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Purpose: Doxorubicin-induced cardiotoxicity (DIC) is a severe side reaction in cancer chemotherapy that greatly impacts the well- 
being of cancer patients. Currently, there is still an insufficiency of effective and reliable biomarkers in the field of clinical practice for 
the early detection of DIC. This study aimed to determine and validate the potential diagnostic and predictive values of critical 
signatures in DIC.
Methods: We obtained high-throughput sequencing data from the GEO database and performed data analysis and visualization using 
R software, GO, KEGG and Cytoscape. Machine learning methods and weighted gene coexpression network (WGCNA) were used to 
identify key genes for diagnostic model construction. Receiver operating characteristic (ROC) analysis and a nomogram were used to 
assess their diagnostic values. A multiregulatory network was built to reveal the possible regulatory relationships of critical signatures. 
Cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) analysis was used to investigate differential 
immune cell infiltration. Additionally, a cell and animal model were constructed to investigate the relationship between the identified 
genes and DIC.
Results: Among the 3713 differentially expressed genes, three key genes (CSGALNACT1, ZNF296 and FANCB) were identified. 
A nomogram and ROC curves based on three key genes showed excellent diagnostic predictive performance. The regulatory network 
analysis showed that the TFs CREB1, EP300, FLI1, FOXA1, MAX, and MAZ modulated three key genes. An analysis of immune cell 
infiltration indicated that many immune cells (activated NK cells, M0 macrophages, activated dendritic cells and neutrophils) might be 
related to the progression of DIC. Furthermore, there may be various degrees of correlation between the three critical signatures and 
immune cells. RT‒qPCR demonstrated that the mRNA expression of CSGALNACT1 and ZNF296 was significantly upregulated, 
while FANCB was significantly downregulated in DOX-treated cardiomyocytes in vitro and in vivo.
Conclusion: Our study suggested that the differential expression of CSGALNACT1, ZNF296 and FANCB is associated with cardiotoxi-
city and is also involved in immune cell infiltration in DIC. They might be potential biomarkers for the early occurrence of DIC.
Keywords: doxorubicin, cardiotoxicity, biomarker, machine learning, immune infiltration

Introduction
With the significant advancement in early detection and treatment, the number of cancer survivors has increased,1 but there 
have also been multiple adverse outcomes, such as chemotherapy-induced cardiotoxicity.2 Doxorubicin (DOX), a member 
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of the anthracycline antibiotic family, is extensively used in the chemotherapy of various cancers, such as hematological 
malignancies and other tumors.3 Unfortunately, approximately a quarter of cancer survivors experience DOX-induced 
cardiotoxicity (DIC), which significantly limits its clinical application.4 Although DIC has attracted the attention of 
cardiologists, there are limited methods available for early detection and treatment in clinical practice.

The pathophysiological mechanisms of DIC are complex and not yet fully elucidated, including oxidative stress, 
mitochondrial dysfunction, inflammatory response, metabolic disorders, and cell death.5–8 An increasing amount of 
evidence has indicated that immune cells have crucial functions in cardiac homeostasis and disease.9,10 Further 
investigation is required to explore the precise function and molecular mechanism of immune cells in the development 
of DIC. The rapid developments of multiomics and high-throughput sequencing provide novel tools for identifying early 
biomarkers and exploring therapeutic targets.11

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has the ability of unlimited proliferation 
and differentiation into cardiomyocytes, so it is widely used in the study and treatment of cardiac disease.12,13 Recently, 
Burridge et al indicated that the viability of using hiPSC-CMs as a platform for determining and validating the genetic 
foundation and molecular mechanisms underlying DIC.14 In addition, many studies have also used hiPSC-CMs as the cell 
source of DIC.15–17 On these bases, we downloaded high-throughput gene expression data from NCBI GEO database.

In the current work, we explored key genes of DIC using comprehensive bioinformatics approaches and machine- 
learning strategies. Furthermore, we constructed a multiregulatory network to uncover the possible regulatory connec-
tions of key genes. Similarly, machine learning was carried out to construct a diagnostic nomogram model for DIC 
prediction on the basis of the three key genes (ZNF296, FANCB and CSGALNACT1) that were discovered in DIC 
pathogenic genes. Therefore, the study of its related molecular mechanism may be helpful for its further clinical 
application in DIC. We attempted to explore the connection between key genes and immunity. Finally, our study 
validated the differential expression of the key genes by constructing the model treated with doxorubicin in vitro and 
in vivo. This study collectively identified a stable and achievable biomarker in DIC, which could potentially serve as 
a target for diagnosing and preventing cancer survivors who have undergone DOX treatment.

Materials and Methods
Data Acquisition and Homogenization
Our information was gathered by accessing the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/), 
which is a public repository of high-throughput gene expression data, chips, and microarrays.18 High-throughput gene expression 
data were downloaded from the NCBI GEO database, including GSE76314, GSE157282 and GSE181517. GPL11154 served as 
the complementary high-throughput detection platform for GSE76314; GSE157282 was based on platform GPL24676. 
GSE181517 was based on platform GPL18573. The GSE76314 dataset,14 which describes the differences in cell-derived 
cardiomyocytes (hiPSC-CMs), was used as the training set (3 doxorubicin samples vs 3 control samples). The GSE157282 
dataset19 [doxorubicin samples vs 3 controls samples], which describes the differences in the hiPSC-CMs, was also used as the 
training set. GSE18151720 was used as the validation set to explore the dynamic changes in the critical signature, which included 
3 doxorubicin samples and 3 control samples. The scale function in R version 4.2.0 software was used to combine GSE76314 and 
GSE157282 into one dataset and calibrate the batch using the SVA package.21 For uniform manifold approximation and 
projection (UMAP), after the removal of the batch effect, the samples among various datasets are clustered and intertwined with 
each other, indicating that the batch effect is better removed. Principal component analysis (PCA) was used to verify the 
reproducibility of the data, and the R package ggord was used to construct the PCA plots.22

Analysis of Differentially Expressed Genes
In this study, we performed differential expression analysis using the R Bioconductor package “Limma” (V3.46.0) to 
identify differentially expressed genes.23 Differentially expressed genes (DEGs) were defined as those with adjusted 
P values and genes with adjusted P values < 0.05 and |Log2-fold-change (log2FC)|≥ 1 after adjusting the P values using 
Benjamini‒Hochberg’s false discovery rate (FDR). The R software ggplot2 V3.3.5 package was used to create volcano 
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plots, and the R software Heatmap V1.0.12 package was utilized to generate heatmaps for the top 100 DEGs from each 
dataset.

Functional Enrichment Analysis of DEGs
A functional enrichment analysis of DEGs was performed to clarify their role using the R software clusterProfiler and 
Goplot package. These analyses were discerningly marked by significance, indicated by the adjusted P value < 0.05. 
A comprehensive enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) 
was conducted and visualized, including biological process (BP), cellular component (CC), and molecular function (MF) 
for all DEGs.

Screening and Validation of Critical Gene Signatures
In this study, random forests (RF),24 least absolute shrinkage and selection operator (LASSO) logistic regression,25 and 
weighted gene coexpression network analysis (WGCNA)26 were utilized to screen novel and pivotal signatures associated 
with DIC. The RF model, LASSO analysis, and WGCNA were executed using the R software random Forest package, 
R software glmnet package and R software WGCNA package, respectively. Following the individual algorithmic analyses, the 
points of intersection among the three classification models were identified, setting the stage for the next step of the analysis. 
To assess the diagnostic efficacy of these three diagnostic signatures in doxorubicin-induced cardiotoxicity, the area under the 
curve (AUC) and the ROC curves were established using R software’s pROC package. In adherence to statistical standards, 
a threshold of two-sided P < 0.05 was deemed to be statistically significant. To verify the expression levels of key markers, 
their differences between the doxorubicin and control groups were assessed in the training and validation sets.

Multifactor Regulatory Network Analysis of Key Genes
Guardians of gene expression include long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and transcription 
factors (TFs) in transcription and posttranscription prototypes. To demonstrate the regulatory networks of key signatures, 
lncRNAs, mRNAs, TFs, and miRNAs were predicted by RNAInter,27 hTFtarget,28 and mirDIP.29 Then, we used 
Cytoscape software30 to visualize the multifactor regulatory network.

Analysis of Immune Cell Infiltration on Critical Gene Signatures
Prior to CIBERSORT analysis, principal component analysis (PCA) of the gene expression profile was plotted and 
visualized by the R software factoextra package. Analysis of 22 different types of immune cells using CIBERSORT 
demonstrated the differential expression of cells between the doxorubicin group and the control group using a box 
diagram (P value < 0.05 was deemed to be statistically significant). Afterwards, Spearman correlation analysis between 
immune cells and immune cells, as well as between key signatures and immune cells, was demonstrated by a heatmap 
through the R software corrplot V0.92 package.

Cell Line Culture and Treatment
AC16 immortalized human cardiomyocyte line was procured from MeisenCTCC (Zhejiang, China) and cultured in Dulbecco’s 
modified Eagle’s medium (DMEM) containing 10% fetal bovine serum (FBS) 1% and penicillin/streptomycin and grown in 
a CO2 incubator maintained at atmospheric oxygen levels and 5% CO2. When the AC16 cell density reached 80–90%, the cells 
were exposed to 1 µM doxorubicin (Sigma‒Aldrich) or vehicle (PBS). Whole cells were collected after 24 h of treatment.

Animal Experiments
The Establishment of Animal Model
Twenty male wild-type C57BL/6 mice aged 8 weeks (18–22g) were purchased from the SiPeiFu (Beijing) Biotechnology 
Co., Ltd., Beijing City, and they were randomly divided into two groups: normal control (NC) group and DOX treatment 
(DOX) group. In NC group, mice were i.p.injected with the equivalent volume of saline two times (on days 1 and 8, 
respectively); in DOX group, mice were intraperitoneally injected with DOX on day 1 (10 mg/kg) and day 8 (10 mg/kg), 
and acute DIC model was established in vivo (cumulative dose of 20 mg/kg).31 At the end of the experiment, each group 
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of mice was anesthetized and killed, and their hearts were taken for subsequent experiments. The experimental 
procedures were implemented in accordance with the China Animal Welfare Legislation, reviewed and approved by 
the Qingdao University Committee on Ethics in the Care and Use of Laboratory.

Cardiac Functions Examination
At the end of the treatment, the mice heart function was examined through echocardiography Imaging System (VINNO 6 LAB, 
VINNO). Cardiac ventricular structure and systolic function were examined by two-dimensional imaging motion mode to record 
parasternal long-axis fields. Parameters included the left ventricular (LV) anterior wall thickness in the end-diastolic/end- systolic 
stages, the LV posterior wall thickness, the LV internal diameter; LV ejection fraction, and LV fractional shortening.

The Hematoxylin & Eosin Staining of Heart Tissues
Hearts of mice were fixed in 10% formalin, and then treated with dehydration, embedding and sectioning. Hematoxylin 
& eosin staining was performed to examine cardiac histological morphology.

RNA Extraction and Quantitative Real-Time PCR for Cell and Animal Verification 
Experiments
The TRIzol method was used to extract total RNA from AC16 cells and heart tissue samples, and spectrophotometry was 
used to measure the concentration and purity. According to the manufacturer’s instructions, equivalent amounts (1 μg) of 
purified RNA were used as a template to synthesize cDNA using ABScrlpt III RT Master Mix for qPCR with a gDNA 
Remover Kit (Cat# RK20429, ABclonal, Wuhan, China). The manufacturer’s instructions were followed to perform 
quantitative PCR using a QuantStudio 3 (Bio-Rad) and 2X Universal SYBR Green Fast qPCR Mix (Cat#RK21203, 
ABclonal, Wuhan, China). The relative expression levels were determined by the 2–ΔΔCT method and are presented 
relative to GAPDH mRNA. Primer sequences are provided in Table S1.

Statistical Analysis
GraphPad Prism 9.0 was utilized for conducting the statistical analysis. The unpaired Student’s t-test was used to 
compare the DOX group (DOX) and control group (NC). The assays were conducted at least three times or more. A two- 
tailed p value <0.05 was considered statistically significant.

Results
Identification of DEGs
Figure 1 clarifies the depicted flow chart of the present work. Both the GSE76314 and GSE157282 datasets were merged 
(Figure 2A) for the following analysis. The utilization of UMAP was performed to visually represent the clustering of 
read counts and identify batch effects (Figure 2B). Next, we merged these two datasets into one dataset and rectified the 
batch using the SVA software package. Figure 2C shows that the interbatch variations are effectively removed after data 
normalization. Finally, a normalized gene expression matrix file containing 12 samples (6 doxorubicin samples and 6 
control samples) was obtained. These DEGs are distributed in the volcano map (Figure 2D). The first 100 temperatures 
are shown in the heatmap (Figure 2E). In the results of differential expression analysis, a total of 3713 genes were 
identified as DEGs, including 1925 upregulated genes and 1788 downregulated genes (Figure 2F).

GO and KEGG Pathway Analysis of DEGs
Subsequently, we performed enrichment analyses for overlapping DEGs in KEGG and GO. Among the KEGG pathways, the 
pathways in cancer, erpes simplex virus 1 infection, rap1 signaling pathway, alcoholism, and cGMP-PKG signaling pathway 
were considered the pathways with the highest degree of enriched pathways (Figure 3A). In significantly enriched BP, these 
included the positive regulation of nucleobase containing compound metabolic process, positive regulation of biosynthetic 
process, cell population proliferation, cell cycle, and apoptotic process (Figure 3B). Subsequently, chromosome, chromatin, 
microtubule cytoskeleton, transcription regulator complex, and chromosomal region were the most enriched terms in CC 
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(Figure 3C). For MF, the top 5 enriched items were transcription regulator activity, sequence-specific DNA binding, 
ribonucleotide binding, DNA binding transcription factor activity, and adenyl nucleotide binding (Figure 3D).

Screening of Critical Signatures
Here, three key genes were screened using the RF, LASSO, and WGCNA machine learning algorithms. Using the WGCNA 
algorithm (Figure S1), we confirmed 11 extraordinary coexpression modules (Figure 4A). Figure 4B clarifies that there is 
a correlation between multiple modules in DIC. Given that the turquoise and dark red modules are most significantly 
associated with DIC, we screened genes in the turquoise and dark red modules for follow-up exploration and successfully 
identified 3370 genes (Figure 4C–E, Table S2). Moreover, the results showed that 15 genes were identified by the LASSO 
algorithm (Figure 4F and G, Table S2), and 90 genes were determined with the RF algorithm (Figure 4H–J, Table S2). 
Subsequently, a Venn diagram shows that FANCB, ZNF296 and CSGALNACT1 obtained by the three algorithms are 
overlapping genes (Figure 4K).

Figure 1 Flow chart of this study.
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Verification of FANCB, ZNF296 and CSGALNACT1 in DIC
To evaluate the possible significance of the key genes in DIC, we created ROC curves. First, we verified the expression 
of FANCB, ZNF296 and CSGALNACT1 in DIC. The results showed that compared with the control group, the 
expression of ZNF296 and CSGALNACT1 in the training and validation sets was significantly upregulated, and the 
expression of FANCB was significantly downregulated (all P < 0.01, Figure 5A and B). Second, the AUCs of the three 
key genes in the training set were 1 (Figure 5C), indicating that they were accurate and reliable in terms of predictive 

Figure 2 Identification of differentially expressed genes (DEGs). (A) The intersection of genes between GSE76314 and GSE157282. (B) UMAP before the batch correction 
of two datasets. (C) UMAP after the batch correction of two datasets. (D) Volcano plots of DEGs. Nodes in red represent upregulated genes, nodes in green represent 
downregulated genes, and black dots represent no significantly changed genes. (E) Heatmaps of DEGs. The legend on the top right indicates the log fold change of the genes. 
The horizontal axis represents each sample, and the vertical axis represents each gene. Blue and red colors represent low and high expression values, respectively. (F) 
Number of DEGs.
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value. In the validation set of GSE181517, the AUCs for FANCB, ZNF296 and CSGALNACT1 were also all 1 
(Figure 5D). Finally, we created nomogram models to diagnose DIC using the hallmark genes FANCB, ZNF296 and 
CSGALNACT1 (Figure 5E).

Construction of a Multifactor Regulatory Network Based on Key Genes
Next, we explored the potential regulatory mechanisms by studying the regulatory networks involving lncRNAs, 
miRNAs and TFs and conducted a comprehensive visual analysis (Figure 6). Here, to construct a multifactor 
regulatory network, interaction pairs involving miRNAs, lncRNAs and TFs with three key genes were extracted. 
In the multifactor regulatory network, FANCB was managed by 5 miRNAs and 1 lncRNA, including hsa-miR 
-4695-5p, hsa-miR-3612, hsa-miR-2113, hsa-miR-7109-3p, hsa-miR-135a-2-3p, and CISTR, and the possible TFs 
for FANCB were ATF3, CEBPA, CEBPB, CREB1, E2F1, EP300, ETS1, FLI1, FOXA1, GABPA, HDAC1, 
HDAC2, KLF5, MAX, and MAZ. Additionally, the ZNF296 network included 2 lncRNAs, 7 miRNAs, and 66 

Figure 3 Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of differentially expressed genes (DEGs). (A) Bubble 
chart shows KEGG-enriched items of DEGs. (B–D) Bubble charts show GO-enriched items of DEGs in three functional groups: biological processes (BP, B), cell 
composition (CC, C), and molecular function (MF, D). The x-axis labels represent gene ratios, and the y-axis labels represent GO terms. The size of the circle represents the 
gene count. Different colors of circles represent different adjusted P values.
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Figure 4 Screening of critical signatures via multiple machine-learning algorithms. (A) Clustering dendrogram of differentially expressed genes related to DIC, with 
dissimilarity based on topological overlap, together with assigned module colors. (B) Module feature vector clustering. (C) Module–trait associations. The gene significance 
for doxorubicin cardiotoxicity in the turquoise and dark red modules, and one dot represents one gene in the turquoise (D) and dark red modules (E). (F) LASSO 
coefficient profile of the 12 genes, and different colors represent different genes. (G) Selection of the optimal parameter (lambda) in the LASSO model and generation of 
a coefficient profile plot. (H) Variable importance, as measured by the mean decrease in accuracy (left panel) or the Gini coefficient (right panel), is computed using the OOB 
error. Genes are shown in descending order of importance. Distribution of the out-of-band (OOB) error rate at various values of mtry (I) and trees (J). (K) Venn diagram 
showing the intersection of critical signatures obtained by the three strategies.
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TFs, and the CSGALNACT1 network contained 167 miRNAs and 25 TFs. Obviously, the results of our work 
suggest that the TFs CREB1, EP300, FLI1, FOXA1, MAX, and MAZ modulate all 3 marker genes.

Analysis of Immune Cell Infiltration and Correlation Analysis Between Key Genes
Recent evidence has shown that immune cells play a critical role in the pathophysiological process of DIC.6,32,33 Therefore, 
we investigated the link between key features in DIC and immune infiltration. The swatches of different groups are well 

Figure 5 The diagnostic power of FANCB, ZNF296 and CSGALNACT1 in DIC by ROC curve. (A) The expression of FANCB, ZNF296 and CSGALNACT1 in the training 
set. (B) The expression of FANCB, ZNF296 and CSGALNACT1 in the validation set. (C) The ROC curve of FANCB, ZNF296 and CSGALNACT1 in the training set. (D) 
The ROC curve of FANCB, ZNF296 and CSGALNACT1 in the validation set. (E) A nomogram was used to predict the occurrence of DIC. (*P<0.05, **P < 0.01, ***P < 
0.001, ****P < 0.0001, - P ≥ 0.05).
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divided in the training set in PCA (Figure 7A). To study 22 types of immune cell phenotypes, we utilized the CIBERSORT 
algorithm to analyze the training set. Compared with the control samples, DIC samples exhibited a greater percentage of 
activated NK cells, M0 macrophages, activated dendritic cells and neutrophils (all P < 0.05). However, the proportions of 
memory B cells, CD8 T cells, resting memory CD4 T cells, and resting NK cells in DIC were relatively lower than those in 
the control (all P < 0.05) (Figure 7B). Twenty immune cell types were included for further investigation after two immune 
cell types with undetectable levels were excluded. It can be seen from the related heatmaps (Figure 7C) that naive B cells and 
CD8 T cells, naive B cells and resting memory CD4 T cells, CD8 T cells and neutrophils, resting NK cells and activated M0 
macrophages displayed the most significant negative correlations (P < 0.0001). Naive B cells and neutrophils, activated mast 
cells and monocytes, and M0 macrophages and neutrophils exhibited the most significant positive correlations (P < 0.0001). 
Our aim was to detect the link between key genes and 20 types of immune cell phenotypes in doxorubicin cardiotoxicity. 
According to the correlation analysis results, FANCB displayed the most positive correlations with resting NK cells and CD8 
T cells [r = 0.70, -log10 (p value) = 1.94] while demonstrating negative correlations with activated dendritic cells [r = −0.76, - 
log10 (p value) = 2.35]. ZNF296 displayed the most positive correlations with activated dendritic cells [r = 0.76, -log10 (p 
value) = 2.40] and revealed negative correlations with resting NK cells [r = −0.80, -log10 (p value) =2.72]. CSGALNACT1 
displayed the most positive correlations with M0 macrophages [r = 0.92, -log10(p value) = 4.60] and revealed negative 
correlations with resting NK cells [r = −0.79, -log10(p value) =2.65] (Figure 7D).

Verification of FANCB, ZNF296 and CSGALNACT1 in AC16 Human 
Cardiomyocyte-Like Cells
To verify whether the mRNA expression of FANCB, ZNF296 and CSGALNACT1 was consistent with the results of the 
database analysis, we constructed a doxorubicin-induced injury model in vitro.34 The results showed that FANCB was 
expressed at a low level (Figure 8A), while ZNF296 and CSGALNACT1 were expressed at a high level in the DOX 
group (Figure 8B and C).

Figure 6 The multifactor regulatory network based on FANCB, ZNF296 and CSGALNACT1. FANCB, FA complementation group B; ZNF296, zinc finger protein 296; 
CSGALNACT1, chondroitin sulfate N-acetylgalactosaminyltransferase 1.
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Figure 8 The mRNA expression of FANCB (A), ZNF296 (B) and CSGALNACT1 (C) in AC16 human cardiomyocyte cells by RT‒qPCR. (**P < 0.01, ***P < 0.001).

Figure 7 Immune cell infiltration analysis and relationships between critical signatures and immune cells in DIC. (A) Principal component analysis (PCA) cluster plot of gene 
expression profiles between doxorubicin samples and control samples in the training set. (B) Box plot of the proportion of 22 types of immune cells. (C) Heatmap of 
correlations in 20 types of immune cells. The colored squares represent the strength of the correlation; red represents a positive correlation, and blue represents a negative 
correlation. Darker color implies stronger association. (D) Correlations between FANCB, ZNF296, CSGALNACT1, and infiltrating immune cells. (*P<0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001, - P ≥ 0.05).
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The Verification Experiments in vivo
Firstly, mouse model of DIC is illustrated in Figure 9A, and the heart weight to tibia length ratio (HW/TL) was 
significantly reduced in the DOX group (Figure 9B). The echocardiography results demonstrate a downward trend of 
cardiac systolic and diastolic function in the DOX group (Figure 9C), as evidenced by significantly decreased ejection 
fraction (Figure 9D), decreased fractional shortening (Figure 9E). HE staining illustrated that DOX treatment exacerbated 
cardiomyocyte tissue disorders compared with control group (Figure 9F). These results indicate that we successfully 
established a DIC model. Finally, the mRNA levels of FANCB was decreased in the hearts of DOX treated group relative 
to the control group (Figure 9G), while ZNF296 and CSGALNACT1 is contrary to the FANCB (Figure 9H and I).

Discussion
Doxorubicin prolongs the survival time of tumor patients, but it also leads to severe side effects, especially cardiotoxicity, 
which significantly affects the effectiveness of anticancer treatment.35,36 Hence, it is crucial to recognize secure and 
effective biomarkers to detect DIC. Currently, with the rapid development of high-throughput sequencing and multiomics 
technologies,37,38 some new methods have been used to detect and diagnose DIC.11

In this study, 3713 DEGs were discovered using a comprehensive bioinformatics analysis between DIC and the controls. 
The results indicated that the significantly enriched terms included positive regulation of nucleobase-containing compound 
metabolic process in BP, chromosome in CC, and transcription regulator activity in MF. Of note, multiple algorithms were 
applied to identify key genes in DIC, including WGCNA, RF and LASSO. Ultimately, CSGALNACT1, ZNF296 and 
FANCB were determined to be key genes. Additionally, through ROC curves and nomogram analysis, it was shown that the 
expression levels of CSGALNACT1, ZNF296 and FANCB could accurately distinguish DIC from controls. Similarly, we 
validated the stability of CSGALNACT1, ZNF296 and FANCB expression levels through distinct validation datasets. From 
the results, CSGALNACT1, ZNF296 and FANCB may be potential factors for DIC, which suggests that they have vital 
value for clinical application in DIC. Additionally, our regulatory network showed that the TFs CREB1, EP300, FLI1, 
FOXA1, MAX, and MAZ modulated all 3 marker genes. However, the transcriptional regulation of CSGALNACT1, 
ZNF296 and FANCB by CREB1, EP300, FLI1, FOXA1, MAX and MAZ needs further study.

Zinc finger protein 296 (ZNF296 or Zfp296) is a reprogramming factor composed of 445 amino acids that belongs to 
the C2H2 zinc finger protein family and is involved in cell proliferation, survival, differentiation, and carcinogenesis.39 

ZNF296 is expressed in mouse testes, bone marrow, and embryos.40 Previous evidence suggests that ZNF296 is an 
effective biomarker for breast cancer detection.41 Furthermore, recent studies have found that ZNF296 is a regulator of 
H3K9me3 and is closely associated with the pluripotency of embryonic stem cells.42 Another study indicated that 
ZNF296 was associated with the formation of induced pluripotent stem (iPS) cells.43 Interestingly, a microarray analysis 
based on transcriptomic signatures showed that ZNF296 was upregulated in tuberculosis and could be used as 
a diagnostic biomarker.44 In the present study, we also found that ZNF296 was significantly upregulated in the DOX- 
treated group, which was validated through platforms and across cell experiments. Although the role of ZNF296 in DIC 
has not been clearly discussed, it may be a potential diagnostic biomarker.

Furthermore, CSGALNCT-1, also named chondroitin sulfate N-acetylgalactosaminyltransferase 1, plays a vital role as 
a glycosyltransferase in the biosynthesis of chondroitin sulfate. It is also involved in important biological processes, such as 
cartilage development and polysaccharide metabolism.45 Previous microarray studies have indicated that CSGALNACT1 is 
a prognostic biomarker in multiple myeloma.46 According to a recent study, CSGALNACT1 was found to have a notable 
upregulation in lung-derived mesenchymal stem cells (LMSCs) from emphysema patients, which can regulate extracellular 
matrix (ECM), but the specific function remains unclear.47 Significantly, chondroitin sulfate (CS) is a natural macromole-
cule catalyzed by CSGALNACT1 and a major component of the extracellular matrix.48 Another study published recently 
showed that abnormal accumulation of chondroitin sulfate glycosaminoglycans led to cardiac fibrosis.49 Interestingly, our 
study showed that CSGALNACT1 was expressively upregulated in cardiomyocytes in the doxorubicin-treated group. 
Therefore, we speculate that CSGALNACT1 may be involved in DIC, although the specific mechanisms require further 
investigation. In conclusion, CSGALNACT1 is considered a suitable biomarker for DIC.
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Figure 9 The mRNA expression of FANCB, ZNF296, and CSGALNACT1 in DOX-induced cardiotoxicity in vivo. (A) Male C57BL/6 mice were i.p.injected with an 
accumulation does of 20 mg/kg DOX or the equivalent volume of saline two times (on Days 1 and 8, respectively). (B) the HW/TL ratio was measured. (C) The mice were 
tested for cardiac function by echocardiography. (D and E) The LV trace EF% and LV trace FS% were calculated. (F) HE staining of heart tissue in Control group and DOX 
group. (G) FANCB mRNA expression was detected by RT-qPCR, (H–I) ZNF296, and CSGALNACT1 mRNA expression was detected by RT-qPCR. (*P<0.05, **P < 0.01, 
****P < 0.0001).
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FANCB, fully defined as Fanconi anemia complementation group B and known as FAAP95, is an essential 
constituent of the Fanconi anemia (FA) core complex. It has a vital function in hematopoiesis and the development of 
germ cells.50,51 Some studies have indicated that the FA pathway serves as an indispensable mechanism for the DNA 
damage response.52 Further study has shown that FANCB is known as a DNA repair gene.53 Previous studies have 
concluded that DNA damage is one of the molecular mechanisms in DIC. Interestingly, our study found that the 
expression of FANCB in cardiomyocytes treated with doxorubicin was significantly reduced, which was consistent 
with the verification of the cell experiment. Therefore, we speculate that FANCB is directly or indirectly involved in DIC 
via DNA damage/repair. Although the exact mechanism remains unclear, this study provides a novel perspective for 
understanding doxorubicin-induced cardiomyocyte injury.

Noncoding RNAs (ncRNAs) widely participate in cell physiological and pathological processes by regulating the 
epigenetic modification of gene expression, which has attracted great attention.54,55 Increasing evidence has reported the 
significant role of ncRNA in the DIC.56 Therefore, we further predicted upstream ncRNAs targeting three key genes, 
ZNF296, FANCB, and CSGALNACT1, and ultimately constructed a gene regulatory network including microRNAs and 
lncRNAs. Additionally, we also investigated the regulatory network between transcription factors and three core genes. 
Notably, the transcription factors CREB1, EP300, FLI1, FOXA1, MAX, and MAZ were simultaneously regulated by 
three key genes.

In recent years, a growing body of research has highlighted the potential impact of immune cells on DIC, including 
neutrophils,57,58 macrophages,59,60 and NK cells.61 In our study, significant differences were observed between the DOX- 
treated group and the control group in terms of immune cell infiltration. Specifically, the peaks of M0 macrophages, 
activated NK cells, activated dendritic cells, and neutrophils were higher, while the proportions of memory B cells, CD8 
T cells, resting CD4 T cells, and resting NK cells were lower. Previous studies have shown that 24 hours after 
doxorubicin treatment, neutrophils significantly infiltrate the heart, accompanied by a decrease in cardiac function, 
vascular structure damage, and increased deposition of vascular collagen, leading to fibrosis,58 which is consistent with 
our study findings. Notably, macrophages, a type of innate immune system cell, were also found to be upregulated in our 
study. Some studies found that in an acute doxorubicin-induced cardiotoxicity mouse model, doxorubicin increased the 
proportion of M1 macrophages while suppressing M2 macrophages.62 A macrophage profile tracking study based on 
CX3CR1 found that M1 macrophages may be the major group during the early stage of cardiac injury.63 Although studies 
have suggested that immune cells play an important role in DIC, the specific regulatory mechanisms remain unclear.

Therefore, we attempted to reveal the potential function of immune cells by establishing a connection between key 
genes and immune cells. In our research, CSGALNACT1, ZNF296 and FANCB showed different degrees of correlation 
with immune cells, including resting NK cells and activated dendritic cells. In a prior study, it was demonstrated that 
CSGALNACT1 was linked to the activation of lymphocytes and the production of inflammatory cytokines (IL-6 and 
IFN-r cytokine) in experimental autoimmune encephalomyelitis (EAE).64 In our data, CSGALNACT1 displayed the 
most positive correlations with M0 macrophages and showed negative correlations with resting NK cells. Our findings 
provide novel insights into the immune mechanisms of CSGALNACT1, ZNF296, and FANCB during DIC.

There are some limitations in our study. First, although we have integrated multiple datasets, the sample size was still 
relatively small. Second, due to the lack of relevant clinical data, we did not perform prognostic analysis. Third, we 
validated the mRNA expression of critical key genes in DOX-treated cardiomyocytes, but further validation, such as 
Western blotting and immunofluorescence staining, is necessary. To improve these deficiencies, we will conduct further 
clinical studies to confirm the findings with more detailed clinical information and a wide range of samples.

Conclusion
In summary, we concluded that (1) three key genes, CSGALNACT1, ZNF296, and FANCB, were identified that might be 
probable diagnostic biomarkers in DIC and may contribute to immunity regulation simultaneously; (2) immune cell 
infiltration was closely related to DIC; and (3) the inflammatory response signaling pathway, biosynthetic process, and 
apoptotic process may be the key mechanisms in DIC. This study provides a new strategy for screening and evaluating 
biomarkers in clinical practice while also laying the foundation for the underlying role of immune cell responses in DIC.
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