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Purpose: Contact lens (CL) wear challenges the balance of the ocular surface environment by increasing water evaporation and tear 
osmolarity. Maintaining ocular surface homeostasis during CL wear remains a goal of lens manufacturers and an important 
consideration for eye care professionals. The purpose of this study was to measure the metabolic activity and inflammatory responses 
of a transformed human corneal epithelial cell (THCEpiC) line under hyperosmotic conditions in the presence of CL packaging 
solutions.
Methods: CL packaging solutions sampled from seven daily disposable silicone hydrogel CL blister packages were prepared at 25% 
and made hyperosmolar (400 mOsm/kg) with NaCl. THCEpiCs were incubated with each solution for 24 hr, after which cell culture 
supernatants were collected. THCEpiC metabolic activity was determined by an alamarBlue assay. Concentrations in cell culture 
supernatants of inflammatory cytokine (interleukin [IL]-6) and chemokine (IL-8), as well as monocyte chemoattractant protein-1 
(MCP-1), were quantitated by specific enzyme-linked immunosorbent assays.
Results: THCEpiC metabolic activity under hyperosmolar conditions decreased in the presence of somofilcon A and senofilcon 
A solutions (p=0.04 and 0.004, respectively), but no other solution (all p≥0.09). Concentrations of IL-6 increased in the presence of 
delefilcon A, somofilcon A, narafilcon A, and senofilcon A solutions (all p≤0.001), but no other solution (all p≥0.08), while those of 
IL-8 increased in the presence of all solutions (all p≤0.03) but kalifilcon A (p>0.99), and those of MCP-1 increased in the presence of 
delefilcon A, verofilcon A, somofilcon A, and stenfilcon A solutions (all p<0.0001), but no other solution (all p>0.99).
Conclusion: CL packaging solutions differ in their capacity to inhibit epithelial inflammation. THCEpiC inflammatory response was 
less in the presence of a CL packaging solution containing osmoprotectants than in solutions lacking osmoprotectants under 
moderately hyperosmolar conditions in vitro. Clinical studies are warranted to further substantiate the benefit of osmoprotectants.
Keywords: contact lens, cornea, TFOS, hyperosmolarity, osmoprotection, homeostasis

Introduction
Contact lens (CL) is one of the most widespread and successfully used medical devices available today. The Centers for 
Disease Control and Prevention (CDC, Atlanta, GA) estimated that about 45 million people older than 17 wore CLs in 
the United States,1 and the Tear Film and Ocular Surface Society (TFOS) International Workshop on Contact Lens 
Discomfort estimated that over 140 million people wore CLs worldwide.2 Recent advances in lens design and 
manufacturing with the goal of maintaining ocular surface homeostasis have led to newer CLs with the potential to 
better maintain eye health and comfort during CL wear. This includes more benign interactions between the lens material, 
the tear film, and the ocular surface with which it makes intimate contact.

A 2017 report of the TFOS International Dry Eye Workshop II (TFOS DEWS II) defined dry eye disease (DED) as
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a multifactorial disease of the ocular surface characterized by a loss of homeostasis of the tear film, and accompanied by ocular 
symptoms, in which tear film instability and hyperosmolarity, ocular surface inflammation and damage, and neurosensory 
abnormalities play etiological roles.3 

The report attributes DED to reduced tear secretion leading to inflammation and peripheral nerve alteration, the former 
activating nociceptor nerve endings responsible for the sensation of dryness and pain.4 While the exact relationship 
between dryness-mediated cellular and molecular inflammatory mechanisms and peripheral nociceptor terminals is not 
completely understood, such receptors might respond to both the mechanical stress of tear breakup and the hyperosmotic 
stress of tears following tear film evaporation.4

DED symptoms can occur both in the presence or absence of CLs, the former including CL-induced dry eye (CLIDE, 
characterized by DED signs and symptoms that did not exist prior to CL wear) and CL-associated dry eye (CLADE, 
characterized by DED signs and symptoms during CL wear).5 The TFOS DEWS II report summarizes the consequences 
of CL wear that lead to CLIDE and CLADE, including a thinner, patchy lipid layer, poor wettability with impaired 
spreading, tear film instability, increased tear evaporation rate, lower basal tear turnover rate, increased tear osmolarity, 
and reduced tear film meniscus volume, as well as biochemical changes within the tear film.5 CL wear further challenges 
ocular surface homeostasis by disrupting the tear film, splitting it into distinct pre-lens and post-lens films,6,7 which can 
lead to undesirable physical and chemical interactions between the lens, the tear film, and the ocular surface. This 
manifests as evaporation from the pre-lens tear film and the deleterious consequences of tear film thinning.8 The TFOS 
DEWS II report additionally cites tear hyperosmolarity and inflammatory mediators as causes of DED symptoms and 
ocular cell damage and dysfunction.9 McMonnies proposed an amplifying evaporative dryness cascade that occurs during 
CL wear, culminating in hyperosmolar tears, CL dryness, and ocular surface inflammation;10 the latter occurs in response 
to hyperosmolar tears,10 but proteins sorbed on and denatured at the CL surface,11 as well as mechanical irritation by 
a dehydrated and dewetted lens, can also play a role. CLs that best maintain water at the surface and throughout the lens 
to ameliorate hyperosmolarity if it does occur might help prevent or reduce ocular surface inflammation, as this may 
prevent the dryness cycle leading to loss of homeostasis.12

Tear hyperosmolarity was recognized as a core mechanism of DED prior to DEWS II,13,14 but DEWS II recognized 
loss of tear film homeostasis as the unifying element.3 Hyperosmolar tears are reported to disturb ocular homeostasis 
primarily by affecting ocular inflammation via corneal epithelial cell expression of inflammatory cytokines, chemokines, 
and matrix metalloproteinases (eg MMP-9).15–19 This occurs through activation of mitogen-activated protein kinase p38, 
c-Jun N-terminal kinase, nuclear factor-kB, and activator protein-1.20 Hyperosmolarity also leads to loss of barrier 
function,21,22 increases corneal epithelial transient receptor potential vanilloid type-1 channel activity,23 affects cellular 
apoptosis,24 and disrupts normal cellular metabolism.25 Additionally, hyperosmolar stress is reported to disrupt neu-
roimmune homeostasis of the ocular surface by reducing the density of corneal intraepithelial nerves and terminals and 
sensitizing the ocular surface to hypertonicity,26 as well as induce functional and structural alterations of corneal 
nerves.27 Hyperosmolar stress can also inhibit neutrophil activity, reducing protection against corneal infection.28

Cytokine interleukin (IL)-6 and chemokines IL-8 and monocyte chemoattractant protein-1 (MCP-1) are significant 
pro-inflammatory mediators whose concentrations are frequently reported to increase significantly in the tears of DED 
patients.29–31 However, clinical testing is not always feasible for evaluating novel ocular formulations, and cellular 
models have proven to be more efficient.

Further, while physical and chemical characterizations of many contact lens packaging and care solutions (eg, pH, 
osmolarity, surface tension, and viscosity) have been reported in literature,32,33 neither the clinical significance of each 
individual property nor the combination of all properties is completely understood. As such, in vitro cell line models are 
frequently employed for multi-purpose solution (MPS) cytotoxicity studies and for evaluating the potential effects of 
ocular formulation ingredients due to their availability and reproducibility. Numerous studies have demonstrated that 
human corneal epithelial cells exposed to hyperosmolar and desiccation stresses induced significant IL-6, IL-8, and 
MCP-1 responses;34,35 as such, these pro-inflammatory mediators were selected for measurement in this study.

Fortunately, several osmolytes have been found to be effective in osmoregulation and mitigation of the deleterious effects 
of tear hyperosmolarity;36,37 these include amino acids and their derivatives such as proline, betaine, and L-carnitine, as well 
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as polyols such as erythritol and glycerol, and sugars and their derivatives such as trehalose.16,23,24,36–51 Including these 
osmotic management agents in ocular solutions like artificial tears, CL MPSs, and CL rewetting drops may help ameliorate 
the effects of tear film evaporation and maintain ocular surface homeostasis. Studies in literature report decreased symptoms 
of eye dryness and improved comfort in CL wearers using rewetting drops containing osmoprotectants.50,51

In many CL packaging solutions, buffering agents like sodium chloride and sodium salts, such as sodium borates and 
sodium phosphates, contribute the most to the total solution osmolarity. Substituting potassium for sodium reduces the 
concentration of sodium, which is the electrolyte whose concentration becomes elevated in lacrimal gland disease.52 

Additionally, including organic osmolytes in the solution allows for further reduction in sodium concentration.
Lens manufacturers incorporate ingredients into their CLs, including daily disposable (DD) silicone hydrogel 

lenses,53 through their respective solutions to support the lens,54 including one that contains osmoprotectants. The 
delefilcon A and verofilcon A (both Alcon Laboratories, Inc., Ft. Worth, TX) solutions contain copolymers of poly-
amidoamine and poly(acrylamide-acrylic) acid;55,56 the kalifilcon A (Bausch & Lomb Incorporated, Rochester, NY) 
solution contains poloxamer 181, poloxamine 1107, glycerin, and erythritol;57 the somofilcon A and stenfilcon A (both 
CooperVision Inc., Pleasanton, CA) solutions contain poloxamer 407 and polysorbate, respectively;58,59 and the 
narafilcon A and senofilcon A (both Johnson & Johnson Inc., Jacksonville, FL) solutions contain methyl ether 
cellulose60,61 (Table 1). The objectives of this study were as follows: 1. To determine if ingredients for managing 
osmolarity affect metabolic activity and cytokine/chemokine levels of human corneal epithelial cells under hyperosmotic 
stress and 2. To measure and compare metabolic activity and cytokine/chemokine levels of the same cell line exposed to 
DD silicone hydrogel CL packaging solutions with and without osmoprotectants under hyperosmotic conditions.

Materials and Methods
Cell Line
A human corneal epithelial cell transformed with simian virus 40 to corneal epithelial cell line 2.040 pRSV-T (ATCC® 

CRL-11516™) (THCEpiC) was obtained from the American Type Culture Collection (ATCC, Manassas, VA). Such cell 
lines are commonly used in studies of corneal epithelium,62,63 as they do not vary phenotypically compared with primary 
cells. THCEpiCs were received at passage 22 and used between passages 25 and 40 for these experiments. Cells were 
grown in Gibco™ EpiLife™ Medium (Catalog number MEPI500CA, Thermo Fisher Scientific, Waltham, MA) with 
human corneal growth supplement (Catalog number S0095, Thermo Fisher Scientific) and 50 IU/mL penicillin/50 μg/mL 
streptomycin (Catalog number 15-140-122, Thermo Fisher Scientific).

Table 1 Contact Lenses Evaluated

Material Water Content ISO Group53 Manufacturer’s Solution 
Description

Brand Name Manufacturer

Delefilcon A55 ≥80% (surface) 
33% (bulk)

V-C PBS solution with approximately 0.3% of 
polymeric wetting agents consisting of 

copolymers of polyamidoamine and poly 
(acrylamide-acrylic) acid

Dailies Total1 Alcon Laboratories, Inc. 
(Ft. Worth, TX)

Verofilcon A56 ≥80% (surface) 
51% (bulk)

V-B Precision1

Kalifilcon A57 55% V-B PBS solution with potassium chloride, 
poloxamine, poloxamer 181, glycerin, 

and erythritol

Infuse/Ultra One Day Bausch & Lomb 
Incorporated (Rochester, 

NY)

Somofilcon A58 56% V-B Borate buffered saline solution 
containing 0.005% w/v poloxamer 407

Clariti-1 day CooperVision, Inc. 
(Pleasanton, CA)

Stenfilcon A59 54% V-B PBS solution with Tween MyDay

Narafilcon A60 46% V-C Buffered saline solution with methyl 
ether cellulose

1-day Acuvue TruEye with 
Hydraclear

Johnson & Johnson Vision 
Care, Inc. (Jacksonville, 

FL)
Senofilcon A61 38% V-C Acuvue 1-day Oasys with 

HydraLuxe

Abbreviations: ISO, International Organization for Standardization; PBS, phosphate-buffered saline.
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Cell Culture
Cells were cultured in a supplemented EpiLife medium in a 5% CO2/95% humidity incubator at 37°C for 72 hr for all 
experiments. The medium was then replaced with a fresh medium, and the cells were incubated for additional 24 hours 
under the same conditions prior to incubation with test solutions.

Preparation of Hyperosmolar Test Media
Hyperosmolar media (400, 450, 500, and 530 mOsm/kg) with or without 0.9% erythritol + 0.9% glycerin osmoprotec-
tants added were prepared from basal medium by addition of NaCl.

Preparation of Hyperosmolar Contact Lens Solutions
Preliminary experiments indicated that 50% CL packaging solutions significantly affected cell metabolic activity in 450 
and 500 mOsm/kg hyperosmolar media. Therefore, CL packaging solutions were sampled from delefilcon A, verofilcon 
A, kalifilcon A, somofilcon A, stenfilcon A, narafilcon A, and senofilcon A blister packages (Table 1); for each lens, three 
to four packages of solution from same lot number were pooled, diluted to 25%, and made hyperosmolar [400 mOsm/kg] 
by addition of NaCl. Hanks’ Balanced Salt Solution (HBSS) diluted to 25% was prepared as the control.

Experimental Procedure
THCEpiCs cultured to confluency in 96 well plates were incubated for 24 hr with 0.25 mL of normal osmolar (315 
mOsm/kg) and hyperosmolar media (450, 500, and 530 mOsm/kg), with or without osmoprotectants to determine the 
effect of osmolarity and osmoprotection on metabolic activity. Note that 315 mOsm/kg tonicity of normal medium is 
slightly hypertonic relative to normal tears, in which a value of 316 mOsm/L was the threshold proposed as the 
“osmolarity referent” in the diagnosis of keratoconjunctivitis sicca, compared with an average value of 302 ± 9.7 
mOsm/L for normal tears across 16 published studies;64 subsequently, the TFOS DEWS report proposed 308 mOsm/L as 
a sensitive threshold for early-stage DED.28 More recently, 316 mOsm/L in either eye, 308 mOsm/L in both eyes, or >8 
mOsm/L inter-eye difference was proposed as a pathological cut-off.65,66 It should be noted that these values refer to 
osmolarity of tears sampled from the meniscus and that local, transient osmolarity in areas of high evaporation rate and 
tear break-up can be as high as 600–900 mOsm/L.67,68 In this study, isotonic refers to normal media rather than normal 
tears, regardless of the definition of “normal” tear osmolarity.

After determining the osmolarity at which cell metabolism decreases relative to normal medium (500 mOsm/kg), as 
well as the osmolarity at which osmoprotectants lessen the decrease in cell metabolism relative to unprotected media 
(530 mOsm/kg), the experiment was repeated using media ranging from normal (315 mOsm/kg) to hypertonic (400, 450, 
500 mOsm/kg), ie, concentrations at which respective solutions with and without osmoprotectants do not affect cell 
metabolism differently. Cell culture supernatants were collected for assessment of cytokine/chemokine activation.

To evaluate the interactions between THCEpiCs and CL solutions, the experiment was repeated using moderately 
hypertonic (400 mOsm/kg) solutions to increase the likelihood that no CL solution would decrease metabolic activity.

Cell Metabolism and Cytokine/Chemokine Activity Assays
An alamarBlue assay was performed to evaluate THCEpiC metabolic activity incubation with the respective solutions.69 

Cell culture supernatants were quantitated with specific enzyme-linked immunosorbent assays (ELISAs) for the detection 
of inflammatory cytokine (IL-6) and chemokines (IL-8, MCP-1) (Quantikine ELISA, R&D Systems, Inc., Minneapolis, 
MN). IL-6, IL-8, and MCP-1 were chosen as biomarkers of corneal inflammation due to their respective roles in the 
pathogenesis of DED.70 IL-6 affects differentiation of B cells into antibody producing cells,71 IL-8 affects neutrophil 
activation in response to inflammatory stimuli,72 and MCP-1 acts as a monocyte chemoattractant.73 Hyperosmolar stress 
has been reported to increase corneal epithelial production of IL-6 and IL-8,25,34 as well as MCP-1.34 While evidence that 
reducing these inflammatory markers improves clinical outcomes is lacking in literature, recent studies demonstrate that 
anti–IL-6 antibodies reduce inflammatory responses, both in vitro and in a murine model of fungal keratitis,74 and alkali 
burn.75
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In this study, metabolic activity data were collected from four replicates per test group (n=4). Pro-inflammatory 
cellular response markers were collected from these same test groups.

Statistical Analysis
All test group data sets were first analyzed using descriptive statistics and calculated as the mean values and standard 
errors. Additional statistical analysis was evaluated for any statistical significance by two-way analysis of variance 
(ANOVA) followed by Tukey’s or Dunnett’s multiple comparisons.76 Results were considered statistically significant at 
an alpha level of 5.0% and a p-value ≤0.05. All test group data sets were analyzed using GraphPad Prism version 8.0 for 
Windows (GraphPad Software, San Diego, CA; www.graphpad.com).

Results
Metabolic activity of THCEpiCs incubated with hyperosmolar media with and without added osmoprotectants is shown 
in Figure 1. Activity decreased with increased solution osmolarity, the difference from isotonic being significant at 500 
and 530 mOsm/kg (both p≤0.0001). Activity is greater in the presence of osmoprotectants only in the higher osmolar 
medium (530 mOsm/kg; p≤0.0001).

Cytokine/chemokine concentrations measured in the supernatants of isotonic and hypertonic media are shown in 
Figure 2A–D. The addition of glycerol and erythritol osmoprotectants significantly reduced pro-inflammatory cytokine/ 
chemokine response at solution osmolarities of 400 mOsm/kg (MCP-1, p=0.04; Figure 2D) and 450–500 mOsm/kg (IL- 
6, both p=0.02, and IL-8, both p<0.0001; Figure 2B and C, respectively).

THCEpiC metabolic activity in all isotonic CL solutions was comparable to that in the HBSS control (all p>0.05, data 
not shown). Metabolic activity in moderately hypertonic (400 mOsm/kg) diluted CL solutions, as well as supernatant 
cytokine/chemokine responses relative to control, are shown in Figure 3. Activity was lower in hypertonic somofilcon 
A and senofilcon A CL solutions (p=0.04 and 0.004, respectively), but not kalifilcon A (p=0.84), delefilcon A (p=0.65), 
verofilcon A (p=0.97), narafilcon A (p=0.09), or stenfilcon A (p=0.45; Figure 3A). IL-6 responses were greater in 
hypertonic solutions of delefilcon A (p=0.001), somofilcon A, narafilcon A, and senofilcon A (all p<0.0001), but not 
kalifilcon A (p=0.67), verofilcon A (p=0.26), or stenfilcon A (p=0.08; Figure 3B). IL-8 responses were greater in 
hypertonic solutions of all CLs (delefilcon A, senofilcon A, narafilcon A, and somofilcon A (all p<0.0001), verofilcon 
A (p=0.0001), and stenfilcon A (p=0.03) but kalifilcon A (p>0.99; Figure 3C)). MCP-1 responses were greater in 

Figure 1 Metabolic activity relative to control medium of THCEpiC cultured in baseline EpiLife control medium until confluent, then incubated with hyperosmolar EpiLife 
medium in the absence (□ bars) or presence (■ bars) of 0.9% erythritol + 0.9% glycerol (mean ± standard error). Two-way ANOVA versus equivalent hyperosmolarity 
without osmoprotectants using Tukey’s multiple comparisons (*p≤0.05). 
Abbreviations: ANOVA, analysis of variance; THCEpiC, transformed human corneal epithelial cell.
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Figure 2 (A) Baseline metabolic activity of THCEpiC cultured in baseline EpiLife control medium until confluent, then incubated with hyperosmolar EpiLife medium in the absence (□ bars) 
or presence (■ bars) of 0.9% erythritol + 0.9% glycerol relative to 25% HBSS control (mean ± standard error); (B) Relative IL-6 response; (C) Relative IL-8 response; (D) Relative MCP-1 
response. For (A), two-way ANOVA followed by Dunnett’s multiple comparisons finds no significant differences in metabolic activity with or without osmoprotection at equivalent 
osmolarity (p≥0.05). For (B–D), two-way ANOVA versus equivalent hyperosmolarity without osmoprotectants followed by Dunnett’s multiple comparisons (*p≤0.05). 
Abbreviations: ANOVA, analysis of variance; HBSS, Hanks’ Balanced Salt Solution; IL, interleukin; MCP-1, monocyte chemoattractant protein-1; THCEpiC, transformed 
human corneal epithelial cell.

Figure 3 (A) Metabolic activity of THCEpiC cultured in baseline EpiLife control medium until confluent, then exposed to 400 mOsm/kg hyperosmolar CL solutions relative 
to 25% HBSS control (mean ± standard error); (B) Relative IL-6 response; (C) Relative IL-8 response; (D) Relative MCP-1 response. Two-way ANOVA followed by 
Dunnett’s multiple comparisons (* indicates greater than control; all p≤0.05). 
Abbreviations: ANOVA, analysis of variance; CL, contact lens; HBSS, Hanks’ Balanced Salt Solution; IL, interleukin; MCP-1, monocyte chemoattractant protein-1; 
THCEpiC, transformed human corneal epithelial cell.
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hypertonic solutions of delefilcon A, verofilcon A, somofilcon A, and stenfilcon A (all p<0.0001), but not kalifilcon A, 
narafilcon A, or senofilcon A (all p>0.99, Figure 3D).

Discussion
Tear concentrations of certain inflammatory markers, notably IL-1β, IL-6, IL-8, IL-17, LTB4, and MMP-9, are reported 
to increase over the daily course of CL wear, more so with planned replacement compared with DD lenses.77 A study of 
CL wearers found that in a controlled adverse desiccating environment (5% relative humidity, 23°C, and 0.43 m/s [mean 
velocity] localized airflow), those subjects whose tears contained the highest levels of inflammatory cytokines IL-4 and 
IL-6 were associated with increased CL wear symptoms including dryness and discomfort,78 which is significant as these 
are the primary reasons for CL discontinuation.79 A similar study found the increase in tear concentrations of some 
inflammatory mediators to differ between CL models,80 possibly reflecting differences in lens polymers and components 
of their respective packaging solutions. In most CL wearers, ocular surface inflammation is not a major complication of 
lens wear and is often asymptomatic if it does occur.81 Nonetheless, it can contribute to discomfort at the end of 
the day.10 Most CL-mediated inflammation is reported to be subclinical with DD lens wear.82

With the recognition that maintaining ocular homeostasis during CL wear has the potential to improve lens comfort and 
vision,83 manufacturers have adopted technologies that support homeostasis. While improving lens water retention during 
wear represents one approach,84,85 infusion of beneficial ingredients into the lens is another.86 All lenses evaluated in this 
study include humectant and/or surfactant wetting agents in the solution; the kalifilcon A lens additionally includes 
osmoprotectants also used in other ocular solutions,36,37 as well as potassium electrolyte.57 While physical and chemical 
characterization of CL packaging solutions is beyond the scope of this study, published literature demonstrates broad ranges 
in pH, osmolarity, and surface tension of commercial CL blister package solutions, as well as variation in contact angle 
between different lens/solution combinations, reflective of the surfactants in the solutions and the specific lenses.87,88

THCEpiCs were used in this study to determine the effects of glycerol and erythritol osmoprotectants, as well as CL 
packaging solutions, upon epithelial stress in hyperosmotic cell culture media. Experiments with isotonic and hyper-
osmolar cell culture media with and without osmoprotectants highlight two important phenomena. First, THCEpiC 
metabolic activity in isotonic medium was comparable to that in 450 mOsm/kg medium, while activity in 500 and 530 
mOsm/kg media was significantly less; further, the osmoprotectants minimized loss of metabolic activity only in high 
osmolarity medium (530 mOsm/kg). Second, when cell culture supernatants were analyzed under conditions of 
equivalent metabolic activity and the same osmolarity, significantly lower cytokine/chemokine responses were observed 
with osmoprotectants at thresholds of 450 mOsm/kg (IL-6 and IL-8; Figure 2B and C) and 400 mOsm/kg (MCP-1; 
Figure 2D). These results are similar to those of Corrales et al, who reported that osmoprotectants L-carnitine and 
erythritol, alone or in combination, protected against hyperosmolar stress activation of primary corneal epithelial cells 
cultured in 400 mOsm/kg media;38 and Hua et al, who reported that L-carnitine, erythritol, and betaine reduced 
expression of pro-inflammatory cytokines and chemokines by primary corneal epithelial cells cultured in 450 mOsm/ 
kg media,40 suggesting that osmoprotectants could play a role in reducing hyperosmotic stress in CL dryness.

Decreased metabolic activity in high osmolarity solutions suggests that investigations of cellular response to 
hyperosmolar solutions be conducted at osmolarities no greater than 450 mOsm/kg to avoid concomitant responses 
due to change in cellular metabolism. For this reason, THCEpiC interactions with CL solutions were investigated in 
a moderately hypertonic medium (400 mOsm/kg). Because the osmolarities of the evaluated CL packaging solutions vary 
from hypotonic to hypertonic, solutions were first diluted to 25%, then osmolarity was adjusted by the addition of NaCl. 
THCEpiC metabolic activity was lower in hypertonic (400 mOsm/kg) senofilcon A and somofilcon A CL solutions 
compared with HBSS control (Figure 3A), complicating interpretation of cytokine/chemokine response to these solu-
tions. IL-6 concentrations were greater in hypertonic solutions of delefilcon A, somofilcon A, narafilcon A, and 
senofilcon A compared with control (Figure 3B). IL-8 concentrations were greater in hypertonic solutions of all CLs 
but kalifilcon A (Figure 3C). MCP-1 concentrations were greater in hypertonic solutions of delefilcon A, verofilcon A, 
somofilcon A, and stenfilcon A (Figure 3D).

All CL solutions except kalifilcon A elicit at least one cytokine/chemokine response under hyperosmotic conditions. 
Overall, the kalifilcon A solution elicited the least THCEpiC inflammatory response, likely reflecting in part the presence 
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of the osmoprotectants, consistent with the results in cell culture media. Previous in vitro studies similarly report 
solution-dependent responses to different CL packaging solutions89 and MPSs.90,91 The present study demonstrates the 
potential for osmoprotectants to reduce corneal epithelial stress under hyperosmotic conditions that occur in some CL 
wearers, particularly at the end of the day.10

The clinical benefit of osmoprotectants in the packaging solution has not been widely studied. While CLs packaged in 
solutions lacking osmoprotectants have acceptable performance in asymptomatic wearers and wearers experiencing only 
minor symptoms while wearing lenses,92–96 a recent clinical study found that subjects who reported experiencing CL 
dryness symptoms with their habitual lenses noticed increased comfort while wearing the kalifilcon A lens.86 In addition, 
a different study reported that CL wearers who used hypo-osmotic saline drops, which reduce tear osmolarity by dilution 
experienced improved end-of-day comfort and reduced dryness and burning.97 We propose that while hyperosmotic 
stress leading to ocular inflammation in symptomatic patients results in discomfort, inclusion of osmoprotectants in CL 
packaging solutions can lead to decreased symptoms of discomfort.

While moisturizers and surfactants have previously been used in ophthalmic and CL solutions, the infusion of 
osmoprotectants into a commercial CL packaging solution is a more recent development. Components included in the 
kalifilcon A solution were selected based upon recommendations from the TFOS DEWS II report,37 while maintaining 
ocular surface homeostasis in mind.86 Surfactants promote tear film spreading98 and stabilize protein structure.99 

Poloxamine 1107 is reported to be especially effective at suppressing aggregation of heat-denatured lysozyme.100 

Osmoprotectants balance osmotic pressure under osmotic stress, inhibiting inflammation. Glycerin boasts protein 
stabilizing101 and demulcent properties, while both glycerin and erythritol are included as ingredients in numerous 
ophthalmic solutions.37,102 Potassium electrolyte plays a role in epithelial surface homeostasis.103 Further investiga-
tion to identify properties of other kalifilcon A solution ingredients and any synergistic effect between them is 
warranted.

The primary limitation of this study is the in vitro nature of the experiments, which do not necessarily predict clinical 
CL wear outcomes. The ocular surface, which includes multiple cell types, is dynamic and resists internal and external 
assaults more capably than do exposed cells. In addition, the osmolarities of the solutions evaluated in this study are 
higher than would typically be found in asymptomatic CL wearers, although transient, local osmolarity can exceed these 
levels up to three-fold.67,68 Moderately high osmolarity is required to elicit cellular inflammatory responses in vitro in 
order to evaluate the beneficial effects of CL packaging solutions and their respective ingredients. Also, packaging 
solutions were tested at 25% of their normal concentrations; it is not known if the solutions and their ingredients at full 
concentration would elicit the same cellular responses, in vitro or clinically.

Conclusion
Including osmoprotectants in CL packaging solution may protect corneal epithelium from inflammation under hyper-
osmotic conditions that occur in CL-related DEDs and that, in some wearers, worsen at the end of the day. Other 
components such as surfactants and potassium electrolyte might also contribute to preserving ocular surface homeostasis, 
and their potential roles remain to be determined. Overall, this study underscores the significance of exploring novel 
strategies, particularly osmoprotective agents, to enhance the safety and comfort of CL wearers and maintain ocular 
health.
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