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Background: Coronavirus disease 2019 (COVID-19) is a respiratory infectious illness caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). The objective of this study is to identify reliable and accurate biomarkers for the early stratification of 
disease severity, a crucial aspect that is currently lacking for the impending phases of the next COVID-19 pandemic.
Methods: In this study, we identified important module and hub genes related to clinical severe COVID-19 using differentially 
expressed genes (DEGs) screening combing weighted gene co-expression network analysis (WGCNA) in dataset GSE213313. We 
further screened and confirmed these hub genes in another two new independent datasets (GSE172114 and GSE157103). In order to 
evaluate these key genes’ stability and robustness for diagnosing or predicting the progression of illness, we used RT-PCR validation 
of selected genes in blood samples obtained from hospitalized COVID-19 patients.
Results: A total of 968 and 52 DEGs were identified between COVID-19 patients and normal people, critical and non-critical patients, 
respectively. Then, using WGCNA, 10 modules were constructed. Among them, the blue module positively associated with clinic 
disease severity of COVID-19. From overlapped section between DEGs and blue module, 12 intersected common differential genes 
were obtained. Subsequently, these hub genes were validated in another two new independent datasets as well and 9 genes that 
overlapped showed a highly correlation with disease severity. Finally, the mRNA expression levels of these hub genes were tested in 
blood samples from COVID-19 patients. In severe cases, there was increased expression of MCEMP1, ANXA3, CD177, and SCN9A. In 
particular, MCEMP1 increased with disease severity, which suggested an unfavorable development and a frustrating prognosis.
Conclusion: Using comprehensive bioinformatical analysis and the validation of clinical samples, we identified four major candidate 
genes, MCEMP1, ANXA3, CD177, and SCN9A, which are essential for diagnosis or development of COVID-19.
Keywords: COVID-19, differentially expressed genes, WGCNA, hub genes, neutrophil

Introduction
Over the past four years, coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2), is a worldwide health concern. As of 8 November 2023, there have been 771 million reported cases in 188 
countries and territories, resulting in over 6.97 million deaths.1 The disease can manifest in various degrees of severity, ranging 
from mild to critical. Moreover, emerging evidence suggests that individuals infected with SARS-CoV-2 can be asymptomatic 
carriers, contributing to the silent spread of the virus.2,3 Despite extensive investigation, the underlying question of why there 
is such a marked difference in the disease progression among infected individuals remains unresolved.
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Current studies highlight that the illness severity and progression are largely determined by the dysregulated host 
inflammatory response.4–6 When a virus penetrates a cell, it may activate both innate and adaptive host immune responses, 
which are critical components of viral defense.7,8 The exaggerated or dysregulated inflammatory responses and an imbalanced 
adaptive immunity may account for severe tissue destruction.9 The preexisting immunity on the response to viral infec-
tion include the excessive production of inflammatory cytokines, overactivation and dysregulated of immune cells, profound 
T lymphopenia, as well as decreased frequencies of dendritic cells and natural killer cells, complement activation.7,8,10 

A comprehensive understanding of the host antiviral immunity in COVID-19 is critical for developing an explanation for why 
some patients with no comorbidities progress to critical illness, whereas others do not, a phenomenon exacerbated by new viral 
variants in current epidemic waves all over the country.

Several studies have described the potential immunological characteristics associated with the disease severity at 
transcriptomic levels, which provide effective avenue for better patient risk stratification, and further predicting hospitaliza-
tion, intensive care unit (ICU) admission, monitoring patients’ response to treatment and choosing new treatment.11–14 

Unfortunately, these novel biomarkers remain purely investigational concern and difficult to replicate and validate, despite 
their prognostic potential. Because of the continual evolution of virus and the widespread use of vaccination, identifying 
potential innovative biomarkers and significant genes linked to cytokine storms or poor immune function is crucial in 
diagnosing and predicting the severity of COVID-19, which is beneficial to early active treatment and reduce mortality.

In this study, we utilize the comprehensive bioinformatic analysis to identify candidate biological markers (hub 
genes) that might influence COVID-19 progression. Firstly, one microarray datasets GSE213313 from Gene Expression 
Omnibus database of the National Cancer Institute (NCBI) was analyzed to identify differentially expressed genes 
(DEGs) between COVID-19 patients and non-pneumonia controls, critical and non-critical patients, respectively. 
Meanwhile, the dataset was analyzed using weighted gene co-expression network analysis (WGCNA) to find the most 
important modules related to clinical severity as well. Secondly, using a Venn diagram to find the intersection of DEGs 
and WGCNA-derived hub genes and 12 overlapping genes were discovered. Subsequently, the top four upregulated 
genes, MCEMP1, ANXA3, CD177, and SCN9A were then ultimately screened out through another two datasets and 
clinical sample validation. The primary objective of this study is to offer a comprehensive illustration of the typical 
characteristics of severe COVID-19, proposing potential biomarkers for the early diagnosis and prognosis of the disease.

Materials and Methods
Microarray Data Information
We screened and downloaded datasets from Gene Expression Omnibus database of the NCBI (NCBI-GEO). Patients met the 
following selection criteria. Firstly, patients with COVID-19 were diagnosed by real time reverse transcription polymerase 
chain reaction (RT-PCR) analysis of respiratory tract samples. Second, gene expression profiles of patients with COVID-19 
who had severity categorization, and classification criteria were generally similar. Last, datasets from microarray data or RNA- 
sequencing data contained a minimum of 10 COVID-19 patients’ whole blood samples or white blood samples. According to 
the aforementioned standards, three gene expression profiles GSE213313, GSE172114 and GSE157103 were sorted out. The 
dataset of GSE213313 included 83 COVID-19 patients (50 critical and 33 non-critical patients) and 11 healthy donors. The 
critical and non-critical were defined as patients being placed on mechanical ventilation or not.15 Whole blood samples from 
83 patients were taken from three sampling points. Samples from acute phase (T1: day 1) rather than convalescent phase 
(T2: day 3; T3: day 9) were selected to analyze due to disease severity and were assessed at the first timepoint of sampling. The 
dataset of GSE172114 included 46 critical and 23 non-critical patients. The dataset of GSE157103 included 50 critical and 50 
non-critical patients. The above two datasets employed the similar diagnostic criteria and classified the patients as severe status 
based on the use of invasive mechanical ventilation. The GSE213313 was utilized to identify DEGs and construct WGCNA 
for the investigation. The GSE172114 and GSE157103 were utilized to validate hub genes.

Identification of DEGs, Functional Enrichment and Immune Infiltration Analysis
The matrix files of three datasets from GEO were downloaded for further analysis. The R package “limma” was accounted for 
identifying DEGs between COVID-19 patients and healthy donors, as well as critical and non-critical patients. DEGs were 
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screened by setting cut-off value to adjusted p-value <0.05 and/or p-value <0.05 (between critical and non-critical patients), 
and |log2FC| ≥ 1. The gene ontology (GO) enrichment and Kyoto encyclopedia of genes and genomes (KEGG) pathway 
analyses were conducted using the R package “clusterprofiler”. GO terms or KEGG pathways having an adjusted P < 0.05 
were deemed statistically significant. We evaluated 28 different immune cell types using the ssGSEA in order to assess the 
difference in immune cells between COVID-19 patients and healthy donors.

Weighted Co-Expression Network Analysis (WGCNA)
Using the R package “WGCNA”, we extracted 5000 genes (based on median absolute deviation) in order to build 
a weight co-expression network.16 The adjacency matrix was transformed into topological overlap matrix (TOM) when 
the power of β = 16 (R2 = 0.85). The genes were categorized into modules with a minimum size cutoff of 30. Similar 
modules having a height cut-off of 0.25 were merged together. The module having the strongest connection with clinical 
traits was chosen for further investigation into its biological function using GO analysis.

Hub Genes Detection and Validation
WGCNA-derived hub genes were screened by setting the criteria that gene significance (GS) >0.5 and module member-
ship (MM) >0.8 in the most important module. Then, using a Venn diagram, we discovered common genes by 
intersecting DEGs and WGCNA-derived hub genes (http://bioinformatics.psb.ugent.be/webtools/Venn/). Finally, we 
used GSE172114 and GSE157103 datasets to confirm the difference of hub genes between critical and non-critical 
COVID-19 patients.

Clinical Samples Collection and Processing
Peripheral blood samples were collected from COVID-19 patients hospitalized to Shandong provincial hospital from 
December 2022 to May 2023. Demographic data were summarized in Table 1. The patients with COVID-19 were 
diagnosed by RT-PCR test from throat swab samples for the detection of SARS-CoV-2. Their chest CT showed signs 
of pneumonia. According to the New Coronavirus Pneumonia Diagnosis and Treatment Program published by the 
National Health Commission of China,17 patients were considered to have severe pneumonia when they presented the 
following characteristics or criteria: dyspnea, respiratory rate ≥30/min, pulse oxygen saturation ≤93%, partial pressure 
of arterial oxygen (PaO2)-to-fraction of inspired oxygen (FiO2) ratio ≤300, and/or radiological lung infiltrates >50% 
within 48 h, or acute respiratory failure, septic shock. Moderate pneumonia had two or more following criteria: flu-like 
illness such as fever and cough, respiratory rate <30/min, pulse oxygen saturation >93%, and CT suggestive of 
pneumonia. Controls were asymptomatic individuals or donors who had recovered from mild infection and did not 
have any signs of pneumonia. White blood cell samples were isolated from peripheral blood samples and stored in 
liquid nitrogen until use.

Detection of Hub Genes in Whole Blood Samples
Total RNA was extracted from white blood cells using RNeasy Mini Kit (QIAGEN). Then, the extracted RNA was 
reverse transcribed into cDNA using Evo M-MLV RT Mix Kit with gDNA Clean for qPCR (Accurate Biology, Hunan, 
China) according to the manufacturer’s protocol. RT-PCR was conducted using the SYBR Green Premix pro Taq HS 
qPCR kit (Accurate Biology, Hunan, China). The experiments were performed according to the manufacturer’s instruc-
tions provided in the kit using a 10 µL reaction system. The hub gene expression was normalized to the expression of the 
glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). The primers used for the hub genes’ RT-PCR were listed in 
Supplemental Table 1. The 2-ΔΔCT comparative method was used to estimate relative fold changes in gene expression.

Statistical Analysis
Statistical significance was calculated by Student’s t-test, Mann–Whitney U-test, χ2 test, or Fisher’s exact test, as 
appropriate. *P < 0.05, **P < 0.01, and ***P < 0.001 represents significant statistical differences.
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Results
Screening of Stable DEGs Linked to Progression of COVID-19
We screened 968 DEGs, including 574 up-regulated and 394 down-regulated genes in the COVID-19 patient group 
compared with the healthy donor group, according to a threshold of |log2FC|>1 and adjusted p-value <0.05, and plotted 
into the volcano map (Figure 1A). A heatmap depicted the top 25 up-regulated and down-regulated DEGs (Figure 1B). 
The interferon-stimulated genes, such as IFI27 and IFI44, were substantially elevated, but immunoglobulin-E receptor α 
(FcεRIα) gene usually decreased. Further, we used gene ontology (GO) analysis and Kyoto encyclopedia of genes and 
genomes (KEGG) pathway analysis to evaluate the functional status resulting from these DEGs. These genes mostly 
functioned in biological processes (BP) associated with cytoplasmic translation, response to virus, and defense response 
to virus. In terms of cellular components (CC), these DEGs exhibited a significant enrichment in cytosolic ribosome, 
ribosomal subunit, and specific granule. The molecular function (MF) terms were immune receptor activity, and MHC 

Table 1 Characteristics of All Patients Admitted to the Hospital For COVID-19

Total  
(n = 70)

Moderate  
(n = 31)

Severe  
(n = 39)

P–value

Gender 0.0826a

Male 44 (62.86%) 16 (51.61%) 28 (71.79%)

Female 26 (37.14%) 15 (48.39%) 11 (28.21%)
Age/years (mean (SD)) 70.14 (14.37) 66.65 (15.12) 72.92 (13.29) 0.0691b

Comorbidity
Pneumonia disease 70 (100%) 31 (100%) 39 (100%) –
Cancer 14 (20.00%) 8 (25.81%) 6 (15.38%) 0.2789a

Hypertension 31 (44.29%) 10 (32.26%) 21 (53.85%) 0.0709a

Diabetes 18 (25.71%) 6 (19.35%) 12 (30.77%) 0.2778a

Coronary heart disease 27 (38.57%) 10 (32.26%) 17 (43.59%) 0.3333a

Cerebrovascular disease 13 (18.57%) 8 (25.81%) 5 (12.82%) 0.2200c

Laboratory tests (mean (SD))
Total leukocytes (×109/L) 7.99 (3.70) 7.12 (3.64) 8.67 (3.64) 0.0820b

Neutrophil (×109/L) 6.35 (3.52) 5.31 (3.30) 7.18 (3.51) 0.0268b

Proportion of Neutrophil (%) 77.15 (12.48) 71.93 (12.86) 81.30 (10.60) 0.0013b

Lymphocytes (×109/L) 1.11 (0.76) 1.29 (0.87) 0.97 (0.64) 0.0824b

Proportion of Lymphocytes (%) 16.82 (12.68) 22.25 (15.11) 12.50 (8.27) 0.0010b

Platelet (×109/L) 222.10 (97.69) 232.39 (82.59) 213.92 (108.58) 0.4362b

C–reactive protein (mg/l) 33.09 (48.82) 18.88 (30.75) 45.32 (57.88) 0.0259b

Procalcitonin (ng/ml) 0.15 (0.17) 0.10 (0.09) 0.18 (0.20) 0.0428b

Interleukin–6 (pg/ml) 34.36 (92.03) 10.34 (19.52) 51.37 (117.13) 0.0668b

PaO2/FiO2 grade (mmHg)
>300 36 (51.43%) 31 (100%) 5 (12.82%) 0.0000a

>200 to ≤300 18 (25.71%) 0 (0%) 18 (46.15%) 0.0000a

>100 to ≤200 14 (20.00%) 0 (0%) 14 (35.90%) 0.0002a

≤100 2 (2.86%) 0 (0%) 2 (5.13%) 0.4994c

Respiratory support
Invasive mechanical ventilation 1 (1.43%) 0 (0%) 1 (2.56%) 1.0000c

Noninvasive mechanical ventilatory support 3 (4.29%) 0 (0%) 3 (7.69%) 0.2491c

High–flow nasal cannula oxygen therapy 9 (12.86%) 0 (0%) 9 (23.10%) 0.0042a

Low–flow oxygen therapy 49 (70.00%) 23 (74.19%) 26 (66.67%) 0.4949a

Outcome
Admission to ICU 10 (14.29%) 1 (3.23%) 9 (23.08%) 0.0184a

Death 5 (7.14%) 0 (0%) 5 (12.82%) 0.0616c

Notes: All the participants resided in Shandong, China. Data are mean (SD) or n (%). p values were calculated by Student’s t test, 
chi-squared test, or Fisher’s exact test, as appropriate. aCompared by two-sided chi-squared test. bCompared by two-sided Student’s 
t-test. cCompared by two-sided Fisher’s exact test.
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Figure 1 Identification of DEGs and functional enrichment analyses. (a) A volcano plot was generated to depict the differentially expressed genes (DEGs; |log2FC|>1, 
adjusted p-value < 0.05) between healthy donors (n = 11) and COVID-19 patients (n = 34). Up-regulated genes are marked in light red; down-regulated genes are marked in 
light blue. (b) Heatmap representation of top 25 significant genes, ordered by fold change. Up-regulated genes are shown in red, and down-regulated genes are shown in 
blue. (c) Bar plot of GO enrichment analysis of DEGs. X-axis represents -log10 adjusted p-value. Y-axis represents different functional groups (also named GO terms) and 
gene counts. The red bars indicate biological process (BP) terms; the green bars indicate cellular component (CC) terms, and the blue bars indicate molecular function (MF) 
terms. (d) Bubble plot of KEGG pathway analysis of DEGs. The color and size of the dots represent the range of the adjusted p-value and the number of genes mapped to 
the indicated KEGG terms. Gene-Ratio is defined as the ratio of the DEGs number to the total gene number.
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class II receptor activity (Figure 1C). Moreover, in terms of KEGG pathway, these genes were mainly enriched in the 
coronavirus disease-COVID-19 pathway (Figure 1D).

Meanwhile, 52 DEGs from the normalized data were screened out, with the findings displayed as heat map and 
volcano map (Supplementary Figure 1A and B). There were 46 up-regulated and 6 down-regulated genes in critical 
patients compared with non-critical patients. The results of the GO analysis revealed that the DEGs were mainly enriched 
in the acute inflammatory response and regulation of inflammatory in biological process (BP); specific granule and 
specific granule lumen in cellular component (CC); calcium-dependent protein binding and RAGE receptor binding in 
molecular function (MF) (Supplementary Figure 1C).

Immune Landscape Related to Characteristics of COVID-19
Given the pivotal role of immune cells in the progression of COVID-19, we uploaded microarray data of 45 whole-blood 
samples from dataset GSE213313 to perform immune infiltration analysis for evaluating the immune function. Using 
ssGSEA and specific gene markers, the enrichment scores of 28 immune cell types between healthy donors and COVID-19 
patients were calculated. A heatmap of infiltration was drawn (Figure 2A). The results indicated that a high presence of 
neutrophils, macrophage, and activated dendritic cell in the COVID-19 group. Moreover, the differential expression 
analysis was conducted between groups according to Wilcoxon test, and the differences between groups were shown by 
a violin chart (Figure 2B). According to p-value <0.001, 12 different immune cells were obtained, and activated CD8+ 

T cells, natural killer cells, central memory CD4+ T cells, memory B cells, and T follicular helper cells were significantly 
enriched in healthy donors, while the fraction of neutrophils, macrophages, activated dendritic cells, type 17 T helper cells 
central, and memory CD8+ T cells showed marked elevation in COVID-19 group.

Key Module Identification Using WGCNA
WGCNA was employed to analyze the gene expression value in 45 samples to find the crucial modules linked to the 
severity of COVID-19. Clinical features, such as disease status and disease severity were retrieved from raw files 
(Supplementary Figure S2A). The soft-thresholding power, calculated using a scale-free R2 (R2 = 0.85) analysis, was set 
to 16 (Supplementary Figure S2B). Ten modules were discerned when the DissThres was initialized to 0.25 subsequent to 
the fusion of dynamic modules, as shown in the clustering dendrograms (Supplementary Figure S2C). We generated 
a dendrogram and heatmap to visually present the interrelated eigengenes. The dendrogram clearly showed a substantial 
association between the blue module and disease severity (Figure 3A). The correlation between the eigengene (ME) 
values of the modules and samples traits represents the association between the modules and clinical samples traits. The 
results of this correlation were presented as heatmap profiles. The results indicated that the blue module displayed the 
most robust link with disease severity (Pearson correlation coefficient = 0.82, P = 2e-11), and it was strongly associated 
with disease status as well (Pearson correlation coefficient = 0.74, P = 2e-8) (Figure 3B).

Validation of Key Module and Functional Enrichment Analysis
The blue module exhibited the strongest positive correlation with severity of COVID-19 and were processed for further 
analysis (Figure 4A). To identify stable and robust hub genes accurately, a total of 217 critical genes were selected based 
on their significant correlation in both gene significance (GS) and module membership (MM). This selection was made 
by setting Gene-Significance >0.5, Module-Membership >0.8, as demonstrated in the scatterplots (Figure 4B). To deeper 
understand the potential function of those genes, GO enrichment analysis was conducted. These intersection genes were 
found to be significantly enriched in COVID-19 progression involved in biological processes (BP) such as cytokine 
mediated signaling pathway and positive regulation of cytokine production; cell components (CC) such as ficolin-1 rich 
granule and tertiary granule; molecular functions (MF) such as immune receptor activity and inhibitory MHC 
class I receptor activity (Figure 4C).

Identification of Hub Genes
A total of 968 and 52 genes were obtained from DEGs (Healthy donors vs COVID-19; Non-critical vs Critical), and 217 
genes were obtained from the key modules of WGCNA, respectively (Table 2). To identify co-expression genes between 
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DEGs and WGCNA genes, we utilized a Venn diagram to determine the intersection of three gene sets. Consequently, we 
identified 12 overlapping genes that were selected as potential hub genes, indicating their significant involvement in the 
formation and progression of severe COVID-19 (Figure 5B).

Figure 2 Analysis of immune infiltration associated with COVID-19. (a) Heatmap showing the enrichment score of immune cells between healthy donors and COVID-19 
patients from dataset GSE213313. The specific enrichment scores of 28 immune cell types were calculated by ssGSEA based on specific gene marker. (b) Immune cells 
abundance in healthy donors and COVID-19 patients. The blue indicates samples of healthy donors, and the red indicates the samples of COVID-19 patients. The p-values 
were obtained using Wilcoxon test.
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Validation of Potential Genes Linked to Disease Severity
To confirm the findings mentioned before, the expression levels of the aforementioned 12 hub genes were initially 
validated in two additional datasets (GSE172114 and GSE157103). The mRNA microarray dataset GSE172114 consists 
of 46 critical and 23 non-critical hospitalized COVID-19 patients. RNA-seq was performed on 69 whole blood RNA 
samples. The dataset GSE157103 consists of 50 critical and 50 non-critical COVID-19 patients. RNA-seq was conducted 
on 100 leukocyte RNA samples. The reconfirmed results showed that, in dataset GSE172114, MCEMP1, SCN9A, 
ANXA3, CD177, CACNA1E, IL-18R1, BMX, SOCS3, CDK5RAP2, ANKRD22, CD274, and FCGR1A were significantly 
highly expressed in critical COVID-19 group (Figure 6A and Supplementary Figure S3). However, in dataset 
GSE157103, the expressions of ANKRD22, CD274, and FCGR1A were not statistically significant between critical and 
non-critical group (Figure 6B and Supplementary Figure S3).

Candidate Genes Expression in Clinical Specimens from COVID-19 Patients
To further validate the findings of our bioinformatics research above, we conducted RT-PCR analysis on leukocyte 
samples acquired from 26 healthy donors, 31 patients with moderate COVID-19, and 39 patients with severe COVID-19. 
The average age of patients was over 70 years old. Therefore, this study is mainly aimed at elderly patients. The RT-PCR 
results indicated that the relative expression levels of MCEMP1, SCN9A, ANXA3, and CD177 were higher in COVID-19 
patients than healthy donors (Figure 7A–D). Furthermore, the expression level of MCEMP1 mRNA increased with 
illness severity (Figure 7A). Nevertheless, there were no discernible differences in CACNA1E, IL-18R1, BMX, SOCS3, 
and CDK5RAP2 when plotted against disease severity (Figure 7E–I).

Figure 3 Identification of key modules correlated with disease severity through WGCNA. (a) The combination of eigengene dendrogram and heatmap indicated that the 
blue module is the most positively correlated with the severity of COVID-19. (b) Module-trait associations were evaluated by correlations between module eigengenes and 
sample traits. Each module contains the corresponding correlation coefficient and p-value. A stronger positive correlation was displayed in darker red, and the negative 
correlation with deeper blue.
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Figure 4 Validation of severity-related modules and functional enrichment analyses. (a) The blue module was the most positively associated with severity of COVID-19. 
(b) A scatterplot of Gene significance for COVID-19 severity vs Module Membership in blue module (Red line: Module-Membership > 0.8 and Gene-Significance > 0.5 were set to 
define genes that had the strongest positive correlation with disease severity). (c) Bar plot of GO enrichment analysis of genes from blue module. X-axis represents -log10 adjusted 
p-value. Y-axis represents different GO terms and gene counts. The red bars indicate biological process (BP) terms; the green bars indicate cellular component (CC) terms, and the 
blue bars indicate molecular function (MF) terms.
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Discussion
The pathophysiology and severity of COVID-19 exhibit variability among patients and depend partly on underlying host 
immunological state or risk factors. Although early vaccination and antiviral treatment have been effective in limiting the 
risk of developing severe or critical COVID-19, many patients still rapidly developed into respiratory failure, even acute 
respiratory distress syndrome (ARDS) or shock and require ICU management.18 Moreover, some studies indicated that 
patients who recovered from the severe form of the acute disease, eg, post intensive care syndrome, could also suffer 
long-term sequelae, which indicated that the return to their former health trajectory is slow and painful.19–21 Hence, 
identifying potential biomarkers capable of estimating severity and prognosis of COVID-19 may improve predictive 
accuracy and aid in clinical decision-making during the pandemic. Our research demonstrated that substantial alterations 
have occurred in COVID-19 patients based on blood samples, which are mainly characterized with excessive neutrophils 
activation and cytokine production.

Considering that each patient with COVID-19 is captured at different timepoints of infection and the discernible 
differences in immune response between acute and recovery phases,22 we selectively gathered and analyzed partial tran-
scriptomics information from dataset GSE213313. As a result, we could capture snapshots of patients at early stages of their 
immune response and analyze the properties of whole-blood RNA during the acute phase. By combining microarray data 
obtained from healthy donors and patients with COVID-19, we identified 968 reliable DEGs. Notably, certain genes, including 
IFI27, OSA1, and ISG15, held more importance in terms of their impact on virus infection. Indeed, as well-known interferon- 
stimulated genes (ISGs), they have been reported widely in influenza-related studies.23 Similarly, we identified 52 robust 
DEGs from critical and non-critical patients with COVID-19. These hub genes were mostly associated with acute inflamma-
tory response. Overall, it was suggested that inflammatory response after viral infections, especially, interferon signaling 
response, as a remarkable indicator, was involved in COVID-19 development.

Table 2 Identification of the Intersection From the DEGs

List names Number of elements Unique elements

COVID-19 vs Healthy 968 968
Critical vs Non-critical 52 52

WGCNA 217 217

Notes: Healthy donors vs. COVID-19 (Foldchange > 1 and adjusted p-value < 0.05); 
blue module of WGCNA (Module-Membership > 0.8 and Gene-significance > 0.5) and 
Non-critical vs. Critical (Foldchange > 1 and p-value < 0.05).

Figure 5 Key hub gene in severe progression of COVID-19. Venn diagram revealed 12 overlapping candidate hub genes.
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Our study preliminarily revealed the alteration of immune cell infiltration subsequent to infection with SARS-COV-2. The 
fraction of neutrophils and macrophages was significantly higher, but the activated CD8+ T cells, central memory CD4+ 

T cells, and natural killer cells were all considerably diminished in COVID-19. These findings are predominantly consistent 
with other recent reports. An elevated absolute neutrophil count has been found to be predictive of ARDS and death in 
COVID-19.24,25 Severe COVID-19 patients had increased levels of neutrophil extracellular traps (NETs), which have been 
deemed as confirmed contributors to pathological inflammation of pneumonia.26 The absolute lymphocyte count is indicative 
of disease severity and mortality, since severe patients with COVID-19 have been shown to have significantly lower peripheral 
CD4+ and CD8+ T cells.25 The natural killer cells were also depleted and displayed an exhausted phenotype in severe 
patients.27 Overall, these observations indicate that a dysregulated host innate immune response associated with various 
immune cells could underlie the hyperinflammatory syndrome in COVID-19.28

Sepsis is an abnormal systemic inflammatory response of the host to infection.29 Some researchers proposed that severe 
COVID-19 could be defined as a sepsis caused by viral infection, also defined as “viral sepsis”.30,31 Therefore, novel biomarkers 
to diagnose “viral sepsis” might aid in the early identification of patients at risk of developing severe sepsis prior to organ damage, 
allow early intervention, and further reduce the risk of death. In our study, we observed that the hub genes MCEMP1, ANXA3, 
and CD177 were strongly up-regulated, which had been previously reported to be associated with sepsis.

Figure 6 Phase I validation: Candidate genes increased with disease severity. Validation of hub genes in the dataset GSE172114 and GSE157103. Nine candidate genes that 
highly expressed in critical COVID-19 patients from both validation sets were screened. (a) from GSE172114, and (b) from GSE157103.
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Mcemp1
MCEMP1, a single-pass transmembrane protein, participates in regulating mast cell differentiation activities or immune 
responses.32 Mast cells exacerbate septic disease via interfering with phagocyte activity of resident macrophages and 
increasing the release of inflammatory cytokines,33 which is consistent with the hyperinflammatory responses noted in 

Figure 7 Phase II validation: The expression levels of nine hub genes in COVID-19 patients. The expression levels of (a) MCEMP1, (b) SCN9A, (c) ANXA3, (d) CD177, 
(e) CACNA1E, (f) IL-18R1, (g) BMX, (h) SOCS3, and (i) CDK5RAP2 mRNA in leukocyte obtained from healthy donors (n = 26), moderate patients (n = 31) and severe patients 
(n = 39) with COVID-19, and presented as scatter diagram. Statistical significance is determined by unpaired t-test. *P < 0.05, **P < 0.01, ***P < 0.001.
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severe COVID-19. Some studies revealed that MCEMP1 could be served as a potential diagnosis marker for septic 
shock, and elevated MCEMP1 gene during the early phase of disease are predictive of severe COVID-19.34,35 As the 
upregulation of MCEMP1 is characteristic of myeloid-derived suppressor cells (MDSCs) which is a heterogeneous group 
of immature myeloid cells possessing potent immunosuppressive activities. Besides serving as potential early prognostic 
biomarkers for severe COVID-19 progression, several studies have also indicated the functional roles of MDSCs in 
severe COVID-19 pathogenesis and possibly even long COVID-19. Given the potential links between MDSCs and 
severe COVID-19, MDSCs are capable of suppressing various immune cell types such as B, NK, and in particular, 
T cells. MDSCs can exert their immunosuppressive activities through the depletion of arginine, tryptophan, and cystine/ 
cysteine availability, the induction of Treg cells, RNS/ROS, the induction of T cell apoptosis via Fas/FasL interaction, the 
production of inhibitory cytokines, and PD-1/PD-L1 interaction. MDSCs can produce reactive nitrogen species (RNS) 
such as nitric oxide through inducible nitric oxide synthase (iNOS). These NO• released by MDSCs can react with 
superoxide (O2•−) to form peroxynitrite (ONOO-). MDSCs can also produce reactive oxygen species (ROS) such as 
superoxide through NADPH oxidase 2 (NOX2).36 Consequently, all of the results together suggest that MCEMP1 may be 
a key molecule in the regulation and maintenance of the bacterial or viral sepsis and it was worthy of additional 
investigation and development.

Annexin A3
Annexin A3 (ANXA3 encoding protein), also known as lipoprotein 3, is a member of the calcium-binding protein 
family.37 A transcriptomic study of circulating neutrophils reported that ANXA3 abundance increased significantly 
throughout the course of sepsis.38 Considering the fact that ANXA3 expression is almost exclusive to neutrophils among 
circulating leucocytes, it may have potential effects on the host by facilitating neutrophil microbicidal function and 
pathogen clearance during sepsis.39 ANXA3 could potentially contribute to inflammatory-induced lung damage in 
COVID-19 through the activation of nuclear factor-kappa B (NF-κB). This is because NF-κB plays a crucial role in 
inflammation and inhibiting the NF-κB pathway by upregulating IκBα has been observed with ANXA3 knockdown.40 

NF-κB is also activated by oxidative stress, which is common in COVID-19.41

CD177
CD177 was regarded as a prototypical gene for indicating neutrophil activation state because CD177 is a gene exclusive to 
neutrophils that encoding a membrane glycoprotein.42 Of note, it was also one of the highest DEGs in severe influenza 
infection.43 CD177 protein and mRNA expression increased in circulating neutrophils of patients who had experienced septic 
shock.44 Additionally, the combination of CD177 with genes IL1R2, OLFM4, and RETN has been identified as a possible 
prognostic predictor in sepsis patients, and it also has more advantages in predicting mortality compared with classical risk 
scales.45 The contribution of CD177 to the pathophysiology of COVID-19 may be attributed to its role as a signature for 
neutrophil activation. This activation is characterized by the homing of activated neutrophils toward infected lung tissue in acute 
lung injury.46,47 Subsequent to this homing process, aggressive responses are initiated, accompanied by the release of neutrophil 
extracellular traps (NETs), leading to an oxidative burst and the initiation of thrombus formation.48 Coagulopathy is associated 
with severity of COVID-19 which is characterized by high levels of D-dimer.48 Elevated CD177 mRNA expression has also been 
documented in patients with acute Kawasaki Disease (KD),49 and in individuals resistant to intravenous immunoglobulin (IV Ig) 
therapy.50 KD is a syndrome recognized as a potential complication of SARS-CoV-2 infection in children.51

Transcriptomics studies have recently gained detailed gene expression profiles of COVID-19 and reported that ANXA3 
and CD177 were associated with COVID-19 severity and mortality.52,53 However, these results were solely derived from 
a single cohort study or lacked further clinical confirmation. In the study, we found that the ANXA3 and CD177 tended to be 
higher in patients with COVID-19 compared to healthy donors, which indicated that ANXA3 and CD177 were two valid 
hallmarks of the physiopathology of COVID-19.

In addition, SCN9A gene encoding voltage-gated sodium channels are a critical component in human pain perception.54 

We found that the expression level of SCN9A gene increased in patients during the acute phase of SARS-COV-2. However, no 
significant differences between moderate and severe patients were observed. As of yet, the mechanisms account for elevated 
mRNA levels of SCN9A in COVID-19 are unknown, and the phenomenon and its causes deserve additional investigation.
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Some limitations and disadvantages in the study are worth considering. First, the establishment of the generalizability 
of these potential biomarker genes across diverse populations necessitates the implementation of validation studies. Our 
limited clinical sample size might increase the standard error of variables. Second, despite the fact that the vaccination 
rate in the population was almost 90% at the time, the specific vaccination status of the enrolled patients was 
unclear. This may affect the results of tests. Finally, it is yet uncertain if the modulation of these potential biomarker 
genes was specific for SARS-COV-2 infection. The possible regulatory mechanisms should be elucidated through further 
investigation, such as controlled animal trials.

Conclusion
In summary, our comprehensive bioinformatics analysis results showed that considerable change occurred in patients with 
COVID-19 and neutrophils activation was typical characteristics after SARS-COV-2 infection. Several hub genes were 
related to excessive neutrophil activation, and cytokine-mediated signaling pathway. Moreover, further confirmation with 
another two datasets and clinical samples revealed MCEMP1, ANXA3, CD177, and SCN9A were potential diagnostic 
markers of COVID-19. Particularly, MCEMP1, as clinical potential indicator, could reflect disease severity of COVID-19. 
Overall, understanding the biology and functional significance of the newly discovered hub genes involved in COVID-19 
development provides insights into the molecular mechanisms linked to disease severity. They could also facilitate risk 
stratification and early identification of patients who are more susceptible to developing severe symptoms. These findings 
will contribute to intensifying monitoring or treatment interventions for patients with COVID-19 at high-risk.
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