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Background: Observational studies have yielded conflicting evidence concerning the relationships between obstructive sleep apnea 
(OSA) and bone mineral density (BMD). As the exact causal inferences remain inconclusive, we conducted a two-sample Mendelian 
randomization (MR) to identify the causal associations between OSA and BMD.
Methods: Single-nucleotide polymorphisms associated with OSA were extracted from the FinnGen study. Summary statistics for 10 
BMD measured at different age or skeletal sites were obtained from the publicly available IEU GWAS database. Inverse-variance 
weighted (IVW) method was chosen as the primary analysis, combined with several sensitivity analyses to evaluate the robustness of 
results. The study design included two-sample MR and network MR.
Results: Our primary MR analysis revealed that genetically predicted OSA was positively linked to increased forearm BMD (β = 0.24, 
95% confidence interval [CI]: 0.06–0.41, p = 0.009) and heel BMD (β=0.10, 95% CI = 0.02–0.18, p = 0.018), while no significant 
causal relationships were observed between OSA and total body BMD, lumbar spine BMD, or femoral neck BMD (all p > 0.05). 
Network MR suggests that OSA might act as a mediating factor in the effect of BMI on forearm BMD and heel BMD, with a mediated 
portion estimated at 73% and 84%, respectively.
Conclusion: Our findings provide support for a causal relationship between genetically predicted OSA and increased forearm BMD 
and heel BMD. Furthermore, our results suggest that OSA may play a role in mediating the influence of BMI on BMD.
Keywords: obstructive sleep apnea, bone mineral density, BMI, Mendelian randomization

Introduction
Obstructive sleep apnea is a prevalent sleep-related breathing disease characterized by sleep fragmentation, recurrent apnea, 
and intermittent hypoxia (IH), affecting nearly 1 billion individuals worldwide.1,2 OSA-induced IH leads to oxidative stress, 
systemic inflammation, endothelial dysfunction, and elevated sympathetic activation, all of which contribute to the develop-
ment of various diseases, such as metabolic disorders, cardiocerebrovascular diseases, and neurological dysfunction.3,4 

Additionally, as a hallmark of OSA, IH also impacts bone metabolism via regulating the activity of mesenchymal stem 
cells, osteoblasts, and osteoclasts, ultimately resulting in a change in bone mineral density (BMD).5

Osteoporosis is a common chronic systemic skeletal disorder characterized by skeletal fragility and microarchitectural 
deterioration.6 The measurement of bone mineral density (BMD) using dual-energy X-ray absorptiometry (DXA) is the gold 
standard for diagnosing osteoporosis.7 The associations between OSA and BMD has been investigated by many observational 
cohort studies, but the results remain controversial. For example, a recent meta-analysis from 15 studies consisting of 113,082 
patients demonstrated that a strong association between OSA and an increased risk of osteoporosis, along with decreased lumbar 
spine BMD;8 In contrast, an earlier meta-analysis including 7 studies with 113,558 subjects showed OSA increased the risk of 
osteoporosis in cohort studies but decreased the risk in cross-sectional studies.9 Additionally, a meta-analysis from 9 articles 
involving 113,137 participants revealed that OSA was not associated with the risk of osteoporosis.10 The discrepancy in these 
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conflicting findings may be attributed to failure to sufficiently adjust for potential confounding variables. Accumulating evidence 
suggests that OSA is associated with osteoporosis and BMD, but the exact causality between OSA and BMD remains unclear. 
Furthermore, findings from conventional observational studies are susceptible to the influences of potential confounders and 
reverse causation. Therefore, it is imperative to perform further research to elucidate the confusing causal associations between 
OSA and BMD.

Conventional randomized controlled trials (RCTs) face challenges in effectively exploring these causal relationships due to 
their cost-intensive and time-consuming nature. Mendelian randomization (MR) offers an alternative and novel method to 
establish causal inferences by utilizing single nucleotide polymorphisms (SNPs) as genetic instruments from genome-wide 
association study (GWAS) datasets.11,12 MR designs leverage random allocation of genetic variants during meiosis and 
fertilization, making it well suited to address biases stemming from reverse causality and potential unmeasured residual 
confounders in observational studies.13 So far, MR studies have been employed to investigate the association between sleep 
traits and BMD.14 Still, the causal relationship of OSA with BMD has not been well established. Importantly. A better 
understanding of the causal relationship between OSA and BMD would be beneficial to prevent potential adverse conse-
quences. Herein, we aimed to conduct a two-sample MR study to explore the causal relationship between OSA and BMD.

Methods
Study Design
In this study, MR analyses adhere to the statement of Strengthening the Reporting of Observational Studies in Epidemiology.15 

Three basic assumptions should be followed in MR analysis: (1) genetic variants must exhibit a strong association with the 
exposure; (2) genetic variants must be independent of confounders; (3) genetic variants must solely influence outcomes 
through the selected exposure, without involvement in other pathways. All the included data were derived from previously 
published GWAS summary data, for which ethical approval and informed consent were found in original studies. The overall 
design of our study is illustrated in Figure 1.

Data Sources and Instrument Variables
GWAS for OSA
We obtained five single-nucleotide polymorphisms (SNPs) associated with OSA from the FinGen consortium in a published, 
large-scale GWAS study.16 The GWAS of OSA involved a substantial cohort of 16,761 OSA patients and 201,194 controls 
from the FinnGen research project (217, 955 subjects).16 OSA diagnosis relied on the International Statistical Classification of 
Diseases (ICD) codes (ICD-10: G47.3, R06.5; ICD-9:3472A), supplemented by subjective symptoms, clinical examination, 
and sleep monitors (AHI) ≥5/h or respiratory event index (RED) ≥5/h.

GWAS for Outcomes
To examine age-specific and site-specific Bone Mineral Density (BMD), we used summary-level data of BMD from different 
age-stages and skeletal sites. For the overall BMD, the total body BMD (TB-BMD) assessed by DXA was derived from a large 
meta-analysis of 30 GWAS studies (N = 66,628). This dataset covered five different age-stages: ≤15 years (N = 11,807), 15–30 
years (N = 4180), 30–45 years (N = 10,062), 45–60 years (N = 18,805), ≥60 years (N = 22,504).17 For central BMD, femoral 
neck BMD (FN-BMD, N = 32,735) and lumbar spine BMD (LS-BMD, N = 28,498), assessed by DXA, were obtained from 
GEnetic Factors for OSteoporosis (GEFOS) Consortium.18 For peripheral BMD, summary statistics for forearm BMD (FA- 
BMD, N = 19,705) measured by single-energy X-ray absorptiometry (SXA) was derived from a Norwegian large-scale 
GWAS,19 while heel BMD (H-BMD, N = 142,487) dataset estimated by quantitative ultrasound was from the UK biobank 
cohort.20 More details about the datasets utilized in our study are presented in Table 1.

GWAS for BMI
To investigate the mediation effect between BMI, OSA, and BMD, we obtained genetic instruments for BMI from 
publicly available GWAS summary statistics offered by the Genetic Investigation of Anthropometric Traits (GIANT) 
consortium.21 These statistics included 339,224 individuals of European ancestry. BMI was calculated by dividing total 
body weight [kg] by squared height [m2], with age, age squared, and other covariates taken into account.
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Figure 1 Overview and analysis process of our research. Assumption 1(the relevance assumption): genetic variants are strongly related to the exposure; Assumption 2(the 
Independence assumption): genetic variants are independent from confounding factors of the exposure–outcome; Assumption 3 (the exclusion assumption): genetic variants 
influence outcomes solely through the selected exposure. 
Abbreviations: MR, Mendelian randomization; GWAS, genome-wide association study; SNP, single-nucleotide polymorphism.
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Instrumental Variable Selection
To fulfill the three core MR assumptions, we initially identified genetic instruments with OSA at genome-wide 
significance (p < 5 × 10−8) and removed SNPs with linkage disequilibrium (r2 > 0.001 and clumping window <10,000 
kb) based on the European 1000 Genomes as linkage disequilibrium (LD) reference panel. Furthermore, to evaluate the 
strength of the included genetic instruments, we calculated the F-statistics using the following formula: F = β2/σ2 (β: beta 
for SNP-exposure effect estimate, σ: standard deviation for variant).22 An F-statistic < 10 indicated a weak association 
instrument and excluded from subsequent MR analyses.

After harmonizing exposure and outcome data, we further filtered out palindromic SNPs with intermediate allele 
frequencies, and SNPs strongly associated with the outcome (P < 5 × 10−8).

Statistical Analysis
Main MR Analyses
The multiplicative random-effect inverse-variance weighted (IVW) models selected as the primary MR analyses were 
performed to explore the causal relationships of genetically predicted OSA with BMD. The method provides the most 
precise estimates, but may introduce bias in the presence of invalid SNPs and pleiotropy.23 Thus, we additionally 
conducted three complementary analyses, including MR-Egger regression,22 weighted median,24 and weighted mode.25 

The MR-Egger regression can also provide accurate estimates allowing for the presence of directional pleiotropy.25 The 
weighted median method estimates causal effects when over 50% of instrumental variables are invalid.24 The weighted 
mode method can provide consistent estimates, even when most of the SNPs are invalid.23

Network MR Analyses
Given the interconnected relationships among BMI, OSA, and BMD,2,26 we performed network MR analysis. The 
network MR consists of three estimates:27 the total effect (c): reflecting MR analysis from exposure to mediator; the 
direct effect (a): representing MR analysis from exposure to mediator; the direct effect (b): signifying MR analysis from 
mediator to outcome; mediation effect: a*b. Consequently, the proportion of mediation effect equals the indirect effect 
(a*b) divided by the total effect (c).

Sensitivity Analyses
To ensure the robustness and validity of our MR results, we further conducted several sensitivity analyses. The MR-Pleiotropy 
Residual Sum and Outlier method (MR-PRESSO) was applied to identify and correct for horizontal pleiotropic outliers of 

Table 1 Characteristics of GWAS Databases for Each Phenotype Used in Our Study

Phenotype Consortia Participants  
(Cases/Controls)

PubMed ID

Exposures OSA FinnGen 16,761/201,194 33,243,845

Outcomes TB-BMD GWAS meta-analysis 56,284 29,304,378

TB-BMD (age 0–15) GWAS meta-analysis 11,807 29,304,378
TB-BMD (age 15–30) GWAS meta-analysis 4,180 29,304,378

TB-BMD (age 30–45) GWAS meta-analysis 10,062 29,304,378

TB-BMD (age 45–60) GWAS meta-analysis 18,805 29,304,378
TB-BMD (age≥60) GWAS meta-analysis 22,504 29,304,378

LS-BMD GEFOS 28,498 26,367,794
FN-BMD GEFOS 32,735 26,367,794

FA-BMD GWAS meta-analysis 19,705 33,097,703

HBMD UK Biobank 142,487 28,869,591
Mediator BMI GIANT 322,154 25,673,413

Abbreviations: OSA, Obstructive sleep apnea; TB-BMD, Total body bone mineral density; LS-BMD, Lumbar spine bone 
mineral density; FN-BMD, Femoral neck bone mineral density; FA-BMD, Forearm bone mineral density; HBMD, Heel bone 
mineral density; BMI, Body mass index; GWAS, genome-wide association study; FinnGen, Finnish Gene; GIANT, Genetic 
Investigation of Anthropometric Traits; GEFOS, Genetic Factors for Osteoporosis.
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SNPs, subsequently obtaining the corrected results after excluding possible outliers.28 MR-Egger regression was used to 
detect possible directional pleiotropy based on its intercept.25 To detect heterogeneity among estimates, we used Cochran’s 
Q value, with a p < 0.05 indicating the presence of heterogeneity.29 Additionally, we conducted a leave-one-out analysis to 
assess the individual SNP’s significant influence on the results.

Furthermore, we conducted a post hoc power analysis using the online tool (https://sb452.shinyapps.io/power/) to 
(Supplementary Table S1) to evaluate the statistical power of our MR analyses. All MR analyses were performed using 
“TwoSampleMR”, and “MR-PRESSO” in R software (version.4.2.0). A p value of < 0.05 was considered statistically significant.

Results
Causal Effects of OSA on BMD
After performing clumping and linkage disequilibrium, a total of 5 OSA-associated were identified. The F-statistics for 
these SNPs varied from 30 to 67, suggesting strong instruments. Detailed information about the IVs is available in 
Supplementary Table S2.

All results regarding the causal estimates for OSA on BMD are shown in Supplementary Table 2. The main MR 
analyses (IVW method) showed genetically predicted OSA was positively associated with an increase in both FA-BMD 
(β = 0.24, 95% CI: 0.06–0.41, p = 0.009) and HBMD (β=0.10, 95% CI = 0.02–0.18, p = 0.018). However, no significant 
causal relationships were observed between genetically predicted OSA and other BMD (all p > 0.05), including TB- 
BMD, LS-BMD, and FN-BMD (Figure 2 and Supplementary Table S3 and Figures S1)

In sensitivity analyses, MR Egger intercept test provided no evidence of directional pleiotropy. The MR-PRESSO test 
did not detect any outliers or horizontal pleiotropy (all global P > 0.05). The Cochran Q-test detected that there may be 
some heterogeneity across the estimates of OSA on HBMD (Q test = 15.09, p = 0.005). Finally, leave-one-out analyses 
showed that the causal estimates remained stable after excluding any individual SNP (Supplementary Table S4 and 
Supplementary Figures S2).

Network MR Analyses
We conducted an analysis considering BMI as a mediator in the causal pathway from OSA to BMD (Figure 3). Genetically 
predicted BMI was positively associated with HBMD (IVW: β = 0.09, p = 0.007) and FA-BMD (IVW: β = 0.19, p = 0.005), 
but genetically predicted OSA was not associated with BMI (IVW: β= 0.04, p = 406). The total effect of OSA on HBMD 
was 0.10 and 0.24 for FA-BMD. Thus, the proportion of this effect mediated by BMI was 3.6% for the OSA-HBMD 
relationship and 3.2% for the OSA-FA-BMD relationship (Figure 3).

We also examined OSA as a mediator in the causal pathway from BMI to BMD (Figure 4). Genetically predicted 
BMI was positively associated with OSA (IVW: β= 0.66, p < 0.001), HBMD (IVW: β= 0.09, p = 0.005), and FA-BMD 
(IVW: β= 0.19, p = 0.005). Thus, the proportion mediated by OSA was 73% and 84% for BMI and HBMD relationship 
and BMI and FA-BMD relationship, respectively.

Figure 2 Mendelian randomization estimates for the associations of obstructive sleep apnea on bone mineral density.
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Discussion
Previous observational studies have provided contradictory evidence concerning the relationship between OSA and BMD. 
Given that the exact causal associations of OSA with BMD have yet to be well established, we conducted an MR analysis to 

Figure 3 Network Mendelian randomization study regarding BMI is the mediator in the associations of OSA on FA-BMD and HBMD. 
Abbreviations: BMI, Body mass index; OSA, Obstructive sleep apnea; FA-BMD, Forearm bone mineral density; HBMD, Heel bone mineral density.

Figure 4 Network Mendelian randomization study regarding OSA is the mediator in the associations of BMI on FA-BMD and HBMD. 
Abbreviations: BMI, Body mass index; OSA, Obstructive sleep apnea; FA-BMD, Forearm bone mineral density; HBMD, Heel bone mineral density.
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explore the causal relationships between OSA and BMD. Our findings showed that genetically predicted OSA was associated 
with a higher of FA-BMD and HBMD. To delve deeper into the role of BMI in these significant associations, we conducted 
a network MR analysis and found that OSA may act as a mediator in the relationship between BMI and BMD.

The association between OSA and BMI has long been a subject of interest. Some researchers have claimed that OSA 
was linked to reduced BMD,30,31 while others have not found any relationship between OSA and BMD.32 In contrast, 
a cross-sectional study consisting of 85 subjects showed OSA patients had higher lumbar spine BMD compared to those 
without OSA.33 Another study including 833 elderly subjects revealed that OSA is associated with increased femoral and 
spinal BMD. Moreover, experimental studies showed that OSA-induced IH increased the BMD in a rat model.34 

Consistent with these results, we also found that OSA was associated with elevated FA-BMD and HBMD. The 
conflicting results regarding associations between OSA and BMI may be due to confounding factors, such as study 
design, sample size, and skeletal differences in susceptibility to OSA. Therefore, our findings contribute to a clearer 
understanding of this relationship and may provide new clues for further research into the etiology of BMD.

Some possible mechanisms can explain the association between OSA and BMD. On the one hand, OSA can induce 
oxidative stress, sympathetic nervous system, and chronic inflammation, and then directly or indirectly promote 
osteoclast formation and alter its activity, disrupting the balance of bone metabolism.35,36 On the other hand, OSA- 
induced IH activated mesenchymal stem cells, upregulated hypoxia-inducible factor 1-alpha (HIF-1α), and stimulates the 
expression of vascular endothelial growth factor (VEGF). This results in alterations in the functions of both osteoblasts 
and osteoclasts, disturbing the balance between bone resorption and bone formation.5,37 Notably, the mechanisms 
through which OSA affects BMD are intricate and have not yet been fully understood. Therefore, further exploration 
is needed to unravel the specific biological pathways and mechanisms.

As widely recognized, BMI is a significant risk factor for OSA. Approximately 70% of patients with diagnosed OSA have 
a high BMI.38 BMI is closely considered to be associated with BMD. Epidemiological research has consistently shown there is 
a significant positive relationship between BMI and BMD.39,40 Recent MR study also supported a positive causal association 
between BMI and BMD.41 Another MR studies from Song et al reported BMI was causally associated with higher HBMD.26 

Accordingly, OSA and BMD may share common risk factors. To clarify their interrelationship, we performed a network MR 
analysis, revealing that BMI may mediate the regulation of BMD by OSA. In fact, it is not confounding that OSA acts as 
a mediator when examining the relationship between BMI and BMD. Previous study has proven that high BMI can directly or 
indirectly lead to OSA through chronic inflammatory, fat deposition in the upper airway caused by obesity.2 We can speculate 
that high BMI induces OSA, which then plays a pivotal role in altering BMD via OSA-related IH. Herein, our findings may 
provide new insights to explore pathophysiological mechanisms connecting BMI and BMD.

Strengths and Limitations
To the best of our knowledge, this study represents the first comprehensive MR investigation into the causal impact of OSA on 
BMD, combining different methods used to obtain a robust result, and shedding new light on the etiology of BMD.

However, there are several limitations to our study that warrant attention. Firstly, to minimize potential biases stemming 
from different populations, our MR analysis was only based on the European population, so whether the findings can simply 
broaden generalizability to other ancestry requires further investigation. Secondly, limited to the lack of relevant GWAS 
summary data, we could not explore the effect of OSA stratification, gender stratification, or BMI stratification on BMD. 
Thirdly, it is preferable to minimize sample overlap between exposure and outcome databases. Unfortunately, we cannot 
estimate precisely the extent of sample overlap due to lack of detailed information on GWAS databases, which may introduce 
bias into our results. Finally, given the inherent limitations of MR studies, despite our efforts to detect pleiotropy and 
heterogeneity through sensitivity analyses, it remains impossible to entirely rule out potential pleiotropy that might bias our 
results. Given the limitations, further studies are essential to explore the potential mechanisms of these causal associations.

Conclusions
The present study provides evidence supporting that genetically predicted OSA was causally associated with higher 
forearm BMD and heel BMD. Moreover, network MR suggests that OSA might be a part of the mechanism through 
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which BMI affects forearm BMD and heel BMD. However, deeper insights into the potential mechanisms behind these 
causal relationships still require further research.
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