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Background and Aims: Limited methods exist to accurately characterize the risk of malignant progression of liver lesions. 
Enhancement pattern mapping (EPM) measures voxel-based root mean square deviation (RMSD) of parenchyma and the contrast- 
to-noise (CNR) ratio enhances in malignant lesions. This study investigates the utilization of EPM to differentiate between HCC versus 
cirrhotic parenchyma with and without benign lesions.
Methods: Patients with cirrhosis undergoing MRI surveillance were studied prospectively. Cases (n=48) were defined as patients with 
LI-RADS 3 and 4 lesions who developed HCC during surveillance. Controls (n=99) were patients with and without LI-RADS 3 and 4 
lesions who did not develop HCC. Manual and automated EPM signals of liver parenchyma between cases and controls were 
quantitatively validated on an independent patient set using cross validation with manual methods avoiding parenchyma with artifacts 
or blood vessels.
Results: With manual EPM, RMSD of 0.37 was identified as a cutoff for distinguishing lesions that progress to HCC from 
background parenchyma with and without lesions on pre-diagnostic scans (median time interval 6.8 months) with an area under the 
curve (AUC) of 0.83 (CI: 0.73–0.94) and a sensitivity, specificity, and accuracy of 0.65, 0.97, and 0.89, respectively. At the time of 
diagnostic scans, a sensitivity, specificity, and accuracy of 0.79, 0.93, and 0.88 were achieved with manual EPM with an AUC of 0.89 
(CI: 0.82–0.96). EPM RMSD signals of background parenchyma that did not progress to HCC in cases and controls were similar (case 
EPM: 0.22 ± 0.08, control EPM: 0.22 ± 0.09, p=0.8). Automated EPM produced similar quantitative results and performance.
Conclusion: With manual EPM, a cutoff of 0.37 identifies quantifiable differences between HCC cases and controls approximately 
six months prior to diagnosis of HCC with an accuracy of 89%.

Plain Language Summary: Current surveillance and diagnostic methods in hepatocellular carcinoma are suboptimal. Enhancement pattern 
mapping is an imaging technique that quantifies lesion signals and may be useful in diagnostic and surveillance methods. Enhancement pattern 
mapping describes quantifiable differences between malignant and benign liver tissue on contrast-enhanced MRI. It amplifies lesion signal and 
distinguishes malignancy in a surveillance population. The novel imaging technique was investigated at single institution and analyzed lesions 
compared to cirrhotic parenchyma. Future efforts will include further risk stratification across LI-RADS group categories. The results provide 
evidence that enhancement pattern mapping uses available imaging data to distinguish hepatocellular carcinoma from non-cancerous 
parenchyma with and without benign lesions on scans six months prior to diagnosis with standard MRI. The technique introduces 
a prospective modality to improve diagnostic accuracy and early detection with the goal of improving clinical outcomes. 

Journal of Hepatocellular Carcinoma 2024:11 595–606                                                      595
© 2024 Nikzad et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. 
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the 

work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Journal of Hepatocellular Carcinoma                                                    Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 15 November 2023
Accepted: 7 March 2024
Published: 20 March 2024

Jo
ur

na
l o

f H
ep

at
oc

el
lu

la
r 

C
ar

ci
no

m
a 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://orcid.org/0000-0001-8447-8527
http://orcid.org/0000-0002-1595-1699
http://orcid.org/0000-0003-0184-0717
http://orcid.org/0000-0001-7675-3461
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


Keywords: LI-RADS, MRI, radiomics, artificial intelligence, liver cancer, machine learning

Introduction
The rapidly rising incidence of hepatocellular carcinoma (HCC) can be attributed to several risk factors, including 
metabolic syndrome, alcohol, viral hepatitis related to HBV or HCV, and other genetic and environmental etiologies. 
Morbidity and mortality related to HCC remain major challenges for the healthcare system throughout the world. 
Guidelines recommend surveillance for patients with cirrhosis for early detection of HCC to improve clinical outcomes. 
In patients with cirrhosis, the American Association for the Study of Liver Diseases (AASLD) recommends surveillance 
with abdominal ultrasound (US) every 6 months, with or without serum α-fetoprotein (AFP).1 Similarly, the European 
Association for the Study of the Liver (EASL) recommends surveillance with abdominal US every 6 months and notes 
the suboptimal cost-effectiveness of biomarkers such as AFP.2 US is an affordable, safe, and accessible imaging method; 
however, Tzartzeva et al found that the sensitivity of US alone or with AFP for early-stage HCC is only 47% and 63%, 
respectively.3,4 A major reason for detection of HCC at a late stage is suboptimal surveillance.5–7

Suboptimal performance of US for small lesions motivates the use of contrast-enhanced magnetic resonance imaging 
(MRI),8 which detects smaller malignant lesions with more sensitivity than US (84% versus 27%, respectively, according 
to Kim et al).9 Although MRI is an expensive imaging method, the higher sensitivity of semi-annual surveillance using 
MRI in a high-risk population may be more cost-effective than using US in HCC surveillance.9 A limitation of MRI 
includes the frequent detection of vascular benign lesions, such as arterio-venous shunts, leading to unnecessary 
surveillance. On the other hand, MRI surveillance can also result in under-categorization of small or early malignant 
lesions, leading to delayed diagnoses, and under-staging 24.9% of HCC cases.10–12 Non-contrast MRI sequences are 
further limited by decreased sensitivity for HCC.

There is a need for new minimally invasive tools that better risk stratify patients under surveillance and detect HCC at 
earlier stages with higher sensitivity and specificity, given the limitations of US and MRI.1 While most current 
surveillance methods utilize clinical, demographic, and blood-based biomarkers, diagnostic methods utilize imaging, 
specifically computed tomography (CT) and MRI.10,13 The Liver Imaging Reporting and Data System (LI-RADS) 
represents an attempt to classify liver nodules for probability of malignancy with CT or MRI using a standardized 
method to minimize the discrepancies among radiologists.14 LI-RADs use tumor size and arterial-phase hyperenhance-
ment as defining features for risk stratification, while major features of an enhancing capsule, washout, and threshold 
growth can further increase the confidence in a malignant or benign diagnosis. However, there is significant heterogeneity 
within the LI-RADS groups, especially for LR-3 and LR-4 lesions.1,14 Limited diagnostic performance is especially 
evident in these categories as 38% of LR-3 and 74% of LR-4 lesions are HCC.15 The wide range of probability of HCC 
in LR-3 and LR-4 observations indicates a current limitation in diagnostic accuracy and risk stratification. Furthermore, 
robust recommendations for diagnostic follow-up imaging or even biopsy in patients with these indeterminate lesions do 
not exist.1 Due to the integral role of vascular endothelial growth factor (VEGF) signaling in the oncogenesis of HCC, 
tumor enhancement is a key consideration in LI-RADs, but no risk stratification method quantifies enhancement on CT or 
MRI.16 Tumor enhancement, therefore, poses a promising avenue for the optimization of imaging-based diagnosis of 
HCC in surveillance populations.

Recent studies have investigated machine learning and radiomic approaches for HCC detection, such as enhancement 
pattern mapping (EPM).10,11 EPM is a novel voxel-based signal analysis technique that quantifies the difference in 
enhancement over time of a given voxel in the liver compared to either a patient-specific or population-based normal 
liver model, providing a measurement and visualization of how different the signal is over an entire volume of interest. 
EPM expands on the available set of imaging features, and it provides an interpretable value that is based on 
angiogenesis and tumor perfusion that are fundamental to HCC pathophysiology improving its diagnostic performance. 
Previous medical literature has indicated that EPM algorithm improves the contrast-to-noise (CNR) ratio enhancement 
for lesion detection in hepatobiliary malignancy.12 Therefore, we embarked on this study to test the hypothesis that EPM 
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can differentiate between HCC and cirrhotic parenchyma with and without lesions on pre-diagnostic and diagnostic MRI 
scans, with a future view of applications of EPM for early detection of HCC in patients undergoing surveillance.

Materials/Patients and Methods
Patient Selection and Characteristics
With approval from the Baylor College of Medicine Institutional Review Board (H-47711 and H-45208) and MD 
Anderson Cancer Center (PA14-0646), all consecutive patients presenting with cirrhosis at the Hepatology Clinic 
between 2012 and 2023 at a single tertiary care hospital (Baylor St. Luke’s Medical Center) were prospectively 
followed. The institutional practice for HCC surveillance is with contrast-enhanced MRI and surveillance is performed 
every six months. Patients with cirrhosis were included in the study if they had at least two consecutive contrast- 
enhanced MRIs, utilizing liver protocol, for HCC surveillance. Imaging protocol details are further described in 
Supplementary Data 1. Patients with cirrhosis presenting with HCC in the initial scan were excluded.

Cases were defined as patients with a LI-RADS 3 or 4 lesion identified in a pre-diagnostic scan that progressed to 
HCC in the subsequent diagnostic scan. HCC diagnosis was defined as meeting diagnostic criteria through liver biopsy or 
LI-RADS 5 categorization on MRI imaging. Criteria Controls were defined as patients with and without liver lesions that 
did not progress to HCC. Controls were age and sex-matched with cases to minimize confounding variables in patient 
characteristics. Patients were excluded after initial review if follow-up imaging was unavailable (1/166 patients, 0.6%) or 
poor-quality such as significant motion artifact (18/166 patients, 10.8%). A final total of 48 cases and 99 controls were 
identified, and their medical records were reviewed. Variables extracted via chart review included demographics (sex, age 
at first scan, race, ethnicity), tumor marker (AFP), concurrent risk factors (etiology of cirrhosis, type II diabetes mellitus, 
and body mass index). A consort diagram is provided in Figure 1.

Consecutive patients with 
cirrhosis undergoing surveillance 

(2012-2020)

108 patients 
identified for 
control cohort

58 patients 
identified for 
case cohort

107 controls
underwent 

imaging analyses

58 cases
underwent 

imaging analyses

99 controls 
included in final 

analyses

48 cases included 
in final analyses

1 patient excluded 
due to unavailable 

imaging

8 patients excluded 
given motion 

artifact

10 patients excluded 
given motion 

artifact 

Figure 1 Patient selection process.
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Statistical analysis to describe patient demographics was performed using SPSS Statistics (Version 26, SPSS Ltd, 
Chicago, IL). Data were tested for normality and homogeneity of variance using a Shapiro–Wilk test. Based on this 
outcome (P<0.05) and after visual examination of each variable’s histogram and QQ plot, data were reported as mean 
(SD) for normally distributed variables and as median (IQR 25th to 75th percentiles) for asymmetrical distributed data. 
A Student’s t-test was used to compare unpaired symmetrical continuous variables, and the non-parametric Mann– 
Whitney test was used for unpaired asymmetrical continuous variables. The Chi-square test or Fisher’s exact test was 
used to compare binary variables. A P<0.05 and a confidence interval (CI) of 95% were considered statistically 
significant.

Region of Interest (ROI) Placement
Previous studies have demonstrated decreasing segmentation accuracy as a function of lesion size.17 Thus, one region of 
interest was manually placed on each observed HCC lesion to avoid potential confounding factors from lesion 
segmentation inaccuracies. Similarly, to avoid any potential confounding factors from auto segmentation inaccuracies 
ROIs in background liver parenchyma were manually and randomly sampled. The normal liver ROIs were selected by 
visually analyzing the parenchyma of the liver to avoid medium-to-large blood vessels, cysts, and bile ducts. The 
software application ITK-SNAP12 was used to perform segmentation of ROIs on the arterial phase scan for all cases. 
A total of 8 ROIs were selected per image slice, with 3 slices per case, giving a total of 24 ROIs per case. The diameter of 
each ROI was selected as 6 millimeters. ROIs of lesions were delineated on the arterial phase of the contrast-enhanced 
scan. Arterial phase hyperenhancement of the lesion, venous and delayed phases washout, in addition to the lesion’s size 
and growth pattern were the criteria used to assign category codes based on LI-RADS version 2018 guidelines.14

Additional analysis evaluating the sensitivity of the EPM to the ROI placement was completed (see Supplementary 
Data 1). The EPM threshold analysis for classifying malignant and non-malignant tissue based on an automated liver 
ROI method was also conducted. Similar results and interpretation were seen when comparing the manual and automated 
methods. This data overall represents two ends of the spectrum for EPM analyses: fully automated background liver 
selection versus a manual ROI placement approach. The automatically generated liver mask has a mean segmentation 
accuracy of 0.92; however, it occasionally was seen to include non-liver tissue or exclude tissue. Segmentation 
inaccuracies are expected to bias the EPM thresholds, thus the manual ROI placement approach was chosen to minimize 
the impact of potential segmentation inaccuracies as a true representation of the EPM cutoff (see Table A1 in 
Supplementary Material).

Enhancement Pattern Mapping
A three-dimensional, voxel-based method called the EPM algorithm was used for quantitative image analysis. Previous 
implementation of the EPM algorithm11 in multi-phase CT was modified for multi-phase MRI data. Briefly, the 
generalized enhancement pattern, such as the change in intensity values over the period of multi-phase MRI due to 
uptake and washout of contrast materials, of the liver was acquired from the registered multi-phase MRI scans. The 
normal liver enhancement curve was obtained by fitting the MRI intensity values over time within user-selected ROIs, as 
described in the previous section, sampled uniformly across normal liver parenchyma from the given patient. Second, the 
root-mean-square deviation (RMSD) for each voxel was computed by taking the average across all time points of the 
squares of the differences between the generalized normal liver intensity and the voxel intensity and then taking the 
square root of the average. Finally, the calculated RMSD values of all voxels were mapped to the original MRI 
coordinates.

The normal liver enhancement curve was obtained by fitting the MRI intensity values sampled from the normal liver 
ROIs over the period of contrast phases by a piece-wise smooth function, where each piece was a second-order 
polynomial. The EPM algorithm was implemented numerically using MATLAB (MathWorks, Inc.). Contrast to noise 
(CNR) measurements within the EPM image as well as the original multiphase MRI data were calculated as the average 
intensity value of the lesion minus the average intensity of healthy tissue divided by the standard deviation of the 
intensity of the health tissue. Here, the intensity average and standard deviation were calculated over the ROI within the 
lesion and cirrhotic background, as described in the previous section. A Wilcoxon rank-sum test is used to evaluate the 
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statistical significance of the difference in the EPM RMSD measurements between cases and controls. RMSD differences 
between LI-RADS categories of the cases were also evaluated.

ROC analysis was applied to study the EPM RMSD threshold to discriminate cases and control. The optimal cut point 
for the ROC analysis was defined as the point with the closest Euclidean distance to the perfect classifier (sensitivity=-
specificity=1). To validate the cut point, the variability of the optimal EPM cut point across 5-folds of the case and 
control dataset was evaluated. For each fold, the cut point was obtained from the training data independent from the 
validation hold-out fold. On average, within 5-fold cross validation, the data is split into 80% training data (n=79 
controls, n=38 cases) and 20% validation data (n=20 controls, n=10 cases). The sensitivity, specificity, and accuracy were 
aggregated across all hold-out folds as an estimate of the expected performance of the EPM RMSD threshold. Further, 
a multivariable logistic regression model was constructed to examine the association between case/control status, EPM, 
and clinical factors, including the risk factors of BMI, age, sex, and diabetes status. EPM signals of liver parenchyma 
between cases and controls were quantitatively validated on an independent patient set using cross validation.

Results
Data Curation
We identified consecutive patients with cirrhosis who underwent surveillance at our high-volume Hepatology clinic from 2012 
to 2023. Fifty-eight cases developed HCC on surveillance and fulfilled the selection criteria, and 48 cases included in the study 
after exclusion of 10 cases given motion artifact (Figure 1). Ninety-nine demographically matched patients were designated as 
controls. Twenty-five of the 99 controls had lesions (n = 4 with LR-4; n = 21 with LR-3) and that did not progress to HCC with 
a mean follow-up of 6.9 years (IQR 5.0–8.4). Cases and controls were similar in baseline characteristics, as outlined in Table 1. 
The median age was 60 years (IQR 55–64) for combined cohort, 59 years (IQR 55–64) for controls, and 60 years (IQR 55–64) 
for cases. Most patients from both cohorts were male (n=89, 60.5%) compared to female patients (n=58, 39.5%). The median 
age (range) was 60 (55–64) for combined cohort, 59 years (55–64) for controls, and 60 years (55–64) for cases without 
significant difference between cases and controls. Most patients racially identified as White/Caucasian (n=129, 87.8%) and 

Table 1 Baseline Characteristics of Cases and Controls

Characteristics Total No. of  
Patients  
(N = 147)

No. of  
Controls  
(n = 99)

No. of  
Cases  
(n = 48)

P value

Age at First Scan, y (%)* 0.89

< 40 4 (2.7) 2 (2.0) 2 (4.2)

41–50 15 (10.2) 10 (10.1) 5 (10.4)

51–60 65 (44.2) 46 (46.5) 19 (39.6)

61–70 58 (39.5) 38 (38.4) 20 (41.7)

>70 5 (3.4) 3 (3.0) 2 (4.2)

Sex, n (%) 0.74

Male 89 (60.5) 59 (59.6) 30 (62.5)

Female 58 (39.5) 40 (40.4) 18 (37.5)

Race, n (%)

Asian 5 (3.4) 1 (1.0) 4 (8.3) 0.06

Black/African American 8 (5.4) 6 (6.1) 2 (4.2)

(Continued)
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ethnically identified as non-Hispanic (n=110, 74.8%). The median AFP during the time of baseline scans was 3.7 (IQR 2.6– 
5.8) for controls and 6.5 (IQR 3.8–9.5) for cases; median AFP values were significantly different between case and control 
groups (P=0.003). Hepatitis C virus was the most common etiology (n=72, 49.0%) of cirrhosis, and 31.3% (n=46) of patient 
had type II diabetes mellitus at the time of their first surveillance scan. Average BMI of controls (30.8, SD 6.2) and cases (30.5, 
SD 5.3) were not significantly different between groups; P=0.81. The median time between pre-diagnostic and diagnostic 
scans for cases was 6.8 months (IQR 5.5–11.4).

Table 1 (Continued). 

Characteristics Total No. of  
Patients  
(N = 147)

No. of  
Controls  
(n = 99)

No. of  
Cases  
(n = 48)

P value

White/Caucasian 129 (87.8) 90 (90.9) 39 (81.3)

Other 5 (3.4) 2 (1.4) 3 (2.0)

Ethnicity, n (%) 0.40

Hispanic 37 (25.2) 27 (27.3) 10 (20.8)

Non-Hispanic 110 (74.8) 72 (72.7) 38 (79.2)

Body Mass Index, n (%) 0.89

<18.5 0 (0.0) 0 (0.0) 0 (0.0)

18.5–24.9 26 (17.7) 18 (18.2) 8 (16.7)

25.0–29.9 40 (27.2) 27 (27.3) 13 (27.1)

30.0–34.9 52 (35.4) 33 (39.6) 19 (39.6)

35.0–39.9 23 (15.6) 16 (16.2) 7 (14.6)

>40 6 6 (4.1) 5 (5.1) 1 (2.1)

Cirrhosis Etiology, n (%) 0.82

Autoimmune Hepatitis 5 (3.4) 4 (4.0) 1 (2.1)

Alcoholic Liver Disease 13 (8.8) 9 (9.1) 4 (8.3)

Budd-Chiari Syndrome 3 (2.0) 2 (2.0) 1 (2.1)

Hemochromatosis 1 (0.7) 0 (0.0) 1 (2.1)

Hepatitis B Virus 6 (4.1) 4 (4.0) 2 (4.2)

Hepatitis C Virus 72 (49.0) 45 (45.5) 27 (56.3)

Metabolic Dysfunction-Associated Steatotic Liver Disease 20 (13.6) 15 (15.2) 5 (10.4)

Nonalcoholic Steatohepatitis 24 (16.3) 18 (18.2) 6 (12.5)

Primary Biliary Cholangitis 3 (2.0) 2 (2.0) 1 (2.1)

Diagnosis of Type II Diabetes Mellitus at First Scan, n (%) 0.70

No 101 (68.7) 67 (67.7) 34 (70.8)

Yes 46 (31.3) 32 (32.3) 14 (29.2)

Controls (n = 99) Cases (n = 48)

Median AFP, ng/mL (IQR) 3.7 (2.6–5.8) 6.5 (3.8–9.5) 0.003

Notes: *Median age was 60 (IQR 55–64) years for combined cohort, 59 (IQR 55–64) years for controls, and 60 years for cases (IQR 55–64).
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EPM Analysis
On pre-diagnostic scans for cases, the mean CNR was as follows: 3.62 on EPM, 2.39 on arterial phase, and 1.05 on PV 
phase. Similarly, on diagnostic scans, the mean CNR was as follows: 3.58 on EPM, 2.35 on arterial phase, and 0.89 on 
PV phase. An example of the ROI including a lesion that was used to calculate the CNR of the image intensity on the 
arterial-phase image and the EPM image is shown in Figure 2.

Boxplots of the EPM RMSD within pre-malignant lesions versus background liver parenchyma (with or without 
benign lesions) are shown in Figure 3. Pre-malignant lesions in cases demonstrated a greater median EPM RMSD on pre- 
diagnostic scans (LI-RADS 3 and 4) and diagnostic scans (HCC) compared to benign lesions and parenchyma (p < 0.05). 
The average EPM RMSD of the background liver parenchyma in pre-diagnostic and diagnostic scans of the cases and the 

lesionlesion

Figure 2 Representative ROI used for CNR analysis of the image intensity on EPM (left) and on arterial phase MRI (right) with lesion indicated.

Case Control            HCCCase Control         Pre-malignant
lesions
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Figure 3 Box plots of EPM RMSD between observed lesions for pre-diagnostic and diagnostic scans in cases. (Left) On pre-diagnostic scans in cases, the median EPM RMSD 
observed was 0.44 for pre-malignant lesions and 0.22 for parenchyma. (Right) On diagnostic scans, the median EPM RMSD observed was 0.50 for HCC lesions and 0.22 for 
parenchyma. (Left and right).
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single timepoint scan of controls were not statistically different (control parenchymal ROI = 0.22 ± 0.09, case 
parenchymal ROI = 0.22 ± 0.08, p = 0.8).

ROC analysis for EPM RMSD in differentiating cases and controls on pre-diagnostic and single timepoint scans is 
shown in Figure 4a. A sensitivity, specificity, and accuracy of 0.65, 0.97, and 0.89 are achieved at the optimal threshold 
of EPM RMSD 0.37. The area under the curve (AUC) of EPM RMSD at the pre-diagnostic time point was 0.83 (CI: 
0.73–0.94). In a multivariable logistic regression model, adjusting for BMI, age, sex, and diabetes status, the association 

Figure 4 ROC analysis of optimal threshold for discriminating case and control for pre-diagnostic and diagnostic time points. (a) In-sample ROC analysis for EPM RMSD in 
differentiating cases and controls on pre-diagnostic and single timepoint scans is shown. Similarly, (b) in-sample ROC analysis for EPM RMSD in differentiating cases and 
controls on diagnostic and single timepoint scans is shown. (c) Five-fold cross validation ROC analysis for EPM RMSD in differentiating cases and controls on pre-diagnostic 
and single timepoint scans is shown. Similarly, (d) Five-fold cross validation ROC analysis for EPM RMSD in differentiating cases and controls on diagnostic and single 
timepoint scans is shown.
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between EPM and eventual HCC status, as all pre-diagnostic timepoints progressed to HCC, is significant (OR=8.08e3; 
95% CI: 1.41e2–4.61e5).

ROC analysis for EPM RMSD in differentiating cases and controls on diagnostic and single timepoint scans is shown 
in Figure 4b. A sensitivity, specificity, and accuracy of 0.79, 0.93, and 0.88 were achieved at the optimal threshold of 
EPM RMSD 0.35. The AUC of EPM RMSD at the diagnostic time point was 0.89 (CI: 0.82–0.96). In a multivariable 
logistic regression model, adjusting for BMI, age, sex, and diabetes status, the association between EPM and HCC status 
is significant (OR=2.91e5; 95% CI: 2.81e2–3.02e7).

Further permutations in ROC analysis for EPM RMSD in differentiating cases and controls on single timepoint and 
pre-diagnostic scans are shown in Figure 4c. Five-fold cross validation was performed to estimate the out of sample 
performance on an independent test set. The range of optimum EPM RMSD threshold for discriminating case and control 
included 0.43, 0.32, 0.030, 0.39, and 0.37. Five-fold analysis achieved an aggregate sensitivity, specificity, and accuracy 
of 0.75, 0.92, and 0.88; respectively. ROC analysis for EPM RMSD in differentiating cases and controls on single 
timepoint and diagnostic scans is shown in Figure 4d. Five-fold cross validation was performed to estimate the out of 
sample performance. The range of optimum EPM RMSD threshold for discriminating case and control included 0.45, 
0.32, 0.35, 0.33, and 0.36. Five-fold analysis achieved an aggregate sensitivity, specificity, and accuracy of 0.83, 0.94, 
and 0.90, respectively.

Discussion
This study investigated the use of a novel EPM technique for distinguishing HCC from background cirrhotic parenchyma 
with and without benign lesions. Our results suggested that EPM successfully differentiates between cancerous lesions 
and non-cancerous lesions and parenchyma in a surveillance population approximately six months before they were 
diagnosed with standard MRI protocol. EPM results show a significant increase in the CNR compared to the arterial and 
PV phase imaging on both pre-diagnostic and diagnostic scans. The CNR improvement on EPM is due exclusively to 
lesion signal amplification from calculated intensity differences between multiple-phase scans. With EPM, a RMSD of 
0.37 was a quantitative value to characterize lesions that progress to HCC on pre-diagnostic imaging (AUC of 0.83, CI: 
0.73–0.94). The median time between pre-diagnostic and diagnostic scans for cases was 6.8 months (IQR 5.5–11.4). 
Further, the sensitivity (0.79), specificity (0.93), and accuracy (0.88) of EPM show an improvement during the 
diagnostics scan for HCC. The improvement in EPM performance agrees with intuition that lesions with higher LI- 
RADs score would be expected to have a stronger EPM signal.

Machine learning methods are a running theme to novel approaches for HCC detection and direct prediction of the 
LI-RAD score of a liver lesion. An overall accuracy of 60% was previously achieved in automatically assigning a score 
of LR-1/2, LR-3, LR-4, or LR-5 to a lesion.18 Paralleling the goal of this study to differentiate HCC from background 
cirrhotic parenchyma (with and without benign lesions), another study indicated that radiomic features on CT imaging 
achieve an AUC of the receiver operating characteristic (ROC) curve of 0.7 in diagnosis of HCC from primarily LR-3 
and LR-4 lesions.19 The proposed machine learning models that incorporate MRI imaging instead are expected to further 
improve the accuracy for differentiating cases and controls. For example, a high accuracy of 90% was achieved in 
classification when utilizing multiphase liver MRI data to classify LR-3 versus LR-4/5 lesions.20 Other neural network 
approaches for HCC lesions have also been developed.21,22 While HCC was identified with high accuracy (84–92%), 
a limitation of those studies was the focus on distinguishing HCC from other large liver masses such as cyst, 
hemangioma, nodular hyperplasia, intrahepatic cholangiocarcinoma, and colorectal metastasis. The considered lesions 
fall within the categories LR-1, LR-5, and LR-M.21,22 High classification accuracy is expected for differentiation between 
LR-1, LR-5, and LR-M lesions, given each category has strong imaging characterization.

In contrast to these prior deep learning studies, our study investigated a neural network approach to differentiate pre- 
malignant lesions within the LR-3 and LR-4 categories, which are subject to greater heterogeneity and indeterminacy, 
from benign cirrhotic parenchyma. The consistency in background signal between cases and controls suggests that the 
EPM RMSD value in background liver parenchyma is unlikely to predict the future location of a new lesion. The current 
results indicate that an EPM RMSD cutoff of 0.37 would identify LR-3 and LR-4 lesions that progress to HCC. The 
range of cutoff values in five-fold cross validation agrees with this in-sample cutoff value. Sensitivity, specificity, and 
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accuracy are comparable between in-sample and cross-validation analyses. The same analysis at the diagnostic time point 
provides a quantitative reference for the patients with known HCC. Parallels between pre-diagnostic and diagnostic 
values indicate that the EPM signal is likely to detect HCC earlier in the surveillance period.

Dilation of the liver mask was important in achieving robust results. Generally, over-segmentation of the liver did not 
decrease the registration accuracy. However, under-segmentation of the liver was prone to more registration errors due to 
the registration algorithm not directly visualizing the entire liver for guidance. Adding the dilation effectively ensured 
that the liver was included in the mask used to guide the image registration (see Figure A2 in Supplementary Material). 
This approach further had the effect of reducing the sensitivity of the approach to segmentation errors. An additional 
limitation of this study is that the image analysis pipeline was not fully automated. Manual ROI were placed on lesions 
and background liver parenchyma to facilitate EPM analysis (see Figure A1 in Supplementary Material). As previously 
referenced and included in the Supplementary Material, the manual and automated ROI methodology produced 
comparable results; however, the automated approach is limited by potential segmentation inaccuracies. As we improve 
our fully automated segmentation approach in future efforts, we expect the automated approach to converge to the same 
quantitative thresholds of the EPM cutoff calculated using our manual ROI placements. Our data did not include 
comparative analyses between different LI-RADS category lesions, as the primary goal of the study was to assess the 
foundational feasibility of using EPM to define malignant potential of indeterminant lesions. Additionally, we did not 
investigate lesions in LI-RADS M category, metastatic lesions, or cholangiocarcinoma. We also did not study the risk of 
progression to HCC based on cirrhosis etiology.

Conclusions
EPM identifies quantifiable differences between HCC cases and controls in a population with cirrhosis under surveil-
lance, and a threshold cutoff of 0.37 was found to be predictive approximately six months prior to diagnosis of HCC with 
an accuracy of 89%. Future studies will include cohorts with a larger sample size diversified to have sex, race, ethnicity, 
and cirrhosis etiology distributions representative of the general population. This may subsequently allow for assessment 
of EPM in risk stratification for patients under surveillance for HCC, distinguishing which lesions are likely to transform 
into cancer. Our study introduces EPM as a prospective qualitative means of predicting lesion progression to malignancy, 
achieving early curative interventions, and individualizing care for patients at risk for development of HCC.
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