dead p Overall Alive Dead p

84 (100.00) 55 (64.58) 29 (34.52) 53 (100.00) 30 (56.60) 23 (43.40)

Age (Median [IQR]) 14.0 [12.0, 17.0] 15.0 [12.0, 17.5] 14.0 [12.0, 17.0] 16.7 [13.7, 18.6] 16.5 [12.5, 19.1] 16.7 [13.7, 17.4]

< 13 y/o 25 (29.76) 15 (27.27) 10 (34.48) 0.4920a 12 (22.64) 8 (26.67) 4 (17.39) 0.4239a

≥ 13 y/o 59 (70.24) 40 (72.73) 19 (65.52) 41 (77.36) 22 (73.33) 19 (82.61)
Gender

Female 37 (44.05) 23 (41.82) 14 (48.28) 0.5708a 19 (35.85) 11 (36.67) 8 (34.78) 0.8873a

Male 47 (55.95) 32 (58.18) 15 (51.72) 34 (64.15) 19 (63.33) 15 (65.22)
Race

White 51 (60.71) 36 (65.45) 15 (51.72) 0.2205a – – – –

Asian, Black, or unknown 33 (39.29) 19 (34.55) 14 (48.28) – – –
Histological stage

Stage 1/2 or unknown 63 (75.00) 48 (87.27) 15 (51.72) 0.0003a – – – –

Stage 3/4 21 (25.00) 7 (12.73) 14 (48.28) – – –
Grade

Grade 1/2 or unknown – – – – 35 (66.04) 17 (56.67) 18 (78.26) 0.0999a

Grade 3/4 – – – 18 (33.96) 13 (43.33) 5 (21.74)

Primary tumour site

Leg 76 (90.48) 51 (92.73) 25 (86.21) 0.5639a 19 (35.85) 19 (63.33) 0 (0.00) < 0.0001b

Other (or unknown) 8 (9.52) 4 (7.27) 4 (13.79) 34 (64.15) 11 (36.67) 23 (100.00)

Metastatic status

No 68 (80.95) 41 (74.55) 27 (93.10) 0.0395a 48 (90.57) 28 (93.33) 20 (86.96) 0.7542a

Yes 16 (19.05) 14 (25.45) 2 (6.90) 5 (9.43) 2 (6.67) 3 (13.04)

Notes: Values are expressed as median [interquartile range] for non-normally distributed continuous data and as number (percentage) for category data. ap-value was obtained from Pearson’s chi-square test. bp-value was obtained from 
chi-squared test with Yates’ continuity correction. 
Abbreviations: OS, overall survival; y/o, years old.
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Figure 1 Identification, construction of biological network, and consensus clustering of differentially expressed pyroptosis-related genes (PRGs) (DEPRGs). (A) Venn 
diagrams showing polygenic overlap between down-regulated PRGs (sky blue), up-regulated PRGs (tomato red), and PRGs (gold). DEPRGs (down-regulated and up- 
regulated genes) were determined in the TARGET osteosarcoma specimen (n = 84) vs GTEx normal biopsies (n  =  803) according to |log2(fold change[FC]) and -log10(false 
discovery rate [FDR] adjusted p-value) with a |log2(FC)| threshold of 2 and an FDR adjusted p-value threshold of 0.05. (B) Volcano plot showing that 18 PRGs are 
significantly different between the tumour specimen and normal biopsies (dark blue dot: down-regulated PRG, red dot: up-regulated PRG, grey dot: non-significant PRG). 
Each DEPRG is labelled with its symbol. (C) Cluster heatmap visualising the 18 DEPRGs identified in TARGET (n = 84) tissues vs GTEx samples (n  =  803). (D) Network 
visualisation of co-expression of DEPRGs (blue circle: down-regulated PRG, red circle: up-regulated PRG, circle size: degree, sky blue line: negative correlation, tomato red 
line: positive correlation). (E) Protein–protein interaction (PPI) network of 18 DEPRGs from the STRING database. The circle nodes in the diagram represent DEPRGs 
(node colour: InterPro term that the gene are involved; sky blue halo: down-regulated expression, tomato red halo: up-regulated expression), and the edges represent node 
interactions (confidence cutoff = 0.400, interaction network p < 0.001). (F) Heatmap plot of enriched local network clusters (STRING) (FDR adjusted p-value < 0.05) and 
involved proteins from the STRING database. (G) DEPRG–transcription factor (TF) (mRNA–TF) regulatory network. 12 interacting TFs of DEPRGs were identified by the 
ChEA3 tool [blue circle: down-regulated PRG, red circle: up-regulated PRG, green circle: transcriptional activators (OR > 1), circle size: degree, sky blue line: negative 
correlation, pink line: upregulated correlation]. (H) Consensus matrix (CM) plot for k = 2 (k = 2–6). CM plots can be used to find the “cleanest” cluster partition where 
items nearly always either cluster together giving a high consensus (dark blue colour) or do not cluster together giving a low consensus (white colour). (I) Cumulative 
distribution function (CDF) plot for each k (k = 2–6). CDF plot is used to determine the value of k at which the distribution approaches its approximate maximum. (J) 
Kaplan–Meier (K–M) plot displaying a significant difference in OS probability between the two clusters. *p < 0.05, ***p < 0.001. 
Abbreviations: PUB, peptide:N-glycanase; UBA, UBX-containing proteins; DAPIN, domain in apoptosis and inflammation; TRAIL, tumour necrosis factor-related apoptosis- 
inducing ligand signaling.
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Analyzing the biological circuitry of TF–DEPRG (TF–mRNA) interactions can uncover the molecular mechanisms 
driving osteosarcoma progression at the molecular level. GSEA was performed using the ChEA3 tool. Twelve TFs (JUN, 
RELA, STAT4, ETV2, STAT3, VDR, GBX2, MNX1, KLF5, TCF21, BACH1, and SALL4) that are believed to regulate 
the DEPRG expression were identified (Figure 1G and Supplementary Table 5). Notably, all of these TFs are transcrip-
tional activators (OR > 1). The TF–mRNA regulatory network is shown in Figure 1G.

After the establishment of biological networks, the consensus clustering (CC) method was used to process the 
expression matrix of DEPRGs. The consensus matrix (CM) plots (Figure 1H) and consensus cumulative distribution 
function (CDF) plot (Figure 1I) thereby generated identified the optimal cluster number was two. Consequently, the 
samples were divided into two different clustering subtypes. The K–M plot (Figure 1J) indicates that there is a significant 
difference in OS probability between the two clusters (Cluster 2 vs Cluster 1 HR = 2.562 [95% CI: 1.215–5.403], p = 
0.0118).

Establishment of Pyroptosis-Related Signature
A series of ML techniques were employed to select the PRGs of interest. Initially, mRMR criterion based on mutual 
information was used to maximize the relevancy of a subset of 15 PRGs (NLRP2, IL6, CASP8, GSDMC, CHMP4A, 
TREM2, CHMP4C, ELANE, GZMA, TP63, PYDC1, GBP5, CASP5, GSDMA, and TNFRSF21) while minimizing the 
redundancy among them.

Afterwards, univariate Cox HR analysis indicated that five genes (TNFRSF21, GSDMA, CHMP4C, TREM2, and 
GZMA) individually have a possible effect on the patient’s OS (each p < 0.05 and C-index > 0.6). The results are shown 
in Supplementary Table 6.

Both ML methods including an internal 5-fold CV step were adopted to further screen genetic variables. To avoid 
over-fitting of the final multivariate model, LASSO-Cox regression was performed. Five genes (GSDMA, TNFRSF21, 
GZMA, CHMP4C, and TREM2) with non-zero coefficients at the LASSO penalization level (λ = 0.042) that minimises 
partial likelihood deviance (PLD) were selected as the effective sets. Figure 2A shows the PLD from the LASSO-Cox fit, 
and Figure 2B indicates the estimated coefficients. In a LASSO-Cox regression analysis, the sign of the coefficient for 
each variable reflects whether it is a risk factor or a protective factor for survival outcomes. In this analysis, the 
coefficient for CHMP4C was positive, indicating that its presence may decrease the likelihood of OS. On the other hand, 
the coefficients for GSDMA, TNFRSF21, GZMA, and TREM2 were negative, indicating that their presence may 
increase the likelihood of OS.

Also, a feature subset selection comprising five genes (CHMP4C, GSDMA, TNFRSF21, GZMA, and TREM2) with 
the maximum mean AUC was obtained from the SVM–RFE algorithm (Figures 2C and D). Notably, features with larger 
absolute SHAP values are more important for prediction about their positive or negative effects on the endpoint 
depending on its sign.86 From Figure 2E, it can be inferred that TREM2, CHMP4C, GASM, and GZMA were mostly 
overexpressed in osteosarcoma patients when predicting death outcomes. By contrast, TNFRSF21 showed a reverse 
pattern, with mostly under-expression when important for the model.

Then, the PRGs in the intersection subset of LASSO-COX selected features and SVM–RFE selected markers were 
entered into bi-directional multivariate Cox HR analysis to establish the polygenetic predictor for patients’ OS. 
Eventually, TNFRSF21, GSDMA, GZMA, and CHMP4C were selected to be the hub PRGs. The results are presented 
in Supplementary Table 7.

The multivariate Cox HR model established in the TARGET cohort was used to estimate the coefficients associated 
with each patient’s death risk. A PRS-score was assigned to each patient in the TARGET cohort using a linear weighted 
combination of the expression level of the hub PRGs:

As indicated in the equation, TNFRSF21, GSDMA, and GZMA showed a favourable effect on prognosis, while 
CHMP4C indicated an adverse association. The coefficients were displayed using a forest plot (Figure 2F). Subsequently, 
a chord diagram (Figure 2G) was used to present pairwise inter-relationship between expression levels of hub PRGs and 
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PRS-score. Each variable is represented by a scaled arc on the outer part of the circular layout. The connecting chords are 
displayed in a colour gradient from cyan to red in accordance with the Spearman correlation coefficients ranging from −1 
to 1, and their widths are also proportional to the |r|. As expected, each of the hub PRGS was strongly connected with 
PRS-score. The following steps will assess and evaluate whether the four-PRG-based signatures can enhance the 
prediction performance when combined with clinical prognostic factors such as metastatic status. The forest plot in 
Figure 2F shows the coefficients of the multivariate Cox HR regression for the four hub PRGs.

Confirmation of the Predictive Value of PRS
The PRS-score of each sample in the training set was calculated using the coefficients in the equitation and normalised 
log2(TPM+1) data. The coefficient and formula remained unchanged when evaluating the cases in GSE21257 dataset. To 
classify samples into specific PRS-score level groups, thresholds of PRS-score in the training cohort (cutoff = −2.32431) 
and the validation set (cutoff = −7.28264) were, respectively, determined using the “survminer” package. For each 
dataset, the samples with PRS-score less than the threshold were divided into lower PRS-score level group, and the 
others high PRS-score level group. The distribution of risk scores ordered from low to high against the rank of patients in 
the TARGET set and GSE21257 cohort and the corresponding cutoffs are shown in Figure 3A and F.

A

C D E

B F

G

Figure 2 Hub PRG selection and development of pyroptosis-related signature (PRS)–score. (A) Plot indicating the optimal λ selection by 5 cross-validated (CV) partial 
likelihood deviance (PLD) of the least absolute shrinkage and selection operator (LASSO)–Cox regression. 5-fold CV PLD was plotted against ln(λ). (B) Plot of the estimated 
coefficients from the LASSO–Cox regression against ln(λ). Finally, 5 genetic features being non-zero were selected at optimal λ = 0.042. (C) Plot of the support vector 
machine (SVM) recursive feature elimination (SVM–RFE) regression model information criteria as a function of the subsets generated by RFE algorithm. 5-fold CV mean AUC 
was plotted against number of selected variables. The red dot represents that the optimal number of selected variables is five. (D) Lollipop plot showing the normalised 
importance value of each of the five selected features in the linear–SVM model. (E) Shapley additive explanations (SHAP) values using 1000 Monte-Carlo sampling repetitions 
for the linear–SVM model. The y-axis signifies genes and the x-axis represents the corresponding SHAP values for each data instance. (F) Forest plot showing multivariable 
Cox regression coefficient of each hub PRG. (G) Chord diagram presenting the pairwise correlation between expression level of hub PRGs and PRS-score. The connecting 
chords are displayed in a colour gradient from light green to bluish green in accordance with the Spearman correlation coefficients ranging from −1 to 1, and their widths are 
also proportional to the |r|.
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The simplest plots indicating the discrimination of a model are probably a scatter diagram of the OS time against the 
patients’ rank of PRS-score. Figure 3B indicates that the discrimination of the pyroptosis-related predictive model in the 
TARGET cohort is strong, and Figure 3G confirms that the model has a good ability to discriminate between high- and 
low-risk patients in the validation cohort. Moreover, all the four hub genes were significantly differentially expressed 
between high and low PRS-score level group osteosarcoma samples. As shown in the boxplot of hub PRG expression 
levels [normalised log2(TPM+1)] (Figure 3C), CHMP4C (FDR-adjusted p-value < 0.001) exhibited significantly higher 
expression in the high PRS-score group (n = 31) compared to the low-risk group (n = 53), whereas TNFRSF21, GSDMA, 
and GZMA (all FDR-adjusted p-value < 0.001) showed lower expression in the high-risk group. The results of 
differential gene expression analysis of the four hub genes in the validation set (Figures 3H) were completely consistent 
with their differential trends in the training set (the low-risk group: n = 16, the high PRS-score group: n = 37).

Also, the performance of the PRS-score was evaluated by K–M analysis. As shown in Figure 3D and I, the risk predictor 
works well in predicting OS possibilities in both TARGET (High vs Low HR = 3.870 [95% CI: 1.745–8.583], p < 0.001) and 
GSE21257 cohorts (High vs Low HR = 2.694 [1.151–6.306], p = 0.0463), as OS was significantly shorter for the patients in 
the high PRS-score level group compared with samples in the low PRS-score level group. Furthermore, the predictive ability is 
assessed with the AUC of time-dependent ROC curves at 1-, 2-, 3-, 4-, and 5-year. Figures 3E and J indicate that the AUC 
values for the PRS-score prognostic model for 1-, 2-, 3-, 4-, and 5-year OS in the two datasets were greater than 0.6. The 
accuracy of the pyroptosis-related signature was also validated on the FPKM data, and the results are shown in Supplementary 
Figure 1. Moreover, the results of time-dependent ROC analyses in various clinical subgroups (Figures 3K–N) indicated that 
the PRG–based prognostic signature has a good discriminatory capacity in different demographic phenotypes of osteosarcoma 
patients.

Univariable and multivariable Cox HR regression was performed to assess for variables significantly associated with 
OS, and a summary of the results is displayed in the forest plot (Figure 4A). Because patients’ gender and age were not 
found to be statistically significant in univariate analyses, these variables did not enter the final models. In the multi-
variable analyses, metastasis occurring (HR = 4.020 [95% CI: 1.911–8.459], p < 0.001) and high PRS-score level (HR = 
3.371 [95% CI: 1.565–7.259], p < 0.001) were significantly associated with worse OS in the TARGET dataset.

The nomogram to estimate 1-, 2-, 3-, 4-, and 5-year OS probabilities was built using metastatic status and PRS-score 
level variables of the TARGET dataset. The corresponding point scales are shown in Figure 4B. The steps for using the 
nomogram are to (1) determine the patient’s value for each predictor, (2) draw a straight line upwards from each 
predictive value to the top point reference line, (3) sum the points from each predictive variable, (4) locate the sum on the 
total points reference line, and (5) draw a straight line from total points line down to the bottom probability lines to 
obtain the patient’s likelihood of 1-, 2-, 3-, 4-, and 5-year OS. Figures 4C–E indicated significant differences in 
TNFRSF21 expression (p < 0.001), GZMA expression (p = 0.0282), and PRS-score (p = 0.0019) between different 
metastatic states.

The discrimination of the PRS-score as a continuous variable was compared with another genetic risk predictor 
proposed by other scholars. The coefficients and gene symbols were obtained from the article of Cao et al,87 and then the 
risk score was calculated by the sum of these genes’ expression level [normalised log2(TPM+1)] weighted by the 
coefficients. In this research, the PRS-score prognostic model showed better predictive performance, as its C-index 
(0.728 [95% CI: 0.686–0.771]) was higher compared to that of predictors of Cao et al (0.714 [95% CI: 0.666–0.762]).

The nomogram-based prognostic model incorporated the two identified independent predictive factors demonstrated 
excellent discrimination and calibration. Based on the training cohort, the C-index was 0.776 [95% CI: 0.737–0.816] 
(IBS: 0.138 [95% CI: 0.106–0.170]) for the model; with regard to the test dataset, the result remained consistent, with 
a c-index of 0.757 [95% CI: 0.707–0.806] (IBS: 0.073 [95% CI: 0.054–0.092]). Slope of calibration curve evaluating the 
agreement between observed and predicted values with values closer to 1 demonstrates an ideal performance.61

In order to internally validate that the nomogram model has better predictive accuracy than any other Cox HR 
regression models established using a single predictor (metastatic status or PRS-score level group), calibration plots, 
discrimination curves, and DCA curves for the three models were plotted. Also, medical research articles typically 
evaluate the C-index at the maximum follow-up time in the cohort study and by ignoring unusable pairs. In fact, it would 
be preferable to truncate the concordance index at each earlier time point than the maximum follow-up time.88 Figure  4F 
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Figure 3 Association between the pyroptosis-related signature (PRS) and overall survival (OS) of the TARGET and GSE21257 patients. For the TARGET cohort, the PRS 
was constructed using the normalized value of log2(TPM+1); for GSE21257 dataset, the PRS was constructed using the normalized value of probe intensity. The distribution 
of each patient’s PRS-score ordered from low to high in (A) the TARGET cohort and (F) GSE21257 dataset. Patients in each dataset were individually divided into two PRS- 
score level groups based on the cutoffs calculated by the “survminer” package. Scatter diagram of the OS time against the patients’ rank of PRS-score in (B) the TARGET 
cohort and (G) GSE21257 dataset. Boxplot depicting the expression level of each hub gene was significantly different between the PRS-score groups in (C) the TARGET 
cohort and (H) GSE21257 dataset. Low PRS-score tissues marked in green and high PRS-score samples marked in Orange. The independent sample t-test was applied for 
comparing the differences, and the p-values were FDR adjusted. Kaplan–Meier (K–M) plot demonstrating elevation in OS probability in the TARGET patients with low PRS- 
score in (D) the TARGET cohort and (I) GSE21257 dataset. p-value was from a Log rank test. Plots of the time-dependent receiver operating characteristic (ROC) curves 
for the PRS-score prognostic model for 1-, 2-, 3-, 4-, and 5-year OS and the corresponding AUC values in (E) the TARGET cohort and (J) GSE21257 dataset. Each AUC 
value is represented in the legend as the estimated value [95% CI]. ROC curves demonstrating elevation in OS probability in each gender subgroups of the TARGET cohort: 
(K) Female and (L) Male, with low PRS-score. Plots of the time-dependent ROC curves for the PRS-score prognostic model in each age subgroups of the TARGET cohort: 
(M) < 13 and (N) ≥ 13, for 1-, 2-, 3-, 4-, and 5-year OS and the corresponding AUC values. The AUC value is represented in the legend as the estimated value [95% 
confidence interval (CI)]. *p < 0.05, **p < 0.01, ***p < 0.001.
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shows the estimated time-independent C-index of the three models over time using the 1000-repetition bootstrap CV 
procedure. The estimated C-index of Nomogram model (represented by green line) was greater than other models 
(clinical model represented by blue line and PRS-score level model represented by blue line) at any prediction horizon, 
indicating that it has the best discrimination. The 1000-resampling calibration plots demonstrate good performance of the 
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Figure 4 Development, and internal and external validation of pyroptosis-related gene (PRG)-based prognosis model. (A) Forest plot of uni- and multivariable Cox hazard 
ratio (HR) model for OS in the TARGET cohort. The diagram reports the HR value and the corresponding 95% CI for each covariate (blue circle and strap: HR and 95% CI 
band from univariable Cox HR model, red square and strap: HR and 95% CI band from multivariable Cox HR regression). (B) A nomogram for predicting the 1-, 2-, 3-, 4-, 
and 5-year OS possibilities in the pediatric and young adult osteosarcoma patients relying on the TARGET population. To use the nomogram, the value for each predictor 
(metastatic status and PRS-score level) is determined by drawing a line upward to the point reference line, the points are summed, and a line is drawn downward from the 
total points line to find the predicted 1-, 2-, 3-, 4-, and 5-y OS possibilities. The diagram also prints how many linear predictor units there are per point and the number of 
points per unit change in the linear predictor (lp). Rain cloud plots demonstrating significant differences in (C) TNFRSF21 expression, (D) GZMA expression, and (E) PRS- 
score between different metastatic status. (F) Time-dependent c-index curves for PRS-score level, clinical characteristic, and nomogram models. Calibration curves of K–M 
vs nomogram predicted (G) 1-, (H) 2-, (I) 3-, (J) 4-, and (K) 5-year OS for the original patient (TARGET) cohort and GSE21257 dataset. DCA for the Clinical, PRS-score 
level, and Nomogram models built to predict the (L) 1-, (M) 2-, (N) 3-, (O) 4-, and (P) 5-year OS probability based on records of patients in the training cohort (Orange 
bar: range where the Nomogram model outperformed than others, deep blue bar: range not relevant to the Nomogram model). ** p < 0.01; *** p < 0.001.
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predictive model for the training cohort and the validation set (Figures 4G–K) at 1-, 2-, 3-, 4-, and 5-year, as there are 
only small deviances from the 45° reference line. In a DCA plot, clinical usefulness is displayed where a model has 
greater net benefit than other types of intervention.89 Decision curves in Figures 4L–P show that the nomogram model 
established on the TARGET cohort (represented by red line) were greater than the any other options [“All (intervention 
for all patients)” represented by black line, “None (intervention for none)” represented by black line, “PRS-score level” 
represented by cyan line, or “Clinical” represented by green line], since it had the highest net benefit across that range to 
predict the 1-, 2-, 3-, 4-, and 5-year OS probability. The orange bar in each DCA plot represents a threshold probability 
range where the nomogram model outperforms than other models. The value of the Nomogram model was sometimes 
lower than that of PRS-score level or clinical model, which was due to random noise.89

Enriched GO Terms and KEGG Pathways
To investigate biologic features shared by the two PRS-score level groups, over-representation of significantly 3575 
down-regulated [log2(FC) < 0 and FDR adjusted p < 0.05] genes and 3453 up-regulated genes [log2(FC) > 0 and FDR 
adjusted p < 0.05] in GO terms and KEGG pathways was tested. These enriched terms and pathways may play a key role 
in tumour cell pyroptosis.

In the gene functional enrichment ORA analysis, DEGs between low and high risk level groups from the training set 
(the TARGET cohort) were employed to determine gene ontologies and significant pathways. Figures 5A–C display the 
top 30 most enriched terms in the three GO categories. These DEGs genes were enriched in several pathways, 
predominantly related to immune response regulation. Some of the key BP terms (Figure 5A) include the production 
of molecular mediators of immune response, regulation of lymphocyte activation, immune response-regulating signaling 
pathway, immunoglobulin production, and activation of immune response. In terms of CC ontology (Figure 5B), these 
genes were found to be associated with the external side of the plasma membrane, immunoglobulin complex, receptor 
complex, T cell receptor complex, and plasma membrane signaling receptor complex, among others. With regard to MF 
ontology (Figure 5C), these DEGs were involved in antigen binding, immune receptor activity, MHC protein complex 
binding, peptide antigen binding, and cytokine receptor binding. These findings suggest that DEGs are intricately linked 
to the orchestration of the immune response in the context of osteosarcoma, potentially influencing patient prognosis. 
Research has shown that approximately 15% to 20% of all cancer cases are preceded by infection, chronic inflammation, 
or autoimmunity in the same tissue or organ site.90

Figures 5D display the enriched terms in the three KEGG categories. The ORA–KEGG enrichment analysis points to 
a multifaceted role of immune signaling pathways and cellular processes in the disease state, with a strong emphasis on 
the interaction between the tumor and the immune system. In addition, the “Osteoclast differentiation” pathway, directly 
tying into the skeletal system and suggesting a link between the immune response and bone remodeling or degradation, 
which is a critical aspect of osteosarcoma pathology.

The Bayesian network plots (Figures 5E–G) depicted the linkages of genes and three representative enriched KEGG 
pathways as networks. The genes that belong to these pathways are clearly present in the diagram. As indicated by 
Figures 5E and F, TNFRSF21 and its gene family counterparts were implicated in the regulation of certain pathways 
among the most significantly enriched in the KEGG analysis. Specifically, TNFRSF21 and numerous members of the 
TNFRSF family are involved in the cytokine–cytokine receptor interaction pathway (Figure 5E). In addition, several 
TNFRSF family members have been identified as participants in the TNF signaling pathway (Figure 5F). Moreover, 
genes differentially expressed between groups with high and low PRS-score level may also play roles in the regulation of 
the osteoclast differentiation pathway (Figure 5G).

In addition, the significant KEGG pathways in GSEA analysis were subjected to clustering analysis to group the 
pathways with similar enrichment patterns as shown in Figure 5H. Clusters identified from the GSEA results included 
“Antigen processing and presentation”, “Leukocyte transendothelial migration”, and “Phospholipase D signaling path-
way”. The network graph highlights several pathways with relevance to immune function and skeletal biology. For 
instance, pathways like “Cell adhesion molecules” and “Hematopoietic cell lineage” were connected, suggesting 
a coordinated regulation in the context of bone health and immune response. The network graph represents KEGG 
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Figure 5 Diagrams of functional enrichment analysis outcomes of 7028 differentially expressed genes (DEGs) in TARGET patients with low vs high pyroptosis-related 
signature (PRS)–score level. The size of dot in each plot represents the number of DEGs which are involved in the corresponding Gene Ontology (GO) term or Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway. GO lollipop plots showing fold enrichment of the top 20 (if available) mostly significantly overrepresented gene 
terms with a false discovery rate (FDR) p-value threshold of < 0.05 in various ontologies: (A) biological processes (BP), (B) cellular components (CC), and (C) molecular 
functions (MF). (D) KEGG lollipop plots showing fold enrichment of the top 20 (if available) mostly significantly overrepresented pathways with an FDR p-value threshold of 
< 0.05. The Bayesian network plots depicted the linkages of genes and three representative enriched KEGG pathways: (E) cytokine-cytokine receptor interaction, (F) 
tumour necrosis factor (TNF) signaling pathway, and (G) osteoclast differentiation. (H) Clustering network of significantly enriched KEGG pathways in the GSEA analysis. 
The nodes represent the significant KEGG pathways and the edges represent similarity between them and are coloured by normalised enrichment score (NES). The lines 
connected similar pathways are coloured by similarity.
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pathway interactions, emphasizing the interconnected nature of immune response and its relevance to skeletal biology in 
the context of osteosarcoma.

Immune Cell Landscape and ICB Therapy Response Prediction
Multiple enrichment analyses indicated that the differentially expressed genes (DEGs) between the low and high PRS- 
score level group were enriched in terms of pathways associated with inflammation and immune response. In addition, 
the importance of a range of PRGs in anti-tumour immune response has been confirmed.13,91 The involvement of various 
immune functions in pyroptosis events in pediatric and young adult patients with osteosarcoma should be further 
investigated. As such, a comparative tumour microenvironment analysis was performed with the aim of exploring 
differences in immune cell landscape between low and high PRS-score tumours.

CIBERSORT was applied to the gene expression matrix in order to infer the relative abundance of 22 tumour- 
infiltrating immune cells for each sample in the TARGET cohort (Figure 6A). The results from the comparison of high (n 
= 31) vs low PRS-score (n = 53) for all 22 immune cells are shown in Figure 6B. The Wilcoxon rank-sum test confirmed 
that a decrease in abundance of plasma cells (p = 0.0494), T cells CD8 (p = 0.0064), and T cells CD4 memory activated 
(p = 0.0020) was found in high PRS-score tumours. This comparison also showed that high PRS-score samples had 
a higher fraction of macrophages M0 (p = 0.0123) and mast cells (MCs) activated (p = 0.0139).

The association between expression levels of hub PRGs and the fraction of immune cell types that differs between 
two PRG level groups in the TARGET cohort was also explored (Figure 6C). Increased TNFRSF21 expression was 
correlated with higher MCs activated signature (r = −0.306, p = 0.0047). High GSDMA expression was associated with 
increased T cells CD8 signature (r = 0.258, p = 0.0180) signature. GZMA expression showed negative association with 
Macrophages M0 (r = −0.466, p < 0.001) and MCs activated (r = −0.251, p = 0.0212), and positive relation with T cells 
CD4 memory activated (r = 0.239, p = 0.0288). There is no significant correlation between CHMP4C expression and the 
abundance of the five immune cell types.

The ImmuCellAI tool was used to predict the response to ICB immunotherapy in 84 patients from the TARGET 
cohort (Supplementary Table 8). The Spearman correlation analysis results showed a significant positive correlation 
between the ICB immunotherapy score and the PRS-score (r = 0.240, p = 0.0276) (Figure 6D). Furthermore, the logistic 
regression model (OR = 9.346 [95% CI: 2.099–81.642], p = 0.0118) (Figure 6E) for the effect of risk score on immune 
therapy response status had an ROC AUC greater than 0.6, indicating that the risk score has a good discriminatory ability 
for ICB immune response (Figure 6F).

SC Transcriptional Profiling in Osteosarcoma
Aimed to characterize cellular heterogeneity in resected tumour biospecimens from patients with osteosarcoma, sc-RNA 
seq data analysis was performed. Twenty-five main cell clusters were presented in the UMAP plot (Figure 7A). The 
clusters were then annotated using markers for characterising cellular heterogeneity in resected tumour biospecimens 
from patients with osteosarcoma. The two-dimensional UMAP representation of all sequenced cells (Figure 7B) reveals 
17 main cell clusters: osteoblastic cell, osteoclasts, chondroblastic cells, fibroblasts, myofibroblasts, myeloid cells, 
endothelial cells, resting dendritic cells (DCs), activated plasmacytoid DCs (pDCs), activated mast cells (MCs), naive 
B cells, experienced T cells (CD8 Tex), CD8 T cells, T cells expressing the marker of ki67 (TMKI67), plasma cells, 
monocytes, and others. Osteoblastic cell (18%) was found to dominate the tumour immune microenvironment 
(Figure 7C). Further analysis of gene expression in different cell types revealed interesting findings. As shown in 
Figures 7D–H, TNFRSF21 was found to be highly expressed in activated MCs, activated pDCs, and resting DCs, GZMA 
was highly expressed in CD8 Tex cells and CD8 T cells, CHMP4C was highly expressed in chondroblastic cells and 
other cells, while GSDMA was generally distributed among all tumour microenvironment types.

These findings provide important insights into the cellular heterogeneity of osteosarcoma tumours and identify the 
dominant cell types in the tumour immune microenvironment. Furthermore, the results also have implications for the 
development of new therapeutic strategies targeting specific cell types in the tumour microenvironment. However, further 
studies are needed to validate these findings and determine their clinical significance.

Journal of Inflammation Research 2024:17                                                                                          https://doi.org/10.2147/JIR.S440425                                                                                                                                                                                                                       

DovePress                                                                                                                         
435

Dovepress                                                                                                                                                             Guo et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=440425.docx
https://www.dovepress.com
https://www.dovepress.com


Figure 6 Immune cell composition in osteosarcoma tumour samples of the TARGET patients. (A) Barplot showing composition of 22 infiltrating immune cells in low (n = 
53) and high pyroptosis-related signature (PRS)–score samples (n = 31). Fraction values of CIBERSORT immune cells were determined for each patient; each bar represents 
one patient. (B) Vioplot illustrating CIBERSORT-derived relative abundance of 22 distinct immune cells based on PRS-score level. Median values and IQR for each cell subset 
were calculated for each patient group and compared the two groups using the Wilcoxon rank sum test. (C) Correlation heat map of expression level of hub genes and 
fraction of immune cells that differs in two PRS-score level group. (D) Scatter plot of the PRS-score against immune checkpoint blockade (ICB) response score calculated by 
the ImmuCellAI tool. The plot illustrates a positive correlation between PRS-score and ICB response score, indicating a potential relationship between genetic risk and ICB 
response. (E) Logistic curve with jitters predicting ICB response status as a function of PRS-score. (F) The logistic receiver operating characteristic (ROC) curve plot 
showing the performance of PRS-score in classifying positive and negative ICB response outcomes. The AUC value is represented in the legend as the estimated value [95% 
confidence interval (CI)]. ns not significance, * p < 0.05, ** p < 0.01, *** p < 0.001. 
Abbreviations: NK, nature killer; OR, odds ratio.
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Candidate Drugs for Low and High PRS-Score Level Patients
The possibility that each group might have specific drug sensitivity to 251 drugs from the CGP 2016 was investigated. 
The identification of candidate drugs applied a phenotype prediction ML tool to matching cell line chemotherapeutic 
response to baseline tumour gene expression.92

It is imperative to continue the search for effective drugs for osteosarcomas. As illustrated in Figure 8, low PRS-score 
group shows greater sensitivity to AZD7762, BEZ235, bortezomib, CGP-60474, JNK Inhibitor VIII, lapatinib, MG-132, 
TGX221, trametinib, and Z-LLNle-CHO, compared to the high PRS-score group, and those patients could benefit from the 
treatment. The analysis also found MP470 and SB52334 could be potentially more effective for high PRS-score group.

Difference in Relative Expression Level of Hub PRGs in Cell Lines
As shown in Figure 9, the relative expression level of all hub PRGs in each of the two cancer cell lines (143B and U-2 
OS) was significantly higher than that in the normal cell line (hFOB1.19). This is consistent with the results of 
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Figure 7 Single-cell (SC) transcriptional profiling in osteosarcoma of hub pyroptosis-related genes (PRGs). (A) Two-dimensional uniform manifold approximation and 
projection (UMAP) representation of all sequenced cells reveals 25 main cell clusters. Colors represent the cell clusters. (B) Two-dimensional UMAP representation of all 
sequenced cells reveals 17 main CIBERSORT cell clusters. Colors represent the cell types. (C) The immune cell composition in osteosarcoma samples illustrated as a ring 
chart. Violin plots showing hub (D) TNFRSF21, (E) GSDMA, (F) GZMA, and (G) CHMP4C in the nine main cell clusters on the single-cell level. (H) Dot plot depicting the 
expression levels of hub genes in each cell type. The color of each dot represents the hub PRG’s expression level across the cell type (average expression), while the size of 
each dot corresponds to the percentage of cells in the cluster expressing the gene (percent expressed). 
Abbreviations: MCs, mast cells; dendritic cells; pDCs, plasmacytoidDCs; CD8 Tex, experienced T cells; TMKI67, T cells expressing the marker of ki67.
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differential expression analysis performed on TARGET and GTEx samples. The aforementioned differences arise from 
biological experiments suggesting the importance of understanding hub PRG expression patterns.

Discussion
Pyroptosis represents a type of cell death that ends with the loss of plasma membrane intactness and is induced by 
activation of so-called inflammasome sensors.93 Pyroptosis is an important event in cancer formation, and relevant 
therapeutic approaches have been developed in the hope of positively influencing outcomes among cancer patients.94 

However, presently, there still remains very little knowledge about how PRGs affect young and OS of patients with 
osteosarcoma.

In this study, we developed a PRG–based signature using the entire TARGET dataset. The genetic predictive 
signature consisting of four hub PRGs, among which are TNFRSF21, GSDMA, GZMA, and CHMP4C. Pyroptosis is 
a type of necrotic and inflammatory PCD induced by inflammatory caspases.95 TNFRSF21, also known as DR6, is 
a member of the TNF receptor superfamily (TNFRSF) and has been implicated in various immune responses. Besides, 
overexpression of TNFRSF21 in neurons can lead to caspase activation and cell death.96 GZMA is one among five 
different types of granzymes, namely the serine proteases used by cytotoxic T lymphocytes (CTL) and NK cells to kill 
their target cells via caspase-independent apoptosis.97 GSDMA, also referred to as “GSDM1”, is a member of gasdermin 

A B C D

E F G H

I J K L

Figure 8 Prediction results of drug sensitivity tests in different PRS–score level subtypes from the TARGET cohort. Drug sensitivity was predicted for each case in the 
TARGET dataset. Ten therapeutic agents were found to show significantly greater sensitivity [lower log10(IC50)] in low PRS-score subpopulation: (A) AZD7762, (B) 
BEZ235, (C) bortezomib, (D) CGP-60474, (E) JNK inhibitor VIII, (F) lapatinib, (G) MG-132, (H) TGX221, (I) trametinib, (J) Z-LLNle-CHO. Two therapeutic agents were 
detected to indicate significantly greater sensitivity in high PRS-score subgroup: (K) MP470, (L) SB52334. ***p < 0.001.
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family, and it is considered a possible tumour suppressor.98 In this study, GSDMA expression was found to be 
independently associated with good prognosis in osteosarcoma, which is in line with prior studies. CHMP4C belongs 
to the chromatin-modifying protein (CHMP) family. The transcription of CHMP4C s modulated by the P53 protein, thus 
promoting exosome production.99 These transcriptional signals are involved in cell interaction and immune activation.100

The samples in the training cohort and the validation set were, respectively, divided into two PRS-score levels. The 
predictive accuracy of the genetic predictor is internally and externally validated. These results demonstrate that the 
models are capable of accurately predicting 1-, 2-, 3-, 4-, and 5-year OS in osteosarcoma patients based on the clinical 
variables involved and the PRS-score level. Prognostic accuracy analysis for the demographic subgroups in the training 
cohort was also conducted. The results indicated that PRS-score is also applicable to different gender and age 
populations. PRS-based signature was confirmed to be acceptable to TPM, FPKM, and microarray data, and it performs 
well in predicting the prognosis of osteosarcoma patients.

Subsequently, PRS-score level variable was employed to establish a nomogram predicting OS in pediatric and young 
adult patients with osteosarcoma. The employment of validated nomogram has become more popular in clinical practice 
due to the model’s precision and usability.101 In the TARGET cohort study of osteosarcoma patients, two significant 
independent risk factors, namely metastasis status and PRS-score level, were identified and were used to construct 
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Figure 9 Beeswarm plot of relative hub gene expression in the normal cell line (hFOB1.19) and osteosarcoma cell lines (143B and U-2 OS). The RNA transcription levels of 
hub genes were evaluated by using the ΔΔCt method. (A) TNFRSF21, (B) GSDMA, (C) GZMA, and (D) CHMP4C were upregulated in two cancer cell lines compared to 
the normal cell line. GAPDH was used as internal control. Error bars indicate SD. *p < 0.05, ***p < 0.001.
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validated nomograms for predicting 1-, 2-, 3-, 4-, and 5-year OS rates. Previous studies3,4 implied that 15–20% of 
osteosarcoma patients have detectable metastasis at diagnosis, 85–90% of which occurs in the lungs. Furthermore, lung 
metastasis from osteosarcomas is a dominant cause of death.102 Surveillance, Epidemiology, and End Results (SEER) 
Program population-based research also implies the risk of death is higher for those patients whose tumours have 
extended to distant sites.101

Enriched functional gene sets of DEGs between high PRS-score level and low PRS-score level groups from the 
training cohort (the TARGET cohort) were then investigated. A noteworthy facet of the results lies in the significant 
enrichment of terms or pathways related to immune response regulation. The results of GO–ORA and KEGG–ORA 
suggested that the immune system’s ability of pediatric and young adult osteosarcoma patients to detect and respond to 
tumour cells could be a pivotal factor in osteosarcoma pathophysiology and could have prognostic implications. Indeed, 
the correlation between cancer and preceding inflammatory conditions, as indicated by prior research, may reflect the 
importance of immune surveillance mechanisms in the disease context.

Further emphasizing the role of the immune system, the involvement of TNFRSF21 and related family genes in 
cytokine interactions and TNF signaling pathways aligns with the known importance of these pathways in immune 
modulation and inflammation. Given the complex network of cytokines involved in immune cell communication, these 
pathways could be influential in shaping the tumor microenvironment, which in turn could affect tumor growth and 
patient survival.

Bayesian network plots illustrate the interconnectivity of genes and pathways, shedding light on the potential 
molecular interactions that might govern disease processes. The osteoclast differentiation pathway’s connection to 
these gene networks underscores the dual nature of osteosarcoma as both a malignancy of bone and an immune- 
influenced disease. Osteoclast differentiation is crucial for bone remodeling, and its dysregulation can lead to bone 
destruction—a hallmark of osteosarcoma. Thus, the regulation of this pathway by genes associated with PRS-score could 
provide insights into the mechanisms of bone degradation in osteosarcoma.

The clustering of significant KEGG pathways from the GSEA analysis further refines our understanding of the 
disease. The identification of clusters related to antigen processing, leukocyte migration, and phospholipase D signaling 
implies a coordinated interaction of these processes in osteosarcoma. The network graph’s portrayal of interconnected 
pathways, particularly those related to cell adhesion and hematopoietic lineage, underscores the interplay between bone 
integrity and immune function, a relationship that is particularly relevant in bone cancers such as osteosarcoma.

The findings of gene enrichment analysis osteosarcoma’s aggressive behaviour and the subsequent prognosis of 
patients could be significantly influenced by immune-related gene expressions and their involvement in specific signaling 
pathways. The interrelation of immune response, cytokine signaling, and bone remodeling pathways offers important 
implications in the context of osteosarcoma’s complexity. Further investigations should be performed to validate these 
observations and unravel the potential mechanisms involved.

Based on the enlightenment provided by the previous functional enrichment analysis, the difference in the fraction of 
immune cell types in two distinct PRG level groups was examined. High PRS-score tumours were found to be associated 
with a decrease in the abundance of certain immune cells, such as plasma cells, T cells CD8, and T cells CD4 memory 
activated. In contrast, high PRS-score samples had a higher fraction of macrophages M0 and mast cells activated. The 
observed associations between the PRS-score level and tumour-infiltrating immune cells may have important implica-
tions for cancer diagnosis, prognosis, and treatment. For example, a decrease in the abundance of T cells CD8 and CD4 
memory activated is known to be associated with poorer clinical outcomes in various types of cancer, while an increase 
in the fraction of macrophages M0 and MCs activated has been reported to promote tumour growth and metastasis. These 
results may be used to identify with osteosarcoma patients who are likely to benefit from specific immunotherapeutic 
interventions, such as ICBs or adoptive T cell therapy.

This study also focused on the intricate interplay between the expression levels of hub PRGs and the distribution of 
various immune cell types in the TARGET cohort. The negative association between TNFRSF21 expression and 
activated MCs suggests a potential role for this receptor in modulating MC activation and function. In contrast, 
GSDMA expression exhibited a positive association with CD8 T cell signature, highlighting a possible link between 
pyroptosis and the recruitment or activation of cytotoxic T cells in the tumour microenvironment. In addition, GZMA 
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expression showed a complex pattern of associations, being negatively correlated with both Macrophages M0 and MCs 
activated. Conversely, the positive relation with CD4 memory activated T cells pointed towards a supportive role in 
adaptive immune memory. Interestingly, CHMP4C expression did not show a significant correlation with any of the five 
immune cell types, which varied between two risk score level groups.

Pyroptosis can affect not only the tumour microenvironment but also the immune response.103 As such, this study also 
predicted the response results of ICB treatment in the TARGET cohort. Generally, osteosarcoma is considered to be 
a “cold” tumor, which may hardly benefit from the treatment of immune checkpoint inhibitors. Osteosarcoma is generally 
classified as a “cold” tumour,104 which may be hardly responsive to ICBs.105 Nevertheless, this study yielded inspiring 
outcomes concerning the response to ICB treatment. The correlation analysis between the PRS-score and immune 
response score and the ROC AUC of the logistic regression model indicated, the PRS-score can be considered as a useful 
tool for identifying patients who are more likely to respond to ICB immunotherapy, and for tailoring treatment strategies 
accordingly. This information may be particularly valuable in the context of precision medicine, where treatment 
decisions are increasingly guided by biomarkers that predict treatment response.

In addition to predicting the response to immunotherapy, this study also analysed the difference in drug sensitivity 
between the high and low PRS-score patients. The drug sensitivity test showed that the PRS-score be a useful tool for 
identifying patients with osteosarcoma who are more likely to respond to specific drugs, and for tailoring treatment 
strategies accordingly. The identification of effective drugs for osteosarcomas is of utmost importance, as this type of 
cancer is associated with poor outcomes and limited treatment options. These findings will be conducive in improving 
patients’ overall treatment outcomes.

Pyroptosis has been confirmed to be a double-edged sword in cancer progression. Nonetheless, development of anti- 
tumour formulars utilising pyroptosis mechanisms and relevant clinical trials are currently underway. In silico study 
provides important insights into the potential use of chemistry therapies for osteosarcoma patients based on their genetic 
profiles. Further studies are needed to validate our findings and to identify drugs that may be effective for high PRS-score 
level patient population.

scRNA seq is a revolutionary method used in cancer research to identify tumor cell composition and analyze 
differences in gene expression at single-cell resolution. A detailed characterization of the immune cell composition in 
osteosarcoma samples is likely to help clinicians enrich their knowledge of prognostic biomarkers. This study found that 
the dominant cell type in the tumor immune microenvironment was osteoblastic cells, accounting for 18% of the total cell 
population. This finding suggests that osteoblastic cells are closely associated with osteosarcoma and highlights the 
importance of these cell types in the tumor microenvironment. The analysis of single-cell RNA sequencing data has 
revealed several interesting findings regarding the expression of specific genes in different cell types within the tumor 
microenvironment. The expression of TNFRSF21 was found to be highly expressed in activated MCs, activated pDCs, 
and resting DCs, suggesting that it plays a role in regulating these cell types in the tumor microenvironment. GZMA was 
highly expressed in CD8 Tex cells and CD8 T cells, indicating that this gene may be involved in cytotoxic T-cell- 
mediated killing of cancer cells. CHMP4C was highly expressed in chondroblastic cells and other cells, while GSDMA 
was generally distributed among all tumor microenvironment types. Overall, these findings provide valuable insights into 
the cellular and molecular heterogeneities of osteosarcoma tumors and could have important implications for the 
development of new therapeutic strategies targeting specific cell types and gene expression patterns in the tumor 
microenvironment. However, further studies are needed to validate the findings of this study and determine their clinical 
significance.

Most importantly, the consistency between in vitro cell biology experiments and in silico analysis of gene expression 
indicates that the risk prognosis model constructed for this bioinformatics study of PRG is based on genes that are 
relevant to cancer development and exhibit distinct expression patterns in cancer cells. This further supports the 
generalizability and reliability of the model, as it is constructed based on known genes related to cancer and their 
expression patterns in cancer cells. It also suggests that the model can serve as an effective prognostic tool for assessing 
the risk of patients with osteosarcoma and predicting the likelihood of disease progression. Furthermore, this study 
provides enlightenment for further research on changes in hub gene expression patterns and the mechanisms of cancer 
occurrence.
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The study still has some deficiencies. The primary limitation was the small number of cases in the training cohort. In 
addition, the exact mechanism of the hub PRGs in osteosarcoma and the patients’ sensitivity to the candidate drugs need 
to be further investigated in vivo and in vitro. Moreover, future research should perform an independent and external 
validation of the PRS-score on a larger cohort of patients compared with GSE21257 dataset. Nonetheless, this work still 
highlights the importance of TARGET genomic resource that would expand clinicians’ understanding of this lethal 
disease.

Conclusion
Presently, there are only a few studies that focused on role of PRGs in osteosarcoma. In this research, four hub PRGs, 
including TNFRSF21, GSDMA, GZMA, and CHMP4C, were identified, and these genes may work as key executors of 
pyroptosis in TARGET pediatric and young adult osteosarcoma patients. A novel PRG-related gene signature was 
subsequently developed using the sum of weighted expression of hub PRGs. Additionally, the predictive efficacy of the 
gene signature was externally validated in population belonging to GSE21257. Despite the study’s limitation of sample 
size, the nomogram-based OS prediction tool established with the pyroptosis-related signature and clinical feature in the 
training set demonstrate good accuracy in internal validation. The nomogram can serve as a counselling and clinical 
decision aid to patients for clinicians. Functional enrichment analyses and tumour microenvironment analyses established 
a theoretical framework for future research on the connection between immunity and PRGs in osteosarcoma. Moreover, 
the potential therapeutic implications of candidate drugs and ICB therapy are also provided. Overall, this study provides 
enlightenment for the treatment of cancer in the context of precision medicine.
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