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Introduction: This study aims to identify the negative customer experiences reflected in complaints against diagnostic centers using 
data mining tools.
Methods: Analyzing customer complaints from a consumer complaints website, the Apriori algorithm was employed to uncover 
frequent patterns and identify key areas of concern. The frequency and distribution of terms used in complaints were also analyzed, 
and word clouds were generated to visualize the findings.
Results: The study revealed that major areas of unfavorable customer experience included delayed test reports, erroneous test results, 
difficulties scheduling appointments, staff incivility, subpar service, and medical negligence.
Discussion: These findings and the proposed model can guide diagnostic centers in incorporating data mining tools for customer 
experience analysis, enabling managers to proactively address issues and view complaints as opportunities for service improvement 
rather than legal liabilities.
Keywords: apriori algorithm, consumer complaints, complaints analysis, data mining, customer experience

Introduction
The healthcare sector, one of the fastest-growing industries worldwide, faces challenges due to globalization, including 
addressing customer experience.1,2 Customer experience is shaped by prior knowledge and interactions.3,4 While 
technological advancements have generated vast amounts of data to explain customer experiences, organizations struggle 
to translate this data into actionable models and comprehend customer behavior.5 Diagnostic centers, a key component of 
the healthcare system, produce large volumes of data, necessitating the storage and analysis of customer experience 
information by healthcare providers.6,7 Technology can enhance healthcare management by streamlining processes and 
improving efficiency in data analysis related to customer experience.8,9 Electronic Health Records (EHRs) facilitate 
documentation and coordination.10 Data mining techniques provide insights into valuable customers and their 
experiences.11 Additionally, data mining can help identify patterns in complaints and inform solution development. 
However, managing the sheer volume of data presents a significant challenge.

A prominent clinic, one of India’s largest integrated healthcare systems in the private sector, serves as the foundation 
for this research. It is named here as Beta clinic. The use of case studies to build theory and their advantages have been 
extensively discussed.12,13 Each case functions as an independent experiment, establishing its analytical value. As 
a result, the case study approach is an inductive methodology that can be generalized. A thorough examination of the 
complaint volume reveals an unabated rise, necessitating the establishment of a comprehensive and robust complaint 
system.14 The increased usage of digital platforms and social media has fostered greater connectivity between customers 
and companies. Websites and consumer forums have empowered customers to register complaints against any 
company.15 Consequently, thousands of complaints are logged daily on consumer forums, where customers anticipate 
problem resolution. This paper proposes to identify the major areas in which complaints arise due to unfavorable 
customer experiences, utilizing a database of complaints containing complaint titles and complaint text. This research 
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endeavor is a novel attempt to employ data mining techniques to decipher customers’ experiences in diagnostic centers 
based on their complaints. To effectively address the research objectives, the following key measurable questions are 
posed:

1. What are the primary categories of complaints that contribute to unfavorable customer experiences at the Beta clinic?
2. What are the critical factors that lead to unsatisfactory customer experiences?
3. Do customers from different locations exhibit similar experiences at the Beta clinic?

The remainder of this manuscript is structured as follows: Data and Methodology delves into the existing body of knowledge 
related to customer experience in healthcare settings; Results deals with data and methodology; Discussion presents the key 
findings derived from the data analysis; Conclusion engages in a thorough discussion of the results obtained, delving into the 
implications of these findings for both theoretical understanding and practical applications in enhancing customer experience 
within the healthcare sector, and also proposes directions for future research; the final section 6 summarizes the main contributions 
of this study, and proposes suggestions in the area of customer experience in healthcare settings.

Review of Literature and Research Gap
Recent research emphasizes the importance of patient-centered care and customer experience in the healthcare 
industry.16–18 Positive customer experiences lead to long-term relationships and improved customer satisfaction.19,20 

However, many healthcare systems prioritize customer care over customer experience.21 Smart technologies can enhance 
customer experience22 and there is a growing focus on improving customer experience in developing countries.23,24 Prior 
research suggests that organizations should utilize digitalization to gather and analyze customer feedback for co- 
creation.25 Complaint data should be comprehensively analyzed to identify areas for improvement.26,27 Data mining 
techniques can be employed to investigate the relationship between system deficiencies and customer complaints.28–31 

While data mining has been applied in hospitals for various purposes, there is a lack of studies specifically focused on 
diagnostic clinics, which generate a substantial amount of customer service and complaint data.32–36 This research aims 
to address this gap by analyzing customer complaints from Beta Clinics, a diagnostic center chain.

Customer Experience
Patients and their accompanying family members or attendants constitute the customer base of diagnostic centers, 
distinguishing them from customers in other businesses. These individuals often encounter heightened anxiety, tension, 
stress, and negativity37 and must feel satisfied with the quality of medical services provided within the available 
resources.38 Given the connection between customer experience and cognitive and emotional functions,39 handling 
such clientele demands special care and attention to ensure a favorable customer experience. This, in turn, encourages not 
only repeat visits from existing customers but also referrals to the diagnostic center.37

Customer Complaints
Customer complaints serve as a crucial reflection of overall consumer experiences, particularly unfavorable ones.40 By 
effectively utilizing customer feedback, organizations can enhance their overall performance and consequently improve 
customer experience.41,42 Complaints can originate from both former and current customers, and they should be taken 
seriously and addressed promptly.43 When analyzed appropriately, customer complaints can be viewed as an opportunity 
to retain existing customers or attract new ones.44 Moreover, addressing customer concerns not only enhances customer 
satisfaction but also upholds ethical standards in the marketplace.45

An extensive review of the literature reveals that customer experience, customer complaints, data mining techniques 
for analyzing customer complaints, and customer experience in the healthcare industry have been extensively studied as 
individual topics. However, a significant portion of the empirical research relevant to this topic has been conducted 
outside of India. While data mining has been employed in various sectors, its application in diagnostic centers remains 
limited. Similarly, research specifically focused on analyzing customer complaints to understand customer experience in 
diagnostic centers is scarce. Despite the efforts of researchers and corporate organizations in studying customer 
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experience, there is still room for further academic investigation in this area.46 This research aims to address these gaps 
by utilizing data mining techniques to uncover customer experiences in diagnostic centers. Therefore, to bridge the 
aforementioned research gaps, it is essential to examine customer complaint data through data mining techniques to gain 
insights into unfavorable customer experiences in diagnostic centers.

Data and Methodology
This research utilizes data from complaints filed against a prominent clinic on the consumer complaints website www. 
consumercomplaints.in. For anonymity, the clinic’s actual name is concealed, and a pseudonym “Beta” is employed. 
Analyzing complaints manually can be time-consuming and laborious. Data mining tools, on the other hand, can expedite 
knowledge-driven decision-making by automating and supervising data analysis.47 The Apriori algorithm is an effective tool for 
mining frequent datasets and associated association rules.48 Researchers have employed this algorithm for data mining to uncover 
hidden patterns and insights from massive databases.49,50 Srikant and Agrawal51 developed the Apriori algorithm used to analyze 
complaint texts and titles separately to identify the primary complaint categories. The frequency of various terms used in 
complaints is also analyzed to create word clouds, visually representing the most prevalent terms. This paper’s primary objective 
is to employ data mining techniques to evaluate customer experiences at Beta Clinic. The customer experience database is derived 
from online complaints registered on the clinic’s portal. To analyze patterns in the data, this paper utilizes the Apriori algorithm 
proposed by Agrawal and Srikant.52

Data Collection
Complaints were collected using web scraping with Selenium, BeautifulSoup, and Pandas in Python on an Ubuntu 20.04 
machine. The dataset consists of 2096 complaints from various Beta Clinic centers across India. The complaints were 
collected and stored in spreadsheets having two columns namely “Title” and “Complaint Text”.

Preprocessing of Complaints
The complaint data undergoes several preprocessing steps to clean and prepare it for analysis:53,54

(a) Character Removal: Unwanted characters are removed.55

(b) Tokenization: Complaints are split into individual words or phrases.
(c) Stop Word Removal: Common words with little meaning are removed.54

(d) Lemmatization: Words are reduced to their root form.56,57

These steps ensure meaningful data for further analysis and modeling.

Data Analysis
The data analysis is explained in the following paragraphs:

The Apriori Algorithm
The Apriori algorithm, developed by Agarwal and Srikant,52 is a widely used method for frequent pattern mining, 
particularly in transaction databases.55 Its key concepts and term definitions are as follows:

● Item: A unique object in the transactions database. In this context, each unique word in the list of complaints is 
considered an item.

● Transaction: A set of distinct items. In this context, the list of words from each complaint after preprocessing 
constitutes one transaction.

● Support: The total number of times an item appears in the transactions. It is often expressed as the ratio of the total 
number of occurrences of an item to the total number of transactions.
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● Minimum Support: The minimum supports an item must have to be considered frequent. In this context, the 
minimum support of a word is the total number of complaints it appears in, divided by the total number of 
complaints.

● Candidate Item Sets: Item sets with a fixed number of items, often denoted by Ci, where “i” represents the number 
of items in the item set.

● Frequent Itemsets: Item sets with support greater than the minimum support, often denoted by Li, where “i” 
represents the number of items in the item set.

● Apriori Property: Any subset of a frequent itemset must also be a frequent itemset.

The Apriori algorithm employs a level-wise search to generate item sets. It starts with item sets containing one 
element and progressively generates item sets from lower levels to higher levels. The algorithm for generating C1 is 
presented in Algorithm 1 (Appendix 1).

To generate candidates for the Lk item set, the Lk−1 item set is used. Ck, a superset of Lk, is generated by performing 
a set join operation on Lk−1 with itself. Algorithm 2 (Appendix 2) describes the procedure for generating Ck.

Ck is pruned using the Apriori property to eliminate candidate itemsets whose subsets are not frequent itemsets. 
Subsequently, the entire transaction data is scanned to identify item sets in Ck with a frequency exceeding the minimum 
support. Itemsets with support less than the minimum support are removed from Ck, resulting in the formation of Lk. 
Algorithm 3 (Appendix 3) details the process of scanning the data and generating Lk. This process iterates until no further 
item set with support greater than the minimum support can be generated.

In this study, the Apriori algorithm is utilized to identify frequently co-occurring words in the complaint data. These 
frequent itemsets are then analyzed for association rule mining to uncover closely related words in the complaints.

Association Rule Mining
Association rules capture the dependency of one data item on another within a dataset.58 An association rule comprises 
an antecedent and a consequent. The antecedent represents a data item present in the data, while the consequent 
represents a data item that frequently co-occurs with the antecedent. The strength of this association is measured by 
confidence, which is the ratio of occurrences of the antecedent and consequent together to the occurrences of the 
antecedent alone.59 Confidence values range from 0 to 1, with 1 indicating a strong association and 0 indicating no 
association. For this analysis, only rules with confidence greater than or equal to 0.7 were considered significant.59 

Algorithm 4 (Appendix 4) describes the procedure for mining association rules from frequent itemsets.

Word Cloud Generation
Frequent words were visualized using word clouds to represent their frequency in the data. Word sizes correspond to term 
frequencies, with larger words indicating higher frequencies.60 In this study, word clouds were generated from complaint 
data using the “wordcloud” and “matplotlib” modules in Python.

Results
Both the complaint title and the complaint text were analyzed separately to identify frequent words and association rules. 
This approach was taken because the title often encapsulates the essence of the complaint text. The findings from both 
the title and complaint text analysis are discussed in the following subsections.

Analysis of Title of the Complaints
The complaint titles were analyzed to identify frequent terms and association rules. Table 1 presents a list of single terms 
with their corresponding support, calculated using a minimum support threshold of 0.02.61 This means that terms 
appearing in more than 2% of the complaints were selected for analysis. The frequency of words in Table 1 indicates 
that approximately 15.8% of complaints were related to reports, highlighting a potential area for improvement in 
customer experience. Notably, 14.7% of complaints were marked as resolved, suggesting a positive aspect of customer 
experience. Additionally, 15% of complaints concerned poor service quality, while 7.3% addressed staff behavior. 
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Interestingly, 3.2% of complaints were related to COVID vaccination, and the same percentage of complaints used the 
terms “misleading” and “negligence” to describe the experience.

After analyzing the most frequent words, a group of two words with maximum frequency were calculated and the 
result was tabulated in Table 2.

The data from Table 2 indicates a significant portion of customers (6.3%) have experienced difficulties obtaining test 
reports. Additionally, 4.2% of complaints specifically mentioned poor service as the source of their dissatisfaction. 
Furthermore, 2.1% of complaints cited specific issues such as rude behavior, medical negligence, misleading staff, 
lengthy wait times, problems with vaccine certificates, and incorrect test reports as contributing factors to their negative 
experiences. The data further reveals that the JP Nagar clinic accounts for the majority of complaints (3.2%), followed by 
the Salt-Lake clinic (2.1%).

A group of three words that occurred together in a complaint has been tabulated in Table 3. The minimum support 
used to calculate the frequency of the terms was 0.02.61

Table 1 Words with a Maximum Frequency 
in the Title of Complaints

Words Support

Report 0.157894736842105

Resolved 0.147368421052632

Service 0.147368421052632

Test 0.094736842105263

Staff 0.073684210526316

Behavior 0.73684210526316

COVID 0.031578947368421

Negligence 0.031578947368421

Vaccination 0.031578947368421

Misleading 0.031578947368421

Table 2 Group of Two Words with a Maximum 
Frequency in the Title of Complaints

Words Support

(“report”, “test”) 0.063157894736842

(“service”, “poor”) 0.042105263157895

(“jp”, “nagar”) 0.031578947368421

(“behavior”, “rude”) 0.021052631578947

(“certificate”, “vaccine”) 0.021052631578947

(“salt”, “lake”) 0.021052631578947

(“medical”, “negligence”) 0.021052631578947

(“staff”, “misleading”) 0.021052631578947

(“wrong”, “report”) 0.021052631578947

(“time”, “waiting”) 0.021052631578947
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Table 3 shows that 3.1% of complaints were related to JP Nagar clinic while 2.1% of the complaints were related to 
Salt Lake clinic and included the term resolved. 2.1% of total complaints indicated problems in receiving test reports.

Table 4 contains groups of four words that occur in a single complaint. The minimum support used to calculate the 
frequency of the terms was 0.02.61

Table 4 reflects that about 2.1% of the complaints termed their experience as the worst and these complaints were 
related to JP Nagar. The same number of complaints were also marked as resolved.

In Figure 1, a word cloud has been generated to visually represent the frequency of the different terms in the title of 
the complaints. In Figure 1, the size of the words signifies the frequency of the terms. The more the frequency of the 
term, the larger the size.

After analyzing the frequent terms, association rules were generated using association mining. The most significant 
rules are tabulated in Table 5. The minimum confidence level was specified at 0.7.

Table 3 Group of Three Words with a Maximum 
Frequency in the Complaints

Words Support

(“jp”, “nagar”, “resolved”) 0.031578947368421

(“received”, “test”, “report”) 0.021052631578947

(“service”, “worst”, “nagar”) 0.021052631578947

(“lake”, “salt”, “resolved”) 0.021052631578947

Table 4 Group of Four Words with a Maximum 
Frequency in the Complaints

Words Support

(“exp”, “worst”, “jp”, “nagar”) 0.021052631578947

(“exp”, “jp”, “nagar”, “resolved”) 0.021052631578947

Figure 1 Word cloud generated from complaint title.
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The Table 5 shows that whenever a delay is mentioned in a complaint, a report is also mentioned. Additionally, all 
complaints registered for the Salt Lake clinic and JP Nagar clinic have been resolved by the management. This suggests 
that there may be a link between delays and reports, and that the management is taking steps to address complaints.

Specifically, the table shows the following:

● “delay” and “report” have a confidence of 1.0, which means that whenever “delay” is mentioned, “report” is also 
mentioned.

● “Salt Lake clinic” and “resolved” have a confidence of 1.0, which means that all complaints registered for the Salt 
Lake clinic have been resolved.

● “JP Nagar clinic” and “resolved” have a confidence of 1.0, which means that all complaints registered for the JP 
Nagar clinic have been resolved.

An analysis of complaint texts revealed the most common terms and association rules. Table 6 lists the single terms 
and their corresponding support values, with a minimum support of 0.02. Sorting the terms by support highlights the 
most frequently used terms. The data indicates that “test” (27.4%) and “report” (15.8%) were the most common terms, 
suggesting that 15.8% of complaints concerned test reports. “Service” (12.6%) was also prevalent, while “behavior” 
(3.2%), “unprofessional” (3.2%), and “pathetic” (3.2%) were used less frequently. This implies that at least 12.6% of 
complaints were related to poor service.

Table 5 Rules Extracted from the Title of 
the Complaints

Antecedent Consequent Confidence

Rude Behavior 1

Vaccine Certificate 1

Delay Report 1

(jp, nagar) Resolved 1

(salt, lake) Resolved 1

Table 6 Words with a Maximum Frequency 
in the Complaint Texts

Words Support

Doctor 0.252631578947368

Test 0.273684210526316

Report 0.157894736842105

Service 0.126315789473684

Vaccine 0.042105263157895

Behavior 0.031578947368421

Behaviour 0.031578947368421

Unprofessional 0.031578947368421

Vaccination 0.031578947368421

Pathetic 0.031578947368421
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The most frequent two-word terms in complaint texts were identified and tabulated in Table 7. The minimum support 
used to calculate term frequency was 0.02. Terms were sorted based on support for analysis. Table 7 shows that “test 
report” (12.6%) and “health checkup” (4.2%) were the most frequent two-word terms, indicating issues with these 
services. Additionally, “experience bad” (4.2%) and “appointment refused” (2.1%) were prevalent, suggesting problems 
with customer experience and appointment scheduling.

The most frequent three-word terms in complaint texts were identified and tabulated in Table 8. The combination of 
“report”, “blood”, and “test” appeared in 4.2% of complaints, with 1% specifically mentioning “wrong”, highlighting 
challenges in obtaining blood test reports.

A word cloud in Figure 2 visualizes the frequency of terms in complaint texts. Larger words indicate higher 
frequency. Association rules generated from complaint texts provided no significant insights.

Discussion
An analysis of complaints reveals that 12.6% of unfavorable experiences concern delays and errors in test reports, while 
4.2% and 2.1% pertain to health checkups and COVID vaccinations, respectively. Delays in receiving test reports warrant 
serious attention. Such delays can cause patients undue suffering and exacerbate their ailments.62 It is crucial to recognize 
that delays or errors in test reports can lead to misdiagnosis or inaccurate assessments during patient follow-ups. 
Consequently, procedures that combine error detection with a search for potential root causes are necessary to implement 
preventive and corrective measures. Customers also reported unfavorable experiences related to staff behavior, including 
“rude behavior” and “poor service” (4.2% each) and “medical negligence” (2.1%). Rudeness significantly impacts 
healthcare service delivery.63 Rude language and unpleasant behavior among diagnostic service providers jeopardize 
patient safety and the quality of care they receive.64 Frow & Payne65 found that customer satisfaction declines when 
services fall below expectations. Poor service leads to dissatisfaction, and unsatisfied customers are more likely to engage 
in negative word-of-mouth, switching providers, and complaining.66 Poor provider attitudes can deter service utilization 
and foster low expectations and discriminatory behavior among healthcare providers.67 This is going to affect the mindset 

Table 8 Group of Three Words with a Maximum 
Frequency in the Complaint Texts

Words Support

(“report”, “test”, “doctor”) 0.08421052631579

(“report”, “blood”, “test”) 0.042105263157895

(“report”, “wrong”, “doctor”) 0.031578947368421

(“report”, “blood”, “wrong”) 0.010526315789474

Table 7 Group of Two Words with a Maximum 
Frequency in the Complaint Texts

Words Support

(“report”, “test”) 0.126315789473684

(“checkup”, “health”) 0.042105263157895

(“experience”, “bad”) 0.042105263157895

(“appointment”, “refused”) 0.021052631578947

(“certificate”, “vaccine”) 0.021052631578947

(“first”, “vaccine”) 0.021052631578947
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of the consumers towards the particular diagnostic centre negatively. Geographically, customers from JP Nagar and Salt 
Lake reported the highest frequency of unfavorable experiences. Healthcare marketing policymakers should prioritize 
recruiting frontline staff with strong interpersonal skills and expertise to create a memorable customer service 
experience.68 This study contributes to the existing body of knowledge in customer experience by examining unfavorable 
customer experiences in diagnostic centers, as reflected in customer complaints. The findings have managerial, policy, 
and theoretical implications.

Theoretical Contributions
This study’s empirical findings contribute to the existing research by highlighting the strong correlation between 
customer complaints and customer experiences in diagnostic centers, adding to its novelty. Additionally, it demonstrates 
the impact of data mining technologies on traditional customer relationship management processes in healthcare settings, 
enabling evidence-based assessment and effective outcomes. Comprehensive customer experience data will foster 
research-driven support for the growing field of customer experience in developing nations.69 Overall, the study’s 
findings validate the customer experience scale in the context of diagnostic centers, advance theoretical understanding 
of the experience concept in healthcare, and provide valuable insights for diagnostic center marketers. The proposed 
framework in Figure 3 arises from the research conducted. Customers visiting diagnostic centers may have positive or 
negative experiences. Negative experiences can lead to three possibilities: repeat complaints, legal action, or switching to 
alternative providers. Customer complaints should be analyzed for categorization and subsequent investigation. This 
effort can help reduce customer attrition to alternative diagnostic centers. Data mining techniques employed in the study 
identified crucial factors such as rude behavior, negligence in report delivery, delayed reports, checkup issues, and poor 
service. Some factors stem from employee behavior, which can be improved through proper recruitment, training, etc., 
while others point to infrastructure deficiencies. The goal should be to analyze and transform these complaints into 
positive customer experiences. These findings can assist managers in enhancing customer experience management and 
delivering superior, memorable experiences.

Figure 2 Word cloud generated from complaint text.
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Managerial Implications
Enhancing customer experience in diagnostic centers requires a multifaceted approach that encompasses complaint 
management, data-driven decision-making, and customer-centricity. Howarth et al14 advocate for viewing complaints as 
opportunities for improvement, emphasizing their role in customer retention and reputation management.70 Data-driven 
decision-making, as highlighted by Satish & Yusof,42 necessitates employee training to effectively utilize customer 
data.71 Framing patient experiences as customer service issues encourages staff to prioritize interpersonal skills and 
approach patient concerns as communication challenges.72 The areas of improvement are quite evident from the online 
feedback73 and ratings, so corrective measures can be taken accordingly. Holmlund et al74 emphasize the importance of 
quantifying the effectiveness of customer experience enhancement efforts, advocating for the use of key metrics to track 
progress and inform future decisions.

Adopting a customer-centric approach, prioritizing customer needs and perspectives, can significantly enhance patient 
satisfaction. Schiavone et al,75 Ponsignon et al,76 and Lee77 highlight the benefits of this approach, suggesting that 
healthcare organizations can create more personalized, responsive, and effective service experiences. Managers should 
replace the restrictive legal paradigm for handling complaints with a management approach that views complaint 
resolution as a strategy for customer retention and organizational learning. Griffey & Bohan78 and Nikitha et al79 

advocate for a proactive approach to complaint management, encouraging diagnostic center managers to embrace new 
data analytics technologies to investigate unfavorable customer experiences and identify root causes.

The ever-expanding range of technologies necessitates adaptability and a willingness to explore new approaches to service 
delivery.80 Managers should utilize natural language processing and sentiment analysis techniques to transform unstructured 
patient experience reports into actionable metrics of healthcare performance, particularly in diagnostic services. Greaves et al20 

propose a method for extracting valuable insights from patient feedback. Adopting the roster method, as suggested by Singh 
et al,81 can effectively manage COVID vaccination-related issues, streamlining the vaccination process, reducing wait times, and 
minimizing patient inconvenience. Diagnostic center managers should implement a reliable and 24/7 customer experience 
solution to provide decision-makers with continuous access to actionable insights. Holmlund et al74 emphasize the importance 
of real-time data availability for informed decision-making.

Policy Implications
To bridge the practitioner-academic gap in managing customer complaints in healthcare, this study proposes a multi- 
pronged approach. Customer complaints should be viewed as service failings rather than legal issues, with customer 
relationship managers employing interpersonal tactics to address concerns without assigning blame.72,82 A centralized 
regulatory framework should supplement the management model to manage performance, review complaints, and 

Figure 3 Proposed model of Customer Experience in diagnostic centers.
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respond to complainants.38,83 This approach could enhance diagnostic service quality and empower patients to file 
lawsuits without waiting for an internal grievance process, expanding legal remedies for medical negligence. 
Governments should monitor the condition of hospital services and the overall health sector to ensure that citizens are 
treated as citizens first and customers later.84

Directions for Future Research
This study proposes future research directions and provides examples of fruitful ways to explore the connection between customer 
complaints and customer experience. The Apriori algorithm, while an established tool, has limitations compared to newer data 
mining techniques. The study was conducted during the COVID-19 pandemic, and its findings may not reflect normal conditions. 
Additionally, the findings lack empirical validation through direct customer feedback. Future research should consider collecting 
data from consumers under normal conditions to validate these findings. Only 30% of businesses effectively utilize customer 
experience data to identify flaws and improve their market position.85 Dissatisfied customers often switch providers and share 
negative experiences rather than communicating directly with the company.86 Bolton et al87 highlight the challenges in integrating 
digital, physical, and social realms to create superior customer experiences. Descriptive research is needed to better understand the 
customer experience that links offline customer complaints and experiences with service delivery. Further cross-sectional and 
longitudinal studies are required to generalize the findings.88 Different variables, with different levels of importance, influence the 
customer experiences. Researchers can use the relationship between the parameters and social network analysis (SNA) to 
determine this association.89,90

Conclusion
Errors are inevitable in healthcare, and healthcare professionals should accept this reality. Acknowledging that mishaps 
may occur and patients may complain should prompt practitioners to develop a complaint management strategy.14 

Proactive mitigation is preferable to reactive complaint handling. Patient complaints should be viewed not just as post- 
consumption feedback but also as an opportunity to improve service delivery.82 A robust complaint handling system built 
on understanding, empathy, action, and honesty can benefit all parties involved.14 By collecting and aggregating patient 
descriptions of negative experiences online, patterns of poor clinical practice may be identified. Over time, this approach 
could help identify areas for improvement.20 However, the internet is susceptible to false information, so separating 
reliable data from unreliable is crucial.91 Methods and analytics designed for managing and mining unreliable data must 
be employed to cope with erroneous and misleading information. Diagnostic centers should prioritize designing and 
implementing an effective complaint management system and ensuring their customers have a positive experience.
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