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Abstract: Glucocorticoid (GC) therapy is indicated in many diseases, including ocular diseases. An important side-effect of GC 
therapy is GC-induced ocular hypertension (GIOHT), which may cause irreversible blindness known as GC-induced glaucoma (GIG). 
Here, we reviewed the pathological changes that contribute to GIOHT including in the trabecular meshwork and Schlemm’s canal at 
cellular and molecular levels. We also discussed the clinical aspects of GIOHT/GIG including disease prevalence, risk factors, the type 
of GCs, the route of GC administration, and management strategies. 
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Introduction
Purpose and Method of Literature Search
Glaucoma is a leading cause of irreversible blindness worldwide.1 One of the complications of glucocorticoid (GC) 
therapy is glucocorticoid-induced ocular hypertension (GIOHT). If GIOHT is left untreated, some patients may develop 
glaucomatous retinal ganglion cell loss, which is a subtype of glaucoma: glucocorticoid-induced glaucoma (GIG).

The initial reports of GIOHT/GIG were published in the 1950s.2–6 Since then, there have been many studies 
attempting to understand the mechanism of GIOHT/GIG. This disease is important for scientists since GIOHT is 
frequently used as a disease model to study primary open-angle glaucoma. It is also important for clinicians since GC 
treatment is essential for many ocular and systemic diseases, and sometimes clinicians are in the dilemma of whether to 
continue GC treatment to control inflammation or to discontinue GC to preserve vision. We hope this article provides 
a quick overview of GIOHT/GIG with information from bench to bedside to both basic science researchers and 
clinicians.

The first part of this article reviews the basic-science aspects of the disease focusing on the potential molecular 
mechanisms. The second part of this article reviews the clinical aspects of the disease focusing on epidemiology as well 
as GC selection and administration.

Peer-reviewed literature was searched using the following terms in PubMed: (“glucocorticoid receptor”[tw] OR 
“steroid receptor”[tw] OR “corticosteroid receptor”[tw]) AND (“ocular hypertension”[tw] OR “glaucoma”); TM 11B- 
hydroxysteroid dehydrogenase glucocorticoid; 11B-hydroxysteroid dehydrogenase steroid responder; yap taz glucocorti-
coid receptor glaucoma; wnt signaling glucocorticoid receptor; tgfβ2 glucocorticoid receptor; cross linked actin network 
glucocorticoid; trabecular meshwork extracellular matrix glucocorticoid; glucocorticoid glaucoma distal; POAG and 
steroid-induced glaucoma: rimexolone steroid glaucoma; loteprednol steroid glaucoma; fluocinolone acetonide implant 
iop; retrobulbar injection steroid IOP; intravenous steroid iop; cutaneous steroid glaucoma; glaucoma Cushing syndrome; 
steroid-induced glaucoma treatment. Searches were conducted until August 2023.
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Background
Intraocular Pressure (IOP)
The eye is filled with aqueous humor, and this fluid generates IOP. Intraocular pressure is determined by aqueous humor 
production (inflow), aqueous humor outflow, and episcleral vein pressure. Aqueous humor outflow has two pathways: the 
major pathway is the trabecular meshwork (TM) outflow pathway, also called the conventional outflow pathway (the 
pressure-dependent pathway); the minor pathway is the uveoscleral outflow pathway (the pressure-independent 
pathway).7 In GIG/GIOHT eyes, IOP elevation is primarily due to increased outflow resistance (or decreased outflow 
facility) in the TM outflow pathway.

In non-glaucomatous eyes, the normal IOP is approximately 16±5 mmHg. IOP higher than 21mmHg is usually 
considered OHT. Ocular hypertension can lead to glaucomatous optic nerve damage (glaucoma), although some 
individuals may have OHT for years or even throughout their life span without developing glaucoma. However, OHT 
is still the most important risk factor for developing glaucomatous optic nerve damage. Besides, GIOHT is not as 
“natural” as those who have “spontaneous” OHT. Also, individuals who develop GIOHT are susceptible to developing 
primary open-angle glaucoma.8,9 Therefore, people with GIOHT may be at higher risk of developing optic nerve damage.

The Anatomy of the TM and Schlemm’s Canal (SC)
As described previously, the majority of the aqueous humor drains through the TM outflow pathway. The tissue in this 
pathway includes the TM, Schlemm’s canal (SC), collector channels, aqueous veins, and episcleral veins. The conven-
tional outflow pathway tissue can be further divided into the proximal outflow tissue and the distal outflow tissue. The 
proximal outflow tissue refers to the TM and inner wall of SC. The distal outflow tissue refers to the outer wall of SC, 
collector channels, aqueous veins, and episcleral veins.

The TM and SC are the key tissues of the TM outflow pathway. The TM can be divided into 3 regions, depending on 
their location: the uveoscleral meshwork, the corneoscleral meshwork, and the juxtacanalicular region (JCT).7,10,11 The 
uveoscleral meshwork is the most adjacent to the aqueous humor and is made of connective tissue trabeculae that create 
irregular openings through which aqueous humor passes.7 Adjoining the uveal meshwork is the corneoscleral meshwork, 
which consists of trabecular beams with elliptical openings that get progressively smaller as the aqueous humor flows 
outward.7 Next to the corneoscleral meshwork is the JCT, which consists of irregularly oriented fibrils and layers of TM 
cells that do not allow for aqueous to easily pass through.7 The SC has an inner wall and an outer wall. The inner wall of 
SC is a single layer of endothelium-like cells attached to the basal lamina and/or the JCT ECM, and there are tight 
junctions between these cells.7,12 The aqueous humor passes through this layer of cells via two types of pores: type 
I (transcellular) pores and type B (paracellular) pores.13 The JCT and the inner wall of SC contribute to the majority of 
the aqueous humor outflow resistance.14,15

Basic Science Review of GIG/GIOHT
The Mechanism of GCs
Glucocorticoids function through glucocorticoid receptors (GRs). There are two GR isoforms: GR⍺ and GRβ.16 

Glucocorticoid receptor ⍺ is located primarily in the cytoplasm, bound to a large heterocomplex comprising several other 
chaperone proteins including heat shock proteins (HSP), the hop protein, p23, and immunophilins.17,18 After binding to GCs, 
the GC-GRα complex translocates into the nucleus, binds to glucocorticoid response elements (GRE), and regulates gene 
expression. The entire process is finely controlled and involves several regulatory proteins (see Figure 1).

The GR binding proteins play an important role in the activation of the GR. Wang et al reported the structure of the GR 
loading complex using high-resolution cryo-electron microscopy and the role of these proteins.18 They described 4 stages of 
activation of the GR beginning with an association with hsp70 in an inactivated state. The Hop protein then loads the hsp70- 
GR receptor, with hsp90 creating the inactivated hsp70-GR-hop-hsp90 complex. After hsp90 ATP hydrolysis, hop and hsp70 
dissociate and p23 associates, creating the activated, “client-maturation” GR-hsp90-p23 complex.18 This complex is further 
regulated by the association with immunophilins FKBP52 and FKBP51.19 The presence of FKBP52 leads to a higher affinity 
for GR-ligand binding and the presence of FKBP51 antagonizes FKBP52.19 It has been reported that higher levels of FKBP51 
contribute to GC resistance.20 After the complex binds to the GC, the GR undergoes conformational change and nuclear 
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translocation.21,22 Once in the nucleus, the GR⍺ acts as a transcription factor through either transactivation or 
transrepression.23 In the transactivation mode, the GR⍺ dimerizes and binds to the glucocorticoid response elements (GRE) 
at the promoter region of the target genes.24,25 In the transrepression mode, the GR⍺ remains as a monomer and interacts with 
other transcription factors (AP-1, NF-κB) resulting in the inhibition of target gene expression.24,26 The anti-inflammatory 
mechanism of GCs is complicated. Traditionally, it is believed that the inhibition of proinflammatory factors by GR 
transrepression plays a key role.27 However, studies have shown that the upregulation of anti-inflammatory factors by GR 
transactivation is also important.28

There have not been many reports on the role of GR-mediated transactivation/transrepression in GC-related ocular 
side effects, especially GIOHT/GIG. Recently, Patel and colleagues tried to dissect the GR transactivation and transre-
pression sub-pathways in GIOHT using the GRdim mice that have impaired GR transactivation but normal GR 
transrepression.23 They found that these GRdim mice did not develop GIOHT or GC-inducible changes in the TM after 
periocular DEX injections, which suggests that GIOHT is mediated through GR-transactivation.

Glucocorticoid receptor β is produced through alternative splicing of the GR gene NR3C1.29 In contrast to GR⍺ that has 
a fully functioning ligand-binding domain (LBD) at the c-terminus, the GRβ lacks this LBD domain. Although GRβ is unable 
to bind to GC, it is still able to dimerize with GR⍺, resulting in an inhibition of GR signaling by acting as a dominant negative 
transcription factor.29 Some studies showed that GRβ is decreased in the glaucomatous TM cells.30–32 Patel and colleagues 
overexpressed GRβ in the TM of DEX-induced OHT mice using the Ad5 adenovirus.33 They found that GRβ overexpression 
inhibited DEX-induced fibronectin, myocilin, and collagen 1 expression in the mouse TM, decreased DEX-induced OHT, and 
improved outflow facility. Therefore, it is hypothesized that GR⍺/GRβ ratio may determine an individual’s GC 
responsiveness.29

There are different mechanisms to regulate GR⍺/GRβ ratio in the cell, including GR alternative splicing, GR 
translocation, and GR polymorphisms.21,22,34–41

Figure 1 The glucocorticoid receptor signaling pathway. The cytosolic glucocorticoid receptor alpha (GRα) is associated with several chaperone proteins including heat- 
shock protein (HSP) 70, HOP, and HSP 90. After the recruitment of p23 and displacement of HSP 70 and HOP into the complex, the GRα achieves “client-maturation” and is 
able to bind to glucocorticoids (GCs). Immunophilins influence the affinity of GC binding with FKBP51 decreasing GC-GRα affinity and FKBP52 increasing GC-GRα affinity. 
These chaperone proteins facilitate the translocation of GC-GRα to the nucleus. The nuclear GC-GRα complex monomer, together with other transcription factors (TFs), 
functions as a transrepressor to inhibit gene expression. The GC-GR complex may also dimerize and function as a transactivator to increase gene expression. The GR beta 
(GRβ) is an alternatively spliced, dominant negative form of GRα. Created with Biorender.com.
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(a) Glucocorticoid receptor alternative splicing

As described previously, GR⍺ and GRβ originate from alternative splicing, and therefore the regulation of alternative 
splicing contributes to different GR⍺/GRβ ratios. Spliceosomes are protein complexes consisting of ribonucleoproteins 
and serine-arginine proteins (SRp).41 Jain and colleagues investigated the role of different SRps in GR splicing.38 They 
found that SRp30c and SRp40 overexpression decrease GR⍺/GRβ ratios and DEX-induced GR signaling activity in 
human TM cells. They also found that Bombesin, a peptide that decreases SRp20 while increasing SRp30c and SRp40 
levels, decreases GRα/GRβ ratio, and suppresses DEX responses in human TM cells.38 In another study conducted by the 
same group, the authors found that a microbial-derived compound, thailanstatin, which regulates alternative splicing, 
increases GRβ (decreases GRα/GRβ ratio) and effectively attenuates the effect of DEX on human TM cells.39

(b) Glucocorticoid receptor translocation

To activate the GR signaling pathway, GRα needs to translocate from the cytoplasm to the nucleus. Zhang et al reported that 
the hsp90 inhibitor, 17-AAG, decreases GRβ nuclear translocation and increases its degradation in the cytoplasm, and therefore 
increases GRα/GRβ ratio.21 Since GRβ nuclear translocation requires FKBP51, they studied the effect of FK506 (an FKBP51 
inhibitor) on GC-induced GR translocation in two transformed human TM cell lines (NTM5 and GTM3). In non-glaucomatous 
NTM5 cells, KF506 increased DEX-induced GRβ nuclear translocation. In contrast, such an increase of nuclear GRβ was not 
observed in glaucomatous GTM3 cells.22 These studies suggest that GRβ nuclear translocation may affect GR signaling activity in 
different TM cells and may contribute to differential GC responsiveness.21,22

(c) Glucocorticoid receptor polymorphisms

Fingert et al studied 48 single nucleotide polymorphisms (SNPs) in three groups of subjects: POAG patients, GC 
responders, and normal (non-glaucomatous, non GC-responder) patients.35 These SNPs are associated with GR genes, 
FKBP genes, and SRp genes. They found that there was no significant difference in any of the SNPs among the three 
groups, suggesting that none of these SNPs are of high heritable risk in developing GIG or POAG.

In non-eye related studies, a biallelic polymorphism (Bcl1) in the GR gene NR3C1 was reported to be associated with GC 
responders compared to non-responders (in that study, responders/non-responders refer to disease treatment outcome, not IOP) in 
patients with inflammatory bowel disease.37 This polymorphism is associated with GC responsiveness in lymphocytes.34 

However, Wang et al and Gerzenstein et al both found that there is no significant association between the Bcl1 polymorphism 
or other polymorphisms and the development of GIOHT, suggesting that they are unlikely to play a role in ocular GC 
responsiveness.36,40

Other Potential Regulatory Proteins of GR Signaling
Several other proteins may play a role in regulating GR signaling (Figure 2). The estrogen-related receptor β (ERRβ; also 
known as estrogen receptor-related 2) belongs to the orphan nuclear receptor family, a subgroup of the nuclear receptor 
superfamily. Trapp et al found that ERRβ inhibited the transcriptional activity of GRs in non-ocular cells.42 However, 
there is a lack of reports of such regulation in the TM.

LEM1 is a transporter protein found in the yeast, and it actively transports several molecules, including GCs, out of 
the cell.43,44 Kralli et al reported that the human gene Mrd1, also known as ABCB1, is functionally similar to LEM1 and 
produces a protein, P-glycoprotein, which actively transports GCs from the cell.43 Liu et al studied the effect of 
polymorphisms in the ABCB1 gene on the susceptibility of developing POAG.44 They found that two polymorphisms 
in the ABCB1 gene, 2677 G> T/A and 3435 C> T, are associated with susceptibility to POAG. Since POAG is closely 
related to GIOHT/GIG (over 90% POAG patients are GC-responders),45,46 ABCB1 may play a role in GIOHT/GIG.

Another protein that may play a role in the susceptibility of developing GIOHT/GIG is 11β-hydroxysteroid 
dehydrogenase (11β-HSD), which has two isozyme forms: 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) and 11β- 
hydroxysteroid dehydrogenase 2 (11β-HSD2). 11β-HSD1 converts cortisone to cortisol, and 11β-HSD2 converts cortisol 
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to cortisone.47 It is known that high cortisol levels are a known risk factor for OHT and POAG.48–52 Carbenoloxone 
(CBX) is an inhibitor of 11β-HSD1 and was reported to lower IOP.47,53,54 Rauz et al showed that 11β-HSD1 is expressed 
in corneal endothelium and ciliary non-pigmented epithelium, but not in TM cells.47 However, they found that oral 
delivery of CBX lowered baseline IOP in healthy individuals. The authors hypothesized that 11β-HSD1 may contribute 
to GIOHT/GIG through several mechanisms including increasing cortisol in the aqueous humor.

Cross-Talk Between the GR Signaling Pathway and Other Signaling Pathways
The YAP/TAZ Pathway
The Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are two proteins that play 
important roles in many biological processes, including adequate organ growth, through cellular signaling and regulation of 
gene expression.55 YAP/TAZ is commonly associated with the Hippo pathway, but there are other regulators of YAP/TAZ 
signaling, including mechanotransduction through cell structure, shape, and polarity, as well as intercellular 
communications.55,56 The YAP/TAZ pathway is also implicated in the development of several types of tumors.57,58

The Hippo pathway was originally discovered in Drosophila.59–63 In mammalian cells, when the Hippo pathway is 
on, MST1/2 forms a complex with the protein SAV1 and both proteins are phosphorylated and activated.55 Phospho- 
MST1/2 subsequently phosphorylates LATS 1/2 and MOB1A/B. Phospho-LATS 1/2-MOB1A/B complex phosphorylates 
YAP/TAZ leading to YAP/TAZ degradation. Without nuclear YAP/TAZ, gene expression is turned off. When the Hippo 
pathway is off, unphosphorylated MST1/2, SAV1, Mob1, and LATS1/2 lead to YAP/TAZ nuclear translocation where it 
binds to TEAD transcription factors and turns on gene expression.

Mechanotransduction is an important regulator of YAP/TAZ signaling, and part of this regulation is triggered by the 
changes in tension and conformation of F-actin.56 In brief, high-tension focal adhesions activate YAP/TAZ signaling, and 
low-tension focal adhesions inhibit YAP/TAZ signaling.64

There is an important cross-talk between GR signaling and YAP/TAZ (see Figure 3). Sorrentino and colleagues found 
that in breast cancer cells, the GR binds directly to the YAP promoter region and increases its expression.58 In addition, 

Figure 2 The regulation of glucocorticoid receptor signaling. Several proteins participate in the regulation of glucocorticoid receptor (GR) signaling. 1) The presence of 
GRβ, an alternatively spliced, dominant negative form GRα, inhibits GR signaling. 2) The estrogen-related receptor β (ERRβ) may inhibit GR transcriptional activity (in non- 
ocular cells). 3) P-glycoprotein actively transports glucocorticoids (GCs) out of the cell. 4) 11β-hydroxysteroid dehydrogenase 1/2 (11β-HSD 1/2) regulates the conversion of 
cortisol from cortisone and may contribute to increased GR signaling.
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GC-induced fibronectin expression and actin reorganization increase YAP nuclear translocation in those cells.58 These 
effects are inhibited when the cells are co-treated with the GR antagonist RU486.57,58 Nakamura and colleagues found 
that GC-induced YAP activity may contribute to vocal folds fibrosis.65

Although GR signaling activates YAP/TAZ signaling, in contrast, YAP/TAZ signaling inhibits GR signaling. For example, 
Xu et al found that in hepatocytes, TAZ acts as an inhibitor of GR signaling by preventing its binding to the GRE of 
gluconeogenic genes since TAZ-knockout mice exhibit higher levels of glucose production and concentration in the blood.66

Recent studies have shown that YAP/TAZ signaling plays an important role in glaucoma-related ocular tissues 
including the lamina cribrosa,67 retinal capillary endothelial cells,68 and TM.69–71 The cross-talk between YAP/TAZ and 
GR signaling in the TM may contribute to GIOHT/GIG. Recently, Yoo and colleagues investigated the effect of statins, 
which are YAP/TAZ signaling inhibitors, on GC-treated TM cells.71 They found that Simvastatin significantly decreases 
nuclear YAP/TAZ and attenuates high extracellular matrix (ECM) stiffness induced by DEX. Their data suggested that 
Simvastatin may have therapeutic applications for GIOHT/GIG.71

The Wnt Pathway
The Wnt signaling pathway is evolutionarily conserved with a wide range of biological functions including the regulation 
of cell proliferation, cell fate determination, cell polarity during development, cell migration, apoptosis, and stem cell 
maintenance.72 Dysregulation of the Wnt signaling pathway has been reported in the pathogenesis of a variety of human 
diseases including developmental diseases, degenerative diseases, cancers,73 and glaucoma.74,75 The first member of the 
Wnt signaling pathway was identified in 1982,76 and since then, studies on Wnt signaling have been steadily increasing. 
The Wnt gene was originally derived from integrase-1 in mouse breast cancer and the wingless gene of Drosophila.76,77 

Because the two genes and functional proteins are similar, researchers combined the terms as the Wnt gene.78

The Wnt signaling pathway includes the canonical and noncanonical pathways.72 The noncanonical Wnt pathways 
are independent of β-catenin-Tcell factor/lymphoid enhancer-binding factor (TCF/LEF). They include the Wnt/Ca2+ 

Figure 3 The cross-talk between glucocorticoid receptor and YAP/TAZ signaling pathways. The glucocorticoid receptor (GR) signaling pathway and the YAP/TAZ pathway 
cross-talk via 1) glucocorticoid (GC)-induced changes in ECM and actin cytoskeleton may lead to increased nuclear translocation of YAP; 2) the GRα-GC complex binds 
directly to the YAP gene promoter and increases its expression; 3) YAP/TAZ signaling inhibits GR signaling as TAZ prevents the binding of GRα to glucocorticoid response 
elements (GRE’s) which inhibits target gene transcription.
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pathway, PCP pathway, and Rho/Rock pathway. The canonical Wnt pathway, also known as the Wnt/β-catenin pathway, 
involves the nuclear translocation of β-catenin and transcriptional regulation via TCF/LEF transcription factors.79 In the 
canonical Wnt pathway, in the absence of Wnt ligands, β-catenin undergoes degradation by the degradation complex 
formed by Axin2, adenomatous polyposis coli (APC), glycogen synthase kinase-3β (GSK3β), and casein kinase-1α 
(CKIα).80 When Wnt ligands bind to their transmembrane receptor Frizzled and co-receptor lipoprotein receptor-related 
protein 5/6 (LRP 5/6), the degradation complex disassembles, which allows cytosolic β-catenin to accumulate and 
translocate into the nucleus. Nuclear β-catenin associates with T-cell factors 1/3/4 (TCF1/3/4) or lymphoid enhancer 
binding factor 1(LEF-1). They bind to the TCF/LEF binding element and regulate gene expression.81

The Wnt pathway cross-talks with the GR pathway in several ways (Figure 4). The antagonists of the Wnt pathway 
such as dickkopf1 (DKK1)74 and sFRP182 are elevated in the glaucomatous TM. Overexpression of the two Wnt 
inhibitors induces OHT in human and/or mouse eyes.74,82 Mao and colleagues showed that there is a functional canonical 
Wnt signaling pathway in the TM and plays an important role in the regulation of IOP in the mouse eye.83

Bermudez and colleagues showed that the canonical Wnt pathway inhibitor DKK1 is elevated in the bovine TM after 
DEX treatment.46 More importantly, they found that DKK1 is more elevated in bovine responder TM cells compared to 
non-responder TM cells. In a recent study, Sugali and colleagues showed that the activation of canonical Wnt signaling 
attenuates DEX-induced GR signaling activity and pathological changes in the TM as well as prevents DEX-induced 
OHT in a mouse model.74 In contrast, inhibition of the canonical Wnt signaling enhances GR signaling. Ragunathan’s 
group also showed that DEX induces the expression of DKK1, DKK2, and SFRP1 in TM cells.84

Non-canonical Wnt signaling, in contrast, may contribute to glaucomatous changes. Yuan and colleagues reported the 
induction of Wnt5a by DEX, which contributes to cytoskeletal reorganization and CLAN formation via ROR2/RhoA/Rock 
signaling.85 Also, Rao’s group recently reported that glypican-4 mediates DEX and Wnt5a-induced changes in TM cell cultures.86

Figure 4 The cross-talk between glucocorticoid receptor and Wnt signaling pathways. The glucocorticoid receptor (GR) signaling pathway and the Wnt signaling pathway 
cross-talk via 1) glucocorticoid (GC)-induced expression of DKK1 and SFRP1 inhibits the canonical Wnt signaling pathway in the TM; 2) canonical Wnt signaling inhibits GR 
signaling via unknown mechanisms); 3) GC-induced Wnt5a activates non-canonical Wnt signaling which is mediated by glypican-4.
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The TGFβ Pathway
TGFβ is a cytokine, which plays a key role in various biological processes including growth, differentiation, cell death, 
and migration.87–91 Three different isoforms have been identified in mammals: TGF-β1, TGF-β2, and TGF-β3.92 They 
bind to their transmembrane receptors TGFβRI and TGFβRII, which are serine/threonine kinases. Binding of TGFβ to its 
receptors activates TGFβ signaling via the phosphorylation of Smad2/3. Phospho-Smad2/3 and the co-Smad (Smad4; not 
phosphorylated) form a complex, and the complex translocates to the nucleus where it binds to the Smad binding element 
(SBE) to regulate gene transcription.93

Among different TGFβ proteins, TGFβ2 is one of the most well studied in glaucoma pathogenesis and plays an 
important role in the cross-talk to GR signaling (Figure 5). TGFβ2 levels are elevated in the aqueous humor and TM 
tissue of POAG patients.94,95 Experimentally, excessive TGFβ2 induces pathological changes including formation of 
CLANs, excessive synthesis and deposition of ECM proteins including fibronectin, Collagen I, IV, etc, in the TM as well 
as elevates IOP in perfusion cultured human eyes as well as in vivo rat and mouse eyes.95–99

Kasetti and colleagues showed that DEX elevates TGFβ signaling by inducing TGFβ2 expression in the TM.100 They 
also showed that Smad3 knock-out mice (with impaired TGFβ signaling) fail to develop ER stress or DEX-induced OHT. 
Their data suggested that DEX-mediated effects require/are via TGFβ signaling.

Glucocorticoid-Induced Pathological Changes in the TM, ECM, SC, and Distal Outflow 
Tissue
Glucocorticoid-Induced Changes in TM Cells
Cross-Linked Actin Networks (CLANs) in the TM 
One of the unique features of TM cells (not seen in the inner wall of SC cells) is the formation of cross-linked actin 
networks (CLANs).101 Cross-linked actin networks are formed by F-actin and many actin-binding proteins.102–104 They 
consist of many small triangles and these triangles further form dome-shaped, three-dimensional structures frequently 
observed in the perinuclear region.101,105 CLANs are GC and TGFβ2-inducible in TM cells, and more importantly, 

Figure 5 The TGFβ signaling pathway mediates the effect of the GR signaling pathway in the TM. Glucocorticoids (GCs) induce the expression of TGFβ2 which activates the 
TGFβ signaling in the TM, and this process seems to be SMAD3 dependent.
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glaucomatous TM cells and tissues form more CLANs.95,101,106–108 Other nonhuman TM cells, such as bovine83,109 and 
mouse110 TM cells, also form CLANs.

Although the detailed mechanisms by which CLANs form are still unclear, studies have shown that several signaling 
pathways participate in/affect CLAN formation. Besides GR and TGFβ signaling as described previously, Peters’ group 
showed that the activation of the integrin signaling pathway contributes to CLAN formation.104,111,112 Also, Yuan et al 
reported that DEX-induced noncanonical Wnt signaling increases CLAN formation.85

Multiple studies have investigated the potential intervention to prevent or reverse CLAN formation. Clark et al found 
that tetrahydrocortisol (THF), a cortisol metabolite, inhibits CLAN formation in GC-treated TM cells without blocking 
GR activity.107 Montecchi-Palmer and colleagues reported that the Rho-associated protein kinase (ROCK) inhibitor can 
completely or partially prevent CLAN formation and/or dissolve formed CLANs.105

However, the contribution of CLANs to OHT is still not clear. Recently, Peng and colleagues developed a stably transformed 
GTM cell line, which expresses the LifeAct-GFP fusion protein.113 This cell line enables live imaging of the actin cytoskeleton. 
Using this TM cell line, the authors showed that CLANs increase TM cell stiffness, inhibit TM cell phagocytosis, and decrease 
cells’ responsiveness to the actin depolymerization agent latrunculin B. The first two effects are also observed in primary human 
TM cells. The authors speculated that increased TM cell stiffness and decreased phagocytosis may contribute to increased outflow 
resistance and IOP.113 However, more research is needed to test this hypothesis.

Increased TM Cell Stiffness 
Raghunathan and colleagues reported that after DEX treatment for 3 days, there is about 2-fold increase in primary human TM cell 
stiffness.84 It is still not entirely clear how DEX treatment elevates TM cell stiffness. Yuan et al and Fujimoto et al showed that 
DEX induces actin stress fibers85 and activates the ROCK pathway.114 Both events contribute to actin cytoskeletal contraction and 
reorganization, which could increase cell stiffness.115 Recently, Peng and colleagues used a vital actin dye SiR-actin to stain 
primary human TM cells for live imaging and atomic force microscopy.113 They showed that the TM cells with DEX-induced 
CLANs are stiffer than those treated with DEX but without CLANs, and the cells without CLANs are as soft as non-DEX treated 
control cells. As described previously, DEX-induced CLAN formation could be one of the contributors of elevated cell stiffness 
besides actin cytoskeleton contraction and other changes. How stiffer TM cells contribute to OHT is still not entirely clear, but 
many studies have shown that stiffer TM cells produce stiffer ECM and have compromised mechanosensory functions, which 
could increase outflow resistance and IOP.115–118

Decreased TM Cell Phagocytosis 
Trabecular meshwork cells have the unique capability of phagocytosis, which enables them to clean up tissue/cell debris 
(eg, pigment, red blood cells, etc) and to maintain a clear pathway for aqueous humor drainage. Zhang and colleagues 
showed that DEX decreased TM cell phagocytosis and this decrease may contribute to OHT.32,119

Elevated Endoplasmic Reticulum (ER) Stress 
Zode and colleagues showed that in DEX-induced OHT mouse eyes, ER stress markers such as GRP78, ATF4/6, and 
CHOP are elevated in the mouse anterior segment.120 Cotreatment with the ER stress inhibitor, 4-PBA, reduces DEX- 
induced ER stress markers and OHT. This study suggested that ER stress plays an important role in GIOHT/GIG.120

Cell Adhesion 
Integrins are important cell-matrix adhesion proteins. Peters’ group has conducted extensive investigations on GC- 
induced integrin changes in the TM. They found that DEX activates αvβ3 integrins through conformational changes, 
which is likely via an inside-out process (ie, cytosolic changes activate αvβ3 from within), as well as increases αvβ3 
integrin expression and affinity via the calcineurin/NFAT pathway.112,121,122 Besides, the integrin signaling pathway 
affects phagocytosis and CLAN formation in the TM.103,112,123,124

Glucocorticoid-Induced Changes in the TM ECM
The ECM is a key component of the TM outflow pathway. Glucocorticoids induce the accumulation of ECM proteins 
such as glycosaminoglycans, fibronectin, and collagens19,125,126 by increasing their production and/or decreasing 
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metalloproteinases (MMPs, which degrade ECM).127–129 There are fingerprint-like materials at the JCT ECM underneath 
the inner wall of SC in GIOHT/GIG eyes.130 Overby’s group also reported an increase in the basement membrane of the 
inner wall endothelium of SC in GIG eyes.131

Besides changes in the amount of ECM, GCs make TM ECM stiffer, which may contribute to increased outflow 
resistance and GIOHT. Raghunathan and colleagues studied the effect of DEX on TM ECM.84 The authors treated TM 
cells with or without DEX and then removed the cells using a mild detergent. Using atomic force microscopy, they found 
that DEX increases the stiffness of the ECM around the treated cells. The short-term stiffness change induced by DEX 
can trigger changes in gene expression and lead to altered ECM deposition/composition in the long term, thus creating 
a feedforward loop perpetuating the glaucomatous changes.84 GCs may also inhibit MMP activation/activity by the 
induction of PAI-1, an inhibitor of tissue plasminogen activator (tPA), although there are limited reports.132 However, 
treatment with tPA was shown to lower IOP in GIOHT animal models. In a sheep GIOHT model, Gerometta and 
colleagues showed that intravitreal injection of tPA decreases IOP.133 Kumar and colleagues showed that the adminis-
tration of tPA lowers IOP in a mouse GIOHT model.134 Gindina and colleagues observed that tPA does not exert its 
effect on MMP expression through enzymatic activity, but rather through a cytokine-mediated fashion as both enzyma-
tically active and inactive tPA had similar effects on MMP expression after GC administration.135

Glucocorticoid-Induced Changes in the SC
Underwood and colleagues reported that DEX increases fluid flow resistance, tight junction formation and the associated 
protein ZO-1, as well as a reduction in interendothelial spaces.136 Glucocorticoids also induce actin cytoskeletal changes 
in SC inner wall cells, causing elevated cortical stiffness.137 Importantly, increased SC inner wall cell stiffness is also 
observed in POAG eyes.138 Therefore, high SC inner wall stiffness is likely to compromise pore formation and therefore 
to increase outflow resistance.137 Overby and colleagues found that in human donor eyes with long-term GC use, the SC 
basement membrane is more continuous and shows the morphology of a thick band.131

Glucocorticoid-Induced Pathological Changes in the Distal Outflow Tissue
Most of the GIOHT/GIG research focuses on the proximal outflow tissues (TM and SC). Recently, the distal outflow tissue has 
drawn increasing attention in glaucoma research. Rosenquist et al showed that the distal outflow tissue may contribute to about 
25%–50% of the total outflow resistance.139 Gonzalez Jr. et al showed that the distal outflow tissue expresses contractile tissue 
markers using 2-photon imaging.140 McDonell and colleagues reported that endothelin-1 significantly elevates outflow resistance 
in perfusion cultured human donor eyes with the TM removed (thus these eyes only had distal outflow tissues), and this elevation 
could be reversed by co-treatment with a nitroxide donor compound.141 Chowdhury and colleague developed an approach to 
culture vascular distal outflow cells and showed that these cells are biologically different from TM cells.142 More importantly, 
a recent clinical study reported that one-eighth of the minimally invasive glaucoma surgery (surgical procedures that partially/ 
completely remove the TM or open the TM from inside the eye) patients may still develop GIOHT,143 suggesting that the distal 
outflow tissue may also contribute to GIOHT/GIG.

Clinical Science Review of GIG/GIOHT
Clinical Features of GIG/GIOHT
The clinical features of GIOHT/GIG are very similar to those of POAG. Unlike some POAG patients who do not show 
OHT (normal tension glaucoma), all GIOHT/GIG patients have elevated IOP. Depending on the responsiveness of these 
patients, their IOP may be significantly higher than that of POAG patients, which may lead to rapid disease progression.

Glucocorticoid Responsiveness and the Type of GCs
The type of GCs affects GC responsiveness (Table 1).31 Bojikian et al found that the incidence of GIOHT (defined as >50% 
increase in baseline IOP) following topical prednisolone post-cataract treatment to be 2.1% in non-glaucomatous eyes and 8.4% in 
glaucoma eyes.144 Rajendrababu et al analyzed GC response after the same treatment (topical prednisolone post-cataract 
treatment) and found that 3.2% (2.8% moderate and 0.4% high responders) non-glaucomatous patients had GIOHT (>6 
mmHg increase in IOP).145 Badrinarayanan et al found that 28% of non-glaucomatous eyes developed OHT ≥21 mmHg after 
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triamcinolone-acetonide injection, and 17% of non-glaucomatous eyes that received a DEX implant were GC responders (IOP 
≥21mmHg).146 In a pediatric study, Krag et al found that 56% of children receiving systemic GCs had OHT (net increase in IOP 
≥6 mmHg from baseline or a peak IOP ≥21 mmHg).147

In 1975, Cantrill et al found that highly potent GCs are associated with a higher risk of GIOHT.171 In general, older 
GCs such as DEX, betamethasone, and prednisolone are more likely to induce OHT compared to newer GCs such as 
loteprednol etabonate, rimexolone, or difluprednate.172,173 Some studies showed that loteprednol etabonate is less likely 

Table 1 A Comparison of the Incidence of Glucocorticoid-Induced Ocular Hypertension (GIOHT) of Different 
Glucocorticoids

Glucocorticoid Medication Incidence of GIOHT Study

Dexamethasone

Implant (0.35–0.7 mg) 11–15% Combined Eyes* Kiddee et al (2013)148

Implant (Unspecified Dose) 17% Non-Glaucoma Eyes Badrinarayanan et al (2022)146

Intracameral Injection (0.4 mg) 0% Pediatric Eyes Mataftsi et al (2012)149

Intracameral Injection (0.4 mg) 0% Combined Eyes* Chang et al (2009)150

Intravenous (6–12 mg/m2/day) 100% Pediatric Eyes Yamashita et al (2010)151

Intravitreal Injection (0.4 mg) 0% Non-Glaucoma Eyes Chan et al (2010)152

Intravitreal Injection (0.8 mg) 16.7% Non-Glaucoma Eyes Chan et al (2010)152

Fluocinolone

Implant (0.59–2.1 mg) 66–79% Combined Eyes* Kiddee et al (2013)148

Implant (0.19 mg) 24.4% Combined Eyes* Lebrize et al (2022)153

Fluticasone
Inhaled (250 µg/day) 0% Pediatric Eyes Alsaadi et al (2012)154

Methylprednisolone
Intravenous (1 g/day) 0% Non-Glaucoma Eyes Acar et al (2012)155

Prednisolone Acetate 1%
Topical (4 drops/day) 2.1% Non-Glaucoma Eyes Bojikian et al (2021)144

Topical (4 drops/day) 8.4% Glaucoma Eyes Bojikian et al (2021)144

Topical (6 drops/day/4-week taper) 3.2% Non-Glaucoma Eyes Rajendrababu et al (2021)145

Prednisone

Oral (40 mg/day) 22.2% Pediatric Eyes Tripathi et al (1992)156

Triamcinolone-Acetonide

Intravitreal Injection (4 mg) 32.1% Combined Eyes* Kiddee et al (2013)148

Intravitreal Injection (4 mg) 37.5% Non-Glaucoma Eyes Ding et al (2011)157

Intravitreal Injection (4 mg) 36.5% Non-Glaucoma Eyes Chang and Wu. (2008)158

Intravitreal Injection (2–4 mg) 50% Non-Glaucoma Eyes Chuang et al (2010)159

Intravitreal Injection (Unspecified Dose) 28% Non-Glaucoma Eyes Badrinarayanan et al (2022)146

Intravitreal Injection (Unspecified Dose) 0.72% Combined Eyes* Jain et al (2014)160

Peribulbar Injection (20–40 mg) 24% Non-Glaucoma Eyes Chew et al (2011)161

Retrobulbar Injection (20 mg) 22.5% Combined Eyes* Hirooka et al (2006)162

Retrobulbar Injection (20 mg) 8% Non-Glaucoma Eyes Kawaji et al (2007)163

Subconjunctival Injection (Unspecified Dose) 20.6% Non-Glaucoma Eyes Spiers (1965)164

Subtenon Injection (20 mg) 34.1% Non-Glaucoma Eyes Yamamoto et al (2008)165

Subtenon Injection (20 mg) 48% Pediatric Eyes Laffranco Dafflon et al (1999)166

Subtenon Injection (40 mg) 36% Combined Eyes* Yalcinsoy et al (2022)167

Suprachoroidal Injection (4 mg) 0% Non-Glaucoma Eyes Ateeq et al (2023)168

Suprachoroidal Injection (4 mg) 0% Non-Glaucoma Eyes Marashi and Zazo (2022)169

Suprachoroidal Injection (4 mg) 11.5% Combined Eyes* Yeh et al (2020)170

Note: *Both non-glaucomatous and glaucomatous eyes were included in the study.
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to induce OHT (≥10 mm Hg from baseline) after short- or long-term use.174,175 Several characteristics of loteprednol 
etabonate make it an attractive alternative to older GCs: it is more rapidly metabolized after GR activation due to the 
replacement of a ketone group with an ester group at the carbon 20 position, and it is highly lipophilic with high affinity 
for the GR which allows for excellent penetration in the ocular tissue.175 In a study that compared loteprednol etabonate 
to prednisolone, Price et al found that loteprednol etabonate was not inferior to prednisolone in the prevention of DMEK 
graft rejection and with less chance to induce GIOHT.176

Raj et al compared the effect of prednisolone to rimexolone after corneal transplantation, and they found a significant 
decrease in the mean IOP elevation postoperatively after switching from prednisolone to rimexolone.177 Likewise, Chen 
et al reported a decrease in IOP over a 12 month follow-up for pediatric uveitis patients who were switched from DEX, 
prednisolone, or difluprednate to rimexolone.178 They also reported that rimexolone provided adequate treatment for 
pediatric anterior uveitis patients.178

In 2022, Kao et al studied the effects of difluprednate vs prednisolone after Ahmed glaucoma valve surgery.172 They 
observed that treatment success rates of the two GCs were comparable for 1-year post-operation. They also observed that 
the effort of the two GCs on IOP was similar. However, the patients receiving difluprednate required less additional 
glaucoma medications compared to those who received prednisolone.

These studies suggest that newer GCs may decrease the risk of GIOHT/GIG and have similar efficacy to older GCs.

Risk Factors of GIOHT/GIG
POAG and GC Responsiveness
Armaly and Becker first reported that POAG patients are at higher risk of developing GIOHT/GIG in the 1960s,5,6,179 

suggesting that POAG patients are more likely to be GC responders. Their studies showed that about 40% of the general 
population are responders: among them, approximately 32% of showed a moderate response (6–15mmHg increase in 
IOP or IOP between 25–31mmHg) and approximately 4% showed a dramatic response (>15mmHg increase in IOP or 
IOP >31mmHg).180,181 In POAG-suspects and POAG patients, more than 90% are GC responders.5,179

Although new GCs have been developed to minimize GIOHT/GIG, POAG patients are still susceptible to GIOHT/ 
GIG.182 A retrospective analysis reported a high risk of developing OHT in patients who received one or more 
intravitreal DEX implants.31,183 They also found that glaucoma patients who required dual or triple therapy have higher 
risk of developing GIOHT. Maier et al studied the incidence of IOP elevation in the patients who received Descemet’s 
membrane endothelial keratoplasty (DMEK) at 12 and 36 months post operation.184 Postoperative treatment for these 
patients included one GC eye drop 5 times daily that was weaned to 1 to 2 times daily over the course of 3 to 4 months, 
which was then continued for a full year postoperatively, unless an increase in IOP was identified.184 They found that the 
main risk factor for developing GIOHT was preexisting POAG.184 In addition, the mean IOP for preexisting glaucoma 
patients was significantly higher than that for non-glaucoma patients for the entire follow-up period.184

It is important to note that the family history of POAG also increases the risk of GIOHT/GIG, which was first 
reported by Armaly who found that 62% of offspring of glaucoma patients had an increase >6 mmHg in response to GC 
treatment.185 In another study, Bartlett et al found that after topical administration of GCs in healthy, first-degree 
offspring of POAG patients, 69% of them had an IOP increase of no less than 5mmHg.186 Mitchell et al found 
a significant association between the use of inhaled GC and developing OHT/GIG in patients with a family history of 
glaucoma.187 Although family history is involved, just like POAG, which is a multifactorial disease, GC responsiveness 
is also complex involving multiple genetic and environmental factors.188

The relationship between POAG and GIOHT/GIG was further demonstrated from a reversed perspective: patients 
who have a significant IOP elevation in response to GC treatment are more likely to develop POAG.8 Lewis et al studied 
patients with no previous glaucoma diagnosis, and found that 13% of high responders developed POAG over a period of 
5 or more years.9 However, the same study showed that low responders had zero diagnoses of POAG during the same 
follow-up period.

All these studies show that GIOHT/GIG and POAG are closely related, and that is why GIOHT/GIG animal models 
are frequently used as POAG research models.
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Age
Older age was considered a risk factor of GIOHT/GIG.6,179,188,189 Interestingly, recent studies have suggested that younger age is 
a risk, not older age.145 Choi et al performed a retrospective observational study involving 570 eyes of 455 adult patients who 
received intravitreal DEX injection and compared the rate of GIOHT based on approximate decade of life.182 They found that the 
greatest rate of GIOHT was in the youngest group (16–30 years) with 42.9% of patients developing an IOP elevation ≥10mmHg. 
The rate of IOP steadily decreased with each increasing decade of life, with the lowest rate of IOP elevation ≥10mmHg seen in 
patients 81–90 years at 9.1%.182 Malclès et al reported a similar finding in that patients with age ≤60 years were at increased 
risk.183 In addition, it was reported by Friedman et al that in eyes with uveitis, age <50 years increased the risk of IOP elevation 
following GC treatment.190

Pediatric studies have demonstrated that the risk of GIOHT/GIG is increased in young children.191,192 Lam et al 
studied the effect of GC eye drops in pediatric patients who received strabismus surgery.193 In that study, the patients 
were divided into two groups and received GC eye drops either 4 times daily or 2 times daily. The authors found that IOP 
elevation after GC treatment is age dependent: young children (<6 years old) showed greater net increase in IOP and less 
time to reach peak IOP. These studies suggest that caution should be taken with GC treatment in children and young 
adults and alternative options should be sought when appropriate.

Other Risk Factors
Connective tissue disorders,194 increased axial length,144,145,195 and type I Diabetes Mellitus196 have also been reported 
to increase the risk of developing GIOHT/GIG.

Methods of GC Administration
All methods of GC administration are associated with GIOHT/GIG, but the incident rate of each method is different (see Table 1). 
Common methods of GC administration include ocular, extraocular, and systemic administrations.31,189,197

Ocular administration includes topical, intraocular, and periocular routes. Extraocular administration includes inhaled 
and intranasal GC delivery. Systemic administration includes oral, intravenous, percutaneous, and excessive endogenous 
production. Studies show that GIOHT/GIG tends to occur more quickly with ocular administration, usually within weeks 
to months compared to systemic administration, which may occur after months or years of GC use.189,198

It is also important to understand that drug formulation may affect the risk of developing GIOHT/GIG as well. Hydrophilic 
compounds, such as GC phosphates, do not penetrate the cornea as well as lipophilic compounds, such as GC acetates. This may 
account for some of the differences in GC potency and the risk of IOP elevation.199,200

Topical Application
Topical GC use is more likely to lead to GIOHT/GIG than systemic use.188,189,201 Sihota et al found that 73.5% of GIG 
cases were caused by topical GC administration.202 Topical GC treatment is often used for various ocular diseases and as 
a post-operative/post-procedural regimen for ophthalmologic surgeries and laser treatments. Chronic GC users, most of 
whom have ocular inflammation such as uveitis and allergic conjunctivitis, are at high risk of developing GIOHT.197 

Cessation of GC eye drops usually leads to pressure normalization within a few weeks,173,201 but some could last up to 
18 months.31 As previously discussed, newer GCs may provide a better option in treating inflammation with decreased 
risk of IOP elevation compared to older GCs.

However, in very few cases, GIOHT persists even after GC cessation.203 We hypothesize that these patients may be at the 
preclinical stage of POAG (no IOP elevation), and there have already been pathological changes in their TM. The use of GCs 
accelerates these irreversible damages in the TM and brings these patients from preclinical POAG to clinical POAG with OHT.

Intraocular Injection
Intraocular administration most commonly refers to intravitreal injection but also includes intracameral injection and 
suprachoroidal injection. The use of intravitreal GCs has been continually increasing for retinal and choroidal diseases 
due to the proximity of GCs to the target tissue.204,205
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Intravitreal injection may be a single injection of GCs or an implantation of a sustained-release device. Similar to 
topical administrations, drug solubility plays an important role. Hydrophilic GCs, such as DEX sodium phosphate, have 
a shorter half-life in the vitreous compared to hydrophobic GCs, such as triamcinolone acetonide.206,207 In addition, the 
status of the vitreous can influence drug bioavailability in the eye. Beer et al found that the elimination half-life of 
triamcinolone acetonide was decreased by approximately 83% in eyes with vitrectomy compared to that in non- 
vitrectomized eyes.208 Chin et al reported similar results, with a reduction of approximately 50% in triamcinolone 
acetonide half-life in vitrectomized eyes vs non-vitrectomized eyes.209

The most commonly used GCs for intravitreal injection are triamcinolone acetonide and DEX.31 Many studies have 
shown that on average, about 32.1% of the eyes developed GIOHT after 4mg triamcinolone acetonide injection.148 

However, several other studies have reported the incidence of GIOHT after triamcinolone acetonide injection to be 
higher, with one study reporting up to 50%.157–159,210 In a United Kingdom national survey, the mean time between 
triamcinolone acetonide injection and reaching maximum IOP was 16 weeks although it could range from 1.5 weeks to 
71 weeks.160 For DEX, one study found that 16.7% of the eyes developed GIOHT after 0.8mg DEX injection and that 
0% of eyes developed GIOHT following 0.4mg DEX injection over a 4-week period.152

Implantable devices decrease the risk associated with repeated intravitreal injections and provide a sustained, low- 
dose GC treatment. This leads to less exposure of the TM to GCs and may decrease systemic side effects.211 Two GCs 
are currently available for implantable devices: fluocinolone acetonide (administered as a non-degradable implant) and 
DEX (administered as a degradable implant).

In a review of several studies, the incidence of significant IOP elevation after 3.5 mg DEX implant was 11%.148 This 
rate is less than that resulting from 0.59 mg fluocinolone acetonide implant (66%).148 Recently, a large study assessed the 
safety of DEX implants, and it reported that 26.5% of the subjects experienced a significant increase in IOP.212 Over 90% 
of these patients were managed with IOP-lowering eye drops and 0.5% required surgical treatment to lower their IOP.212 

Similarly, in another study with patient data obtained from 4 European countries, it showed that in 1 year follow-up of 
patients who received fluocinolone acetonide implant, 24.4% of them developed significant IOP elevation.153

Intracameral injection (delivery to the anterior chamber) and suprachoroidal injection (delivery to the suprachoroidal 
space) are also used for GC administration.211 Mataftsi et al concluded that intracameral injection of preservative-free 
DEX did not increase the risk of GIOHT/GIG in pediatric patients after cataract surgery.149 Another study performed by 
Chang et al found that intracameral DEX injection at the end of cataract surgery significantly decreased the anterior 
chamber inflammation but did not increase the risk of GIOHT compared to the eyes that did not receive a DEX 
injection.150 Intracameral injections may avoid compliance issues, but also involve other risks that are not associated with 
topical treatment. Further studies should be conducted to understand the risk of developing GIOHT/GIG after intra-
cameral GC treatment in the long term.

Suprachoroidal injection is primarily used to treat retina and choroid diseases, and triamcinolone acetonide is clinically 
available. Muya et al compared the pharmacokinetics and distribution of suprachoroidally injected triamcinolone acetonide to 
those of intravitreally injected triamcinolone acetonide using rabbit eyes.213 They found that there was a significantly higher 
exposure of retinal pigmented epithelium, choroid, and sclera tissues to triamcinolone acetonide in suprachoroidally injected eyes 
compared to intravitreally injected eyes. However, the exposure was similar in the retina between the two methods.213 

Furthermore, the exposure of the lens, iris, and vitreous humor to triamcinolone acetonide was significantly decreased with 
minimal exposure in the aqueous humor in the suprachoroidal injection group.213 Recently, several other studies evaluated the 
efficacy of suprachoroidal injection of GCs in several retinal diseases including diabetic macular edema,168,169 uveitic macular 
edema,170,214,215 and retinal detachment secondary to Vogt-Koyanagi Harada disease.216 The results showed good efficacy with 
no significant increase in IOP. Therefore, suprachoroidal GC injection may be an alternative to intravitreal injection for treating 
retinal disease when GIOHT/GIG is a concern.

Periocular Injection
Periocular administration includes subconjunctival, subtenon, peribulbar, and retrobulbar injections. The concentration of 
GCs is higher in the anterior chamber using subconjunctival and subtenon injections. Peribulbar and retrobulbar 
injections lead to greater GC localization close to the retina and vitreous.197 The GCs injected subconjunctivally enter 
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the eye through passive diffusion through the sclera.211 Subconjunctival injection is more efficient for ocular GC delivery 
compared to oral administration.217 However, some studies have shown that subconjunctival injection is less efficient 
since significant amounts of GCs leak through the injection site.218

Periocular injection of GCs also induces OHT. Some studies showed that 20.6% of scleritis patients developed OHT after 
subconjunctival injection of triamcinolone acetonide.164 Subtenon injection of GCs seems to cause high GIOHT incidence.219 

Yamamoto et al reported GIOHT in 34.1% of the patients165 while Lafranco Dafflon et al reported GIOHT in 36% of the patients 
after subtenon GC injection.166 In a study of pediatric uveitis patients, Yalcinsoy et al observed GIOHT in 48% of the patients after 
subtenon GC injection.167 Chew et al evaluated the effect of peribulbar injection of triamcinolone acetonide, and the authors 
reported that 24% of the patients developed significant IOP elevation.161 For the retrobulbar GC injection, Hirooka et al 
retrospectively evaluated the incidence of GIOHT and found that the rate was 22.5%.162 However, Kawaji et al found that 
retrobulbar injection of triamcinolone acetonide caused GIOHT in only 8% of the patients.163

Inhalation and Intranasal Administration
In 1997, Garbe et al conducted a large case–control study showing that prolonged use (3 months or more) of inhaled GCs 
at high doses increased the risk of OHT and glaucoma.220 However, the authors did not have proper controls for POAG 
family history or high myopia, and there were concerns with the conclusions of that study and the true effect of inhaled 
GCs and the development of GIOHT/GIG.221 In 1999, Mitchell et al found a significant association between high doses 
of inhaled GCs and elevated IOP/glaucoma, but only in patients that had first-degree relatives with POAG.187

Since the publication of those studies, there have been conflicting reports. In 2017, Nath et al conducted a prospective 
observational study to investigate the prevalence of glaucoma in elderly patients receiving inhaled GCs.222 They found that the 
prevalence of glaucoma was 3.92% and the prevalence of OHT 16%. They also observed a dose-dependent relationship showing 
that 42.8% of the patients receiving high doses (501–1000 µg) of inhaled GCs daily developed OHT. Thus, the authors concluded 
that higher doses and longer usage of inhaled GCs are associated with GIOHT/GIG.222 In contrast, several studies have found no 
association between inhaled glucocorticoids and GIOHT/GIG.223–226 One such study was conducted by Gonzalez et al who 
conducted a case–control study for elderly patients who were taking inhaled GC and started on glaucoma treatment.227 They 
found that there was no dose-related association nor long-term use relationship between inhaled GC and GIOHT/GIG. Similarly, 
in a pediatric study conducted by Alsaadi et al, it was observed in children between 5 and 15 years of age there was no association 
between normal dose GC and the development of elevated IOP.154 In 2021, a comprehensive meta-analysis that included 18 
studies and 31,665 subjects was conducted by Ishii et al to determine the association between inhaled GC and GIOHT/GIG.228 

The results of their analysis showed no evidence that linked inhaled GC with ocular hypertension, glaucoma prevalence, or 
glaucoma incidence. Interestingly, they found there may be a reduced risk of glaucoma in patients who receive inhaled GC.

The result of the studies investigating the association between intranasal GC use and GIOHT/GIG is also 
inconsistent.220,225,229 Most of the studies conclude that there is no association between intranasal GC use and OHT. In 2019, 
Valenzuela et al conducted a meta-analysis including 10 randomized controlled trials and 2226 patients.230 They found there was 
no absolute risk of developing OHT when taking intranasal GCs. They also found there were zero cases of glaucoma reported 
within a year of follow-up. On the contrary, Bielory et al concluded that with increased availability of over-the-counter intranasal 
GCs, some individuals may develop elevated IOP, especially those with risk factors, and therefore should be monitored.231

The results of these studies suggest that there is a low risk of GIOHT/GIG with inhaled and intranasal GC treatment. 
However, IOP monitoring may be important for individuals taking high-dose or long-term inhaled or intranasal GCs, 
especially for those with risk factors such as disease and/or family history of POAG. A baseline IOP and IOPs at 1 and 3 
months from the initiation of GC treatment are recommended for monitoring potential GIOHT/GIG.31

Oral Administration
In 1962, Bernstein and Schwartz reported that long-term use of oral GCs induced significant OHT.232 Other studies also 
showed an association between oral GC use and GIOHT/GIG.197,220,233 Tripathi et al reported that for every 10 mg of 
prednisone taken orally daily, there was a reciprocal increase of 1.4 mmHg in the mean IOP.156 Generally, oral use of 
GCs is less likely to develop GIOHT/GIG compared to topical use. However, one study showed that elderly patients who 
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took 80 mg or more of hydrocortisone orally daily might have a similar risk of developing GIOHT/GIG as those 
receiving topical GCs.234

Intravenous Injection
Intravenous GCs are first-line treatment for several diseases including multiple sclerosis.235 Acar et al studied the effect of high 
dose intravenous methylprednisolone on IOP in multiple sclerosis patients with acute relapse.155 They found an initial significant 
increase in IOP during treatment and within 1-month post treatment. However, at two and three months after, IOP returned to 
normal levels and the patients showed no glaucomatous optic nerve damage.155 Another study by Yamashita et al investigated the 
effects of systemic DEX, including intravenous administration, on IOP in pediatric patients with acute lymphoblastic leukemia.151 

They found that there was a significant rise in IOP in all patients with max IOP between treatment cycle 5 and 11. Thus, patients 
receiving intravenous GCs, especially those receiving long-term treatments, should be monitored for GIOHT/GIG.

Percutaneous GC Absorption
Cutaneous application of GCs may induce GIOHT/GIG.236–238 Most of these cases consisted of cutaneous application of 
GCs to the periorbital region. The skin of the eyelids/periorbital region is relatively thinner than other parts of the body, 
which facilitates GC penetration and absorption resulting in high concentrations of GCs in the eye. Takakuwa et al 
described a new clinical entity as “atopic glaucoma” which is glaucoma associated with atopic dermatitis.239 They found 
that 48 out of 62 eyes with atopic glaucoma had used GC ointments.239

However, Haeck et al conducted a retrospective study to determine the effect of cutaneous GC application on the risk 
of IOP elevation and glaucoma.240 They included 88 patients in their analysis, and found that 37 patients regularly 
applied GCs to the eyelids and periorbital regions. Among the 88 patients, only one developed transient OHT. Therefore, 
the authors concluded that there was no association between cutaneous topical GC and risk of GIOHT/GIG.240

Although the result of these studies is not consistent, the risk of GIOHT/GIG induced by cutaneous GC treatment 
seems to be lower than the other GC administration methods. However, for patients who use topical GC treatments 
regularly on the eyelid and periorbital region, IOP monitoring may be necessary.

Elevation of Endogenous GCs
Elevated IOP has been documented in diseases with high levels of endogenous GCs such as Cushing’s syndrome.241–244 In 
a recent case report, Habib et al described a male patient with OHT who was initially managed with close monitoring.244 Three 
months later, he was diagnosed with Cushing’s syndrome due to a microadenoma in the pituitary gland. After surgical removal of 
the microadenoma, his IOP returned to normal level. Therefore, the patient was diagnosed with GIOHT. For GIOHT patients 
resulting from elevated endogenous GCs, treatment of the underlying disease that leads to GC elevation should be initiated 
promptly to normalize IOP and prevent irreversible optic nerve damage.245

More importantly, as described previously, it is known that high cortisol levels are a known risk factor of POAG, 
while POAG is a risk factor of GIOHT/GIG. Therefore, high endogenous cortisol levels (which do not have to be as high 
as in diseases such as Cushing’s syndrome) are likely a risk factor of GIOHT/GIG.

Management of GIOHT/GIG
GIOHT may cause irreversible optic nerve damage and loss of vision (GIG). Thus, early diagnosis and intervention are 
necessary. General management of GIOHT/GIG includes the following: discontinuation of GC therapy if possible or 
switch to an alternative GC with less risk of inducing OHT, removing deposited GCs, as well as IOP-lowering eye drops 
and/or surgeries if required.246 For most patients, IOP will drop quickly as long as GCs are discontinued swiftly.246 For 
patients with chronic GIOHT/GIG, IOP may normalize after 1 to 4 weeks after GC discontinuation.247 One study showed 
that after GIOHT/GIG diagnosis, some patients required anti-glaucoma treatment for up to 18 months after discontinua-
tion of GC use.202 For patients who experience OHT after intravitreal GC injection or GC-sustained release device 
implantation, removal of GCs or GC-sustained release devices may be needed to control their IOP.248 Also, Rezkallah 
et al showed that the XEN gel stent (Allergan Inc., CA), which is a drainage device between the anterior chamber and the 
subconjunctival space, successfully lowered IOP in 5 GIOHT patients caused by DEX implants.249 Furthermore, they 
found that it was safe to resume GC treatment with the implanted GC device and the concurrent use of the XEN gel 
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stent.249 Medications and surgical treatments for GIOHT/GIG are practically identical to those for POAG, including IOP- 
lowering eye medicines, laser trabeculoplasty, drainage implant surgery, and filtering surgery.250 Several recent studies 
have shown that selective laser trabeculoplasty (SLT) is a safe and effective treatment for GIOHT/GIG.251–254 Davidson 
et al evaluated the efficacy and safety of SLT in patients who developed GIOHT due to the requirement of GC treatment 
after endothelial keratoplasty.252 They found that SLT may be a safe option to control IOP, which allows the continuation 
of GC treatment in patients at high risk of graft rejection.252

Patients with GIOHT/GIG should be monitored regularly and closely to determine their responses to treatment and to 
prevent further optic nerve damage. Goñi et al proposed the following method for IOP monitoring:255 1) a baseline IOP 
measurement and determination of glaucomatous damage; 2) risk factor assessment including IOP ≥ 15 mmHg, family 
history, previous episodes of GC-induced IOP elevation, glucocorticoid dosage, etc; 3) if IOP is >21 mmHg, then visual 
field testing as well as imaging of the optic nerve and retinal nerve fiber layer should be collected; treatment initiation can 
be delayed and a follow-up within 6 weeks is warranted; 4) if IOP is >25 mmHg, then visual field testing and imaging 
studies should be performed with initiation of first treatment using medical treatment or laser intervention. Follow-up 
should be conducted within 6 weeks, if IOP is >25 mmHg and the patient has received ≥2 medical therapies, then referral 
to a glaucoma specialist is warranted.

Potential novel therapies are under research, which target various aspects of the complex mechanism of GR signaling 
and/or GIOHT/GIG. For example, tPA lowered IOP in sheep and mouse GIOHT models by increasing the activity 
MMP’s and prevented, at least partially, GC-induced pathological changes in the TM.133–135,256,257 Using the same sheep 
model, Gerometta and colleagues showed a reduction in IOP after introducing a GC-inducible MMP1 gene expression 
vector into GIOHT sheep eyes.258 Patel and colleagues showed that the viral mediated expression of GRβ attenuated GC- 
induced OHT in mouse eyes.33 Sugali and colleagues also showed that viral mediated expression of Wnt3a to activate the 
Wnt pathway prevented GIOHT in the same mouse model.74 Further research should be conducted to better understand 
the complexities of the disease process and potential therapies that can be translated into clinical use.

Conclusion
Glucocorticoid-induced glaucoma is a complex secondary glaucoma that can lead to severe vision loss and even 
blindness. Glucocorticoids induce POAG-like changes the TM and SC. The GR signaling pathway is complicated 
with multiple regulators and it cross-talks with many other signaling pathways. Regardless of the method of GC 
administration and GC types, there is a risk for general population, especially those with POAG or family history of 
POAG, to develop GIOHT/GIG. The risk level also depends on many other factors. Early diagnosis and treatment of 
GIOHT/GIG are important to prevent optic nerve damage and to preserve visual function.
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