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Abstract: TNFα receptors, TNF-R1 and TNF-R2, mediate the biological activities of the 

multifunctional cytokine, tumor necrosis factor alpha, TNFα. These receptors have a central 

role in human pregnancy. Although each receptor induces distinct intracellular signals, they 

also have co-operative and overlapping effects. The membrane bound TNF-R1 carries out most 

of the pro-inflammatory activities of TNFα, especially those that are rapid, while TNF-R2 is 

involved in the late long-term effects of this cytokine. The soluble forms of these receptors 

can bind to TNFα, neutralizing its effects. In normal human pregnancy, TNFα receptors are 

present in the maternal circulation, placenta, amniotic fluid, and coelomic cavity. Changes in 

TNFα and its receptors are associated with adverse pregnancy outcomes, including miscarriage, 

preterm labor and preeclampsia. Advances in anti-TNFα therapy may have potential use in the 

management of complicated pregnancies.
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Introduction
The role of maternal leucocytes and other immune factors such as cytokines in the 

trophoblast-decidual interaction remains unclear. There are two major subsets of CD4+ 

T-helper mediated responses, T-helper Th1 and Th2,1 which act via different patterns of 

cytokine production. Th1 cells secrete tumor necrosis factor (TNF) α and β, interferon 

gamma (IFNγ) and interleukin (IL)-2. This cell-mediated immune response, also known 

as Type 1 response, involves activation of macrophages and cell-mediated reactions 

involved in resisting infections due to intracellular pathogens, and cytotoxic and 

delayed-type hypersensitivity reactions. Th2 type cytokines include IL-4, IL-5, IL-6, 

IL-10, and IL-13, which are associated with strong antibody responses to infections 

with extracellular organisms (Type 2 or humoral reactions).2 There is evidence that 

cytokines are pivotal in the reproductive immune response.3–6 Normal pregnancy is 

now considered to be a state of controlled mild maternal systemic inflammation, where 

circulating levels of pro-inflammatory cytokines, including TNFα, are raised compared 

to the non-pregnant state, in a way similar to what happens during sepsis.7 These 

pro-inflammatory cytokines are produced by monocytes and also by trophoblasts.8,9 It 

has been hypothesized that during normal pregnancy, there is a subtle immunological 

shift to the Th2-type cytokine responses that would suppress the potential harmful 

effects of the cell-mediated (Th1-type) immune system.3 Imbalance in the Th1/Th2 

cytokine response with an increase in Th 1 cytokines is associated with adverse 

pregnancy outcome.5
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Structure and bioactivities  
of TNFα receptors
TNFα is a potent, multifunctional cytokine in autocrine 

and paracrine processes central to reproduction. These 

processes include gamete, follicle and luteal development, 

steroidogenesis, uterine cyclicity, placental differentiation, 

development of the embryo, and parturition.10 The biological 

activities of TNFα are mediated via two different TNFα 

receptors (TNF-Rs): TNF-R1 (also known as p55/p60, Type 

I, b, TNF-R55, TNF-Rβ or CD120a) with a molecular mass 

of 55–60 kDa; and TNF-R2 (or p75/p80, Type II, a, TNF-R75, 

TNF-Rα or CD120b), weighing 75–80 kDa11,12 (Table 1).

The differential expression of the two TNF-Rs is regulated 

by female sex steroid hormones. These two receptors consist 

of a homologous extracellular, cysteine-rich transmembrane 

domain, but their intracellular domains are entirely differ-

ent, and each receptor is independently regulated. Although 

each receptor induces distinct intracellular signals, they 

also have co-operative and overlapping effects. In cells 

responding to TNFα via the TNF-R1, the extracellular part 

of TNF-R2 captures TNFα, even at low concentrations, and 

delivers it to TNF-R1, resulting in an enhanced response to 

TNFα.13

Depending on cell type and activation status, the number 

of receptors per cell ranges from 100 to 10,000 copies.14,15 The 

TNF-R1 is found on most tissues, and seems to be the main 

mediator of TNFα signaling, leading to pro-inflammatory 

and programmed cell death pathways, and is therefore 

associated with cytotoxicity. TNF-R1 carries out most of 

the activities of TNFα, especially those that are rapid, while 

TNF-R2 is involved in the late long-term effects of this 

cytokine. TNF-R2 is more prevalent in immune cells11,16 

and is primarily associated with lymphocyte proliferation. 

While TNF-R2 may induce apoptosis,17 it can also enhance 

tissue repair and angiogenesis, thus promoting cell survival.18 

Other biological activities of TNF-Rs include gene  induction 

in endothelial cells, inducing cytokine production, and 

activation of nuclear factor kappa-light-chain-enhancer of 

B cells.15,19,20

Both receptors can have their extracellular domains 

cleaved from the membrane, thus forming soluble TNF-Rs. 

The soluble TNF-Rs are present in the serum and urine and 

have been shown to protect against the harmful effects of 

excessive TNFα by neutralizing this cytokine.21 The soluble 

form of TNF-R2 is cleaved by proteolysis through the metal-

loproteinase TNFα converting enzyme (TACE, also known as 

ADAM17).22,23 Soluble TNF-R2 is involved in the inactivation 

of TNFα in the circulation by the formation of high affinity 

complexes. This subsequently reduces the binding of TNFα 

to target cell membrane receptors and downregulates the 

response to TNFα.24 The proteolytic enzyme that releases 

soluble TNF-R1 is still unknown.9 Lack of soluble TNF-R1 

leads to autosomal dominant inherited auto-inflammatory 

syndromes.25

TNFα and its receptors during  
the normal first trimester
In situ hybridization studies and immunohistochemical 

analyses have shown that in non-pregnant women, the expres-

sion of TNFα protein in the endometrial glands is negligible in 

the early proliferative phase, then increases and peaks during 

the late proliferative phase. In the secretory phase, TNFα pro-

tein expression remains high, but slightly less than in the late 

proliferative phase.26,27 Both TNF-Rs follow a similar pattern, 

with the highest expression in the late secretory phase.28

Following decidualisation, TNFα mRNA has been 

shown to be present in macrophages,29 T-cells,30 uterine 

NK cells, endothelial cells,31 and decidual stromal cells 

Table 1 Comparison between TNF-R1 and TNF-R2

TNF-R1 TNF-R2

Other names p55/p60, Type I, b, TNF-R55, TNF-Rβ or CD120a p75/p80, Type II, a, TNF-R75, TNF-Rα or CD120b
Molecular weight 55 kDa 75–80 kDa
Structure Contains the DD Does not contain the DD
expressed cell types Most tissues, including the proliferating cytotrophoblast  

of the cell islands and cell columns, the evT invading  
the decidual tissue, and villous stromal cells

Immune cells

Functions The main mediator of TNFα signalling, leading  
to proinflammatory and programmed cell death pathways,  
and cytotoxicity; carries out most of the activities  
of TNFα, especially those which are rapid

Primarily associated with lymphocyte proliferation,  
may induce apoptosis, can enhance tissue repair  
and angiogenesis; soluble TNF-R2 is involved in the  
inactivation of TNFα in the circulation

Signaling pathways Interacts indirectly with TRAF2 via TRADD Interacts directly with TRAF2

Abbreviations: DD, death domain; evT, extravillous trophoblasts; TNFα, tumor necrosis factor alpha; TRADD, TNF-α receptor-associated death domain;  TRAF2, TNF-
receptor associated factor 2.
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in vitro.32,33 Other studies have also shown that various 

decidual cell types express TNF-Rs.9 During normal human 

pregnancy, TNFα gene products have been detected in 

amniotic fluid34–38 and soluble TNF-Rs have been detected 

in first trimester coelomic fluid.39 Since pro-inflammatory 

cytokines do not cross normal term placenta,40 TNFα 

and its receptors are probably produced from within the 

gestational sac from a very early stage in pregnancy. 

TNFα gene products have been detected in placental 

supernatants.41,42

During the first trimester, all cell types of trophoblastic 

lineage express TNFα mRNA. These cell types include villous 

and proliferating cytotrophoblasts, syncytiotrophoblasts, and 

the extravillous trophoblasts (EVT) invading the uterine 

wall.43,44 Messenger RNA and protein are found in both fully 

differentiated syncytiotrophoblasts26,45 and proliferating EVT 

cells44 during early human gestation. There is a predominance 

of TNFα in cell columns during invasion especially in 

the EVT as it displaces the endothelial cells of the spiral 

arteries.46,47

TNF-R1 mRNA has been identified in the proliferating 

cytotrophoblast of the cell islands and cell columns, the EVT 

invading the decidual tissue48 and villous stromal cells.49 

There is also a non-uniform distribution of TNF-R1 mRNA 

in villous cytotrophoblasts and syncytiotrophoblasts in the 

first trimester placenta.9 During early gestation, TNF-R1 

protein is expressed widely in villous cytotrophoblasts, EVT 

and cell columns, and trophoblasts.48 As for syncytiotro-

phoblasts, TNF-R1 has been shown to be present during all 

gestational ages.50 Under inflammatory conditions, soluble 

TNF-R1 may protect the trophoblast from the cytotoxic 

effects of TNFα.48

TNF-R2 mRNA has a similar distribution to TNF-R1 

mRNA. TNF-R2 mRNA has been observed in  cultures 

of first trimester trophoblasts, but to a lesser extent than 

TNF-R1.48 It is yet not clear how TNF-R2 is expressed in the 

placenta.9 Studies show that TNF-R2 mRNA is restricted to 

the trophoblast in early pregnancy and, at later stages, shifts 

to placental mesenchymal cells.49

It has been proposed that placental TNFα derived 

from macrophages, possibly modulated by TNFα-TNFRI 

 signaling, facilitates trophoblast differentiation.48,51 TNFα 

at the fetal-maternal interface plays an important role in 

regulating macrophage recruitment by trophoblast cells. It 

has been shown that media conditioned by TNFα-treated 

trophoblast cells significantly enhance the ability of the 

monocyte cell line THP-1 to invade through Matrigel.52 

TNFα might promote proliferation of trophoblast and 

increased human chorionic gonadotrophin secretion by acting 

as an autocrine growth factor via TNF-RI.44

Systemic and placental levels of 
TNFα and its receptors in pregnancy
Prospective longitudinal studies of cytokine expression in the 

circulation during normal pregnancy show that as pregnancy 

progresses, there is an overall decrease in pro-inflammatory 

cytokines such as TNFα and IFNγ, accompanied by an increase 

in the anti-inflammatory cytokines such as IL-10 and IL-6.53,54 

Successful pregnancy requires a delicate balance in Th1/

Th2 cytokines. Plasma levels of TNFα and the neutralizing 

soluble receptor TNF-R2 rise till the second trimester, and then 

decrease.55 This is followed by a shift towards Th2 cytokines 

in the second trimester with an increase in Th2 cytokines till 

term.54 As pregnancy progresses, there is a change in placen-

tal expression of TNFα.26 As for TNF-Rs, TNF-RI mRNA 

and protein are expressed in essentially all types of cells of 

the human placenta, with increasing levels as the pregnancy 

advances to term.39 This suggests that TNFα and its receptors 

may have a specific role in the process of developmental differ-

entiation. Later in pregnancy, TNFα mRNA is more prominent 

in placental macrophages within villous stromal cells than in 

trophoblasts.26,56 In the third trimester, there is less expression 

of TNFα protein in invasive cells, and no expression at all in 

trophoblast giant cells.57 TNFα mRNA and protein are promi-

nent in macrophage-like cells present in term placentas and 

extraplacental membranes.26,29 TNF-R1 mRNA is also present 

in high amounts in the villous stroma and endothelial cells, 

and to a lower extent in the syncytiotrophoblasts of the term 

placenta.49 In cultured third trimester villous cytotrophoblasts, 

cytotoxic effects of TNFα, both alone and in combination 

with IFNγ, have been demonstrated, predominantly induced 

through TNF-R1.58 There are elevated concentrations of 

soluble TNF-Rs in the urine of pregnant women.59 This can be 

explained by the in vitro finding that third trimester trophoblast 

cells rapidly release soluble TNF-R1 and TNF-R2 into the 

culture medium.60 Pregnancy specific glycoproteins derived 

from the placenta increase the secretion of IL-10 and other 

anti-inflammatory cytokines. IL-10 downregulates activity 

of TNFα by inhibiting the release of TNFα, increasing the 

release of soluble TNF-R1 and -R2, and reducing the surface 

expression of both TNF-Rs.61

Total antioxidant activity of amniotic fluid samples from 

asymptomatic mid-trimester women positively correlate with 

soluble TNF-Rs.62 TNFα is important in the initiation and 

amplification of inflammation.63 TNF-Rs may reduce oxidative 

stress due to receptor binding of the inflammatory TNFα.
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Many cell types present in the endometrium, placenta 

and deciduas have been shown to express TNFα and its 

receptors, implying that multiple autocrine and paracrine 

interactions can occur.9 Although there are complementary 

roles for the TNF-receptors, TNF-R1 has been shown to be 

mainly involved in apoptosis in the placenta.58

TNFα and its receptors  
in miscarriage
The balance between pro- and anti-inflammatory cytokines 

is essential for implantation, placental development and 

pregnancy outcome. Changes in the Th1/Th2 balance in the 

feto-maternal interface in favor of Th1 can lead to adverse 

pregnancy outcome, including recurrent spontaneous 

miscarriages.64 Increased Th1 cytokines, including TNFα, 

have been found in women suffering from recurrent 

spontaneous miscarriages.65 It was also demonstrated 

that women with recurrent spontaneous miscarriages had 

reduced levels of soluble TNF-R1 and TNF-R2, which were 

then normalized upon administration of progesterone.66 

Once treated with TNFα inhibitors, this group of women 

had an increase in the rate of live births.67 TNFα is unlikely 

to be the only mediator and, in most cases of miscarriage, 

there are additional triggers.9 Evidence shows that TNFα, 

IFNγ and NK cells cannot induce miscarriage separately, but 

a Th1-NK-macrophage triad may bring about miscarriage, 

which can in turn be suppressed by a Th2 cytokine 

response.3,68

Immunohistochemical studies have shown abundant 

mTNF-R1 expression in the cytotrophoblasts, villous stromal 

cells and vessel endothelial cells derived from placenta from 

women with early spontaneous miscarriage. Over-expression 

of TNF-R1 may mediate TNFα to induce apoptosis in these 

cells, leading to tissue damage in chorionic villi in non-viable 

pregnancies.69 Mice studies are showing that TNFα via 

TNFR1 signaling causes placental pathology leading to fetal 

hypoxia, which can be prevented by TNFα-antagonists.70

TNFα and its receptors in preterm 
labor
Parturition is a complex process, brought about by the right 

combination of signals, following mechanical and endocrine 

stimulation.71 Prematurity occurs in the case of aberrations 

in these signals, together with inflammation, cervical 

abnormalities and/or progesterone resistance. However 

the major mechanism of preterm labor is still unclear. 

Complications of pregnancy have been associated with 

deficient conversion of the uterine spiral arteries, leading to 

abnormal placental perfusion. Placental malperfusion can cause 

oxidative stress,72 induced by an ischemia-reperfusion–type 

insult,73 leading to a rise in pro-inflammatory cytokines and 

anti-angiogenic factors in the maternal circulation.

In the case of late miscarriages and premature labor, TNFα 

and other pro-inflammatory cytokines have been shown to 

stimulate uterine activity and cervical ripening by producing 

prostaglandins74 and cortisol,75 and degrade the extracellu-

lar matrix of chorio-amniotic membranes via MMP-2 and 

MMP-9.76 Oxidative stress and inflammatory cytokines are 

powerful inducers of apoptosis and necrosis. TNFα, together 

with other pro-inflammatory cytokines such as IL-1β, are 

elevated in the amniotic fluid of women with preterm labor 

and/or preterm premature rupture of membranes (PPROM), 

even in the absence of infection.77–79 Pro-inflammatory cytok-

ines can stimulate production of prostaglandins, leading to 

uterine contractions, and upregulation of MMP activation. 

Intra-amniotic inflammation may lead to apoptosis, thus 

weakening fetal membranes and leading to PPROM.80,81

In PPROM, two major apoptotic pathways have been 

implicated. The first is a TNFα receptor-Fas-mediated 

pathway. This initiates signal transduction through 2 docking 

proteins known as TRADD (TNF-α receptor-associated 

death domain) and FADD (Fas-associated death domain), 

which in turn activate pro-caspase-8 to active caspase-8 

(Figure 1). The other apoptotic pathway is p53-mediated, 

initiated by DNA fragmentation with activation of caspase-9. 

Caspase-8 and -9 initiate a cascade of caspase activation, 

followed by sequential activation of caspases 3, 7 and 6, 

leading to proteolysis of structural proteins, proteins of 

homeostasis, and several other target proteins leading to 

apoptosis.82

Lipopolysaccharide (LPS)-induced apoptosis in mac-

rophages has been attributed to the LPS-mediated induction 

of pro-apoptotic TNFα acting back on the cells in an auto-

crine/paracrine  manner.83 LPS triggers TNFα production in 

fetal membranes.84 Elevated endotoxin levels are found in the 

amniotic fluid of women with preterm labor and PPROM.85 

Endotoxin is capable of stimulating prostaglandin production 

in amnion cells, and can initiate preterm labor via the host 

inflammatory response through activation of immunocytes 

and release of inflammatory cytokines.86 Elevated levels of 

TNFα, together with other pro-inflammatory cytokines such 

as IL-1, are found in women with intra-amniotic infection and 

preterm labor, and, in turn, these cytokines stimulate pros-

taglandin synthesis in human tissues.74,85,87 The mRNA from 

TNFα and other pro-inflammatory cytokines is expressed 

in human fetal membranes in response to infection and 

endotoxin stimulation.88 Infection is closely involved in the 

process of preterm birth, partly through the host response via 
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the inflammatory cytokine release, and its effect on starting 

uterine activity.85 TNFα and other pro-inflammatory cytokine 

levels in the amniotic fluid increase towards term and in nor-

mal labor. However, there is an increase in TNFα released 

from the amniochorion, together with other pro-inflammatory 

cytokines in the amniotic fluid of women with preterm labor 

caused by intra-amniotic infection.

Women with preterm labor or PPROM have an elevated 

concentration of IL-689 and TNFα90 in the amniotic fluid, 

compared to women whose preterm labor did not progress 

to preterm delivery.91 Increased TNFα, together with IL-6, 

IL-1 α, IL-1 β, and PGE2 are associated with histologic 

chorioamnionitis among women who delivered within 1 week 

of amniocentesis.90 Ex vivo incubation of whole unprocessed 

amniotic fluid may provide a more accurate indication of the 

cytokine release from amniotic cells, than just measuring the 

soluble components in the unincubated amniotic fluid super-

natant (similar to using whole blood rather than peripheral 

blood mononuclear cells).92

TNFα levels present in amniotic fluid are in the picogram 

per milliliter range.93 TNFα peptide is present only in the 

amnion, but chorionic cells also have mRNA for TNFα.88 

TNFα has been detected in less than half of amniotic fluid 

samples in midtrimester, and even less in cases of preterm 

delivery.62 In Caucasians, midtrimester levels of TNFα and 

soluble TNF-Rs in symptomatic women are not significantly 

different between patients with preterm birth and those who 

proceed to term.36,62 Elevated TNFα concentration in amniotic 

fluid is associated with preterm birth and PPROM,94,93 and 

the bioavailability of TNFα and its receptors influences the 

pathophysiology of these outcomes.95 During an ascending 

infection, the choriodecidua is the first line barrier for patho-

gens such as E.coli, that can cross the amniotic membranes 

and into the amniotic fluid.96 In response to this ascending 

infection, there is abnormal production of TNFα in the 

amnion compartment when the pathogen affects both the 

amniotic membrane and the choriodecidua in vitro (compa-

rable to chorioamnionitis in vivo).97

Apoptosis

MEKK 1 IKK

IKB

NFKB4

PDE 45

TACE3

Soluble TNFα1 Membrane bound TNFα

2
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Caspases

TRAF 2
RIP, FADD

TRADD

In
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ed

↑ PKA cAMP

p38

TNFα gene expression
and cell survival

Figure 1 TNF-α signaling and the potential targets for the inhibition of TNF-α-related activities.
Notes: Inhibitors can target the TNF-α molecule (1) or its receptor (2), preventing the resultant signaling pathways. Another target includes TACe (3), which processes the 
26-kDa membrane form of TNF-α to the soluble 17-kDa form preventing its release into the circulation. Inhibition of the activation of NF-κ-B (4) prevents the synthesis of 
NF-κ-B inducible genes, including many pro-inflammatory cytokines. Molecules targeting intracellular TNF-α-related signaling pathways have also been identified, including 
inhibitors of p38 and PDe4 (5).204,205

Abbreviations: cAMP, cyclic AMP; DD, death domain; IB, inhibitor of NF-B; IKK, IB kinase; MeKK1, mitogen-activated protein kinase kinase kinase 1; NF-B, nuclear factor-B; 
NIK, NF-B-inducing kinase; PDe4, phosphodiesterase 4; PKA, protein kinase A; RIP, receptor-interacting protein; TACe, TNF-coverting enzyme; TNF-, tumor-necrosis 
factor-; TNFR1, TNF-receptor 1; TRADD, TNFR1-associated death-domain-containing protein; TRAF2, TNFR-associated factor 2.
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Asymptomatic intra-amniotic infection is confirmed 

when micro-organisms are cultured in amniotic fluid obtained 

during amniocentesis. However, since culture results may 

take several days, measuring pro-inflammatory cytokines in 

amniotic fluid by enzyme-linked immunosorbent assay, as 

markers of intrauterine infection, may provide a quicker way 

of predicting preterm labor. TNFα is not normally detected in 

amniotic fluid in the 2nd and 3rd trimester, but rises during 

normal labor or in pathologic conditions such as intrauterine 

infection.80,93,98 IL-6 present in the amniotic fluid has been 

linked with chorioamnionitis.99 Elevated TNFα . 6.6 pg/mL 

and IL-6 . 99.3 pg/mL levels in amniotic fluid samples 

obtained in asymptomatic women during second trimester 

amniocentesis can identify patients at risk for intra-amniotic 

infection (sensitivity of 78.4% and 91.9% and specificity 

of 70.1% and 73.8%) and preterm delivery (sensitivity of 

81.3% and 89.6% and specificity of 79.2% and 80.3%).37 

However, studies have shown that some patients with a posi-

tive amniotic fluid culture and low levels of pro-inflammatory 

cytokines, still had preterm delivery. This could be due to a 

low maternal response due to functional polymorphism and/

or some bacterial endotoxins may not be potent enough to 

stimulate the pro-inflammatory cytokine response.100

It is still unclear whether cytokines in the maternal 

circulation can predict preterm labor, before symptoms of 

preterm labor or PPROM start. TNFα has been considered as 

a marker of preterm labor, together with other inflammatory 

cytokines such as IL-1B, because it can activate uterotonins 

and increase synthesis of prostaglandins, which can induce 

labor in non-human primates.101–103 A number of studies 

report elevated levels of pro-inflammatory cytokines in mid-

pregnancy amniotic fluid,104 maternal serum and cervical 

samples105,106 among women with preterm delivery, and even 

in placental tissues107–109 of spontaneous preterm deliveries. 

In the Preterm Prediction Study, the use of a combination 

of tests such as maternal serum alpha-fetoprotein, alkaline 

phosphatase, GM-CSF, fetal fibronectin and cervical length 

could enhance prediction of spontaneous preterm birth.110

Cytokines in the circulation are more non-specific than 

amniotic fluid or cervical fluid cytokines, because they 

might reflect a combination of a maternal acute-phase 

response accompanying the local inflammation, together with 

cytokines derived from the feto-placental unit. Therefore, the 

lack of association between preterm and midterm pregnancy 

circulatory cytokine levels in asymptomatic women suggest 

that inflammation occurring in the feto-placental unit may 

not always be reflected in maternal serum levels of TNFα 

and other cytokines. Also, the timing of inflammation in 

pregnancy is probably very important, with inflammation 

occurring in the first trimester having a more significant 

association with adverse pregnancy outcome.111

By contrast, plasma cytokine levels have been mea-

sured in a case-control study among Danish women at 25 

weeks’ gestation, using multiplex flow cytometry (Luminex 

Corporation, Austin, TX). Elevated TNFα levels .75th 

and .90th percentile do not differ by gestational age at 

delivery, and therefore are not associated with an increased 

risk of preterm delivery. There is an increased risk of pre-

term birth with elevated IFNγ and IL-6.112 Therefore, there 

appears to be only limited value in using mid-pregnancy 

cytokines in predicting spontaneous preterm birth. During 

preterm labor, serum levels of IL-6, IL-8 and TNFα are 

not increased when compared to normal control women.113

Bacterial intrauterine infection stimulates maternal 

immune cells to produce pro-inflammatory cytokines.114 In 

non-human primates, inoculation of the amniotic cavity with 

TNFα or IL-1β induces preterm labour.101,115 In mice, TNFα 

causes preterm birth,116 while TNFα-antibodies block LPS-

induced preterm birth.117 Most infections leading to preterm 

birth are subclinical, and it may be possible that women who 

undergo a preterm birth have an increased immune response 

to the causative bacteria. There have been largely conflicting 

results regarding TNFα gene promoter polymorphisms that 

may increase the risk of preterm birth,118 and it is likely that 

either these polymorphisms alone do not cause preterm birth 

in the absence of infection,119 or else these polymorphisms 

do not increase TNFα secretion. Women with a history of 

preterm birth have an elevated TNFα production in response 

to LPS relative to controls.120 However, in another study, 

peripheral blood mononuclear cells from women with a 

history of preterm birth have not produced significantly 

different amounts of TNFα in response to E.Coli, Group B 

Streptococci (S. agalactiae) and U.urealyticum (bacterial 

species causing preterm birth in animal species) compared 

to women with prior uncomplicated term deliveries.121

Cytokine profiles, especially TNFα, differ between 

different ethnic groups and by pregnancy outcome.36,122 In 

pregnancy, the function of TNFα is determined by its spe-

cific binding to one of its two receptors: MMP activation and 

apoptosis through TNFR1 and Nk-kB activation, leading to 

overall enhancement of inflammation through TNFR2.80 The 

soluble forms of these membrane receptors bind to TNFα 

with high affinity and can neutralize TNFα function.95,125–125 

There is a difference in the co-ordination between TNFα 

and its receptors between peoples (African Americans and 

Caucasians) with respect to preterm versus term delivery.
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In Caucasians, midtrimester levels of TNFα and soluble 

TNF-Rs in symptomatic women are not significantly different 

between patients with preterm birth and those who proceed 

to term.36,62 Elevated TNFα concentration in amniotic fluid 

is associated with preterm birth and PPROM,93,94 and the 

bioavailability of TNFα and its receptors influences the 

pathophysiology of these outcomes.95 During an ascending 

infection, the choriodecidua is the first line barrier for 

pathogens such as E.coli, that can cross the amniotic 

membranes and into the amniotic fluid.96 In response to 

this ascending infection, there is abnormal production of 

TNFα in the amnion compartment when the pathogen 

affects both the amniotic membrane and the choriodecidua 

in vitro (comparable to chorioamnionitis in vivo).97

TNFα is produced by both maternal and fetal tissues, 

and increases the production of prostaglandins, myometrial 

activity, induction of MMPs and apoptosis, all of which 

can lead to preterm labor, irrespective of infection.81,93 In 

amniotic membrane samples taken from the placenta of 

Caucasian women, there is a pronounced increase in TNFα 

concentration in response to endotoxin stimulation, com-

pensated by an increase in soluble TNFRs. The latter is not 

evident in African Americans.126 In amniotic fluid taken prior 

to labor (term or preterm) in African Americans (but not in 

Caucasians), there is increased TNFα bioavailability (higher 

TNFα compared to soluble TNFR1 and TNFR2) in women 

who deliver preterm compared to those who deliver at term.36 

Therefore, in Caucasians, but not in African Americans, 

TNFα changes in preterm labor are compensated by changes 

in soluble receptors.36,122

This phenotypic difference of African Americans having 

a significant cytokine imbalance is caused by variation in the 

genes encoding these proteins, with significant differences 

between allelic, genotypic and haplotypic frequency differ-

ences in TNFα and TNFα receptor genes between different 

peoples.118,127 However, no association has been observed 

between these single nucleotide polymorphisms, including the 

TNFα promoter functional variant (-308) and other markers in 

the TNFα and TNFα receptor genes, and preterm birth.127 This 

may be due to gene-environment interactions, with the effects 

of some single nucleotide proteins differing as a function of 

specific environmental factors. The presence of the TNFα 

risk allele at -308 can modify pregnancy outcome through 

interactions with bacterial vaginosis and periodontitis, even 

in the absence of an independent single locus effect.98,119,128 

Therefore, genetic regulation of TNFα and soluble TNF-Rs 

concentrations in amniotic fluid is affected by ethnicity and 

preterm birth.34 In Caucasians, TNF-Rs in the amniotic fluid 

are higher in preterm than in term patients; but in African 

Americans, amniotic fluid TNF-Rs are higher in term versus 

preterm patients.34 The disparity in inflammatory cytokine 

profiles found in amniotic fluid can partly explain the higher 

rate of preterm birth among African Americans and Cauca-

sians in the United States. In African Americans with term 

birth, TNFα and IL-10 concentrations in amniotic fluid are 

positively correlated, indicating a generalized inflammatory 

status during labor, but there is a negative correlation coeffi-

cient in preterm birth with an overwhelming increase in TNFα 

not being co-ordinated by IL-6.129 In this ethnic group, preterm 

labor is mediated predominantly by TNFα and IL-1β.101 IL-10 

levels correlated with soluble TNFR1 and TNFR2 in preterm, 

confirming immunoinhibitory mechanisms during preterm 

labor, which are overwhelmed by the increase in TNFα and 

IL-1. Therefore, the pathways leading to preterm birth may 

be different in the two ethnic groups.130

There are probably other unmeasured (environmental) 

factors that interact to alter cytokine levels in amniotic 

fluid. Women with bacterial vaginosis and TNFα promoter 

polymorphism (-G238A) are at increased risk of delivering 

preterm, irrespective of ethnicity,131 further illustrating a 

potential gene-environment interaction in preterm delivery. 

The presence of bacterial vaginosis is associated with  elevated 

levels of TNFα and other pro-inflammatory cytokines, such 

as IL-1, in the vaginal fluid.132,133 In vitro experiments 

with decidual and amniotic cells, these pro-inflammatory 

cytokines are able to induce the release of prostaglandins and 

MMPs.134,135 Therefore, high levels of TNFα in the presence 

of bacterial vaginosis may stimulate contractions and/or 

degradation of membranes.

It has been shown that during maternal infection, TNFα 

and IFNγ increase the production of prostaglandins, resulting 

in premature labor.136,137 A positive association has been shown 

between elevated levels of pro-inflammatory cytokines, includ-

ing TNFα, IFNγ, IL-1, and IL-8.138–140 Studies have shown 

conflicting evidence as to whether increasing levels of TNFα 

are associated with an increased risk of intra-uterine growth 

restriction.141–143 In a recent study, higher levels of TNFα in 

umbilical cord blood was associated with preterm delivery, but 

not with intra-uterine growth restriction.144 Interestingly, higher 

levels of other pro-inflammatory markers in the umbilical cord 

blood, such as IFNγ and interleukin 12p70, are associated with 

decreased risk of small for gestational age.144

TNFα and preeclampsia
Preeclampsia is a potentially life-threatening complex 

multisystem maternal disorder that can occur in the second 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Interferon, Cytokine and Mediator Research 2012:4submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

8

Calleja-Agius et al

half of pregnancy, labor or the early postpartum period. 

It is characterized by high blood pressure, proteinuria and 

other systemic disturbances secondary to diffuse maternal 

endothelial dysfunction.145 Preeclampsia is considered as a 

state of exaggerated inflammation, in excess of the baseline 

inflammatory state of normal pregnancy, with local and 

systemic changes in Th1/Th2 cytokines.146 Polymorphisms 

of cytokine genes may increase the risk of developing 

preeclampsia.147 Peripheral blood mononuclear cells and 

decidual lymphocytes express higher levels of Th1 cytokines, 

including TNFα, and lower Th2 cytokine expression in 

preeclampsia compared to normal pregnancy.148,149 This is 

reflected in the maternal circulation, with a further rise in 

pro-inflammatory cytokines such as TNFα, accompanied 

by an elevated level of soluble receptor in an attempt to 

dampen the cytokine response.150–153 Increased levels of 

TNFα and other pro-inflammatory cytokines have also been 

found in the umbilical serum of pregnancies complicated 

by preeclampsia, suggesting a role in intra-uterine growth 

restriction secondary to preeclampsia.154 The rise in pro-

inflammatory cytokine TNFα and TNF-R1 in maternal 

circulation increases as early as 11–13 weeks, well before 

the clinical manifestation of preeclampsia,155 but so far has 

not proved to be useful in screening.156

In placental preeclampsia, there is defective placentation 

with insufficient remodeling of the uterine spiral arteries 

by the EVT towards the end of the first trimester and in the 

early second trimester leading to an ischemia-reperfusion 

phenomenon with subsequent excessive oxidative stress.157 

It has been shown that placentation is better, with a decrease 

in incidence of preeclampsia, if the trophoblast strongly 

stimulates maternal uterine NK cells, which in turn secrete 

pro-inflammatory cytokines to allow proper invasion.158 

Activity of decidual NK cells is in turn regulated by a 

complex network of cytokines.159 Pro-inflammatory cytokines 

such as IL-1 can stimulate MMP-9 and 2160 and therefore 

can act as positive regulators of trophoblast differentiation 

in becoming more invasive. The contrary has been shown for 

anti-inflammatory cytokines such as IL-10 and transforming 

growth factor β.161,162 As mentioned above, there is a 

predominance of TNFα in cell columns during invasion, 

especially in the EVT, as it displaces the endothelial cells of 

the spiral arteries.46,47

TNFα and its receptors are expressed in excess 

both systemically and at the feto-maternal interface146 

and may play a key role in the pathophysiology of 

preeclampsia. In preeclampsia, TNFα, together with IFNγ, 

has been shown to cause apoptosis of cultured cytoblasts 

and syncytiotrophoblasts, together with impairment of 

syncytialization, especially under hypoxic conditions in term 

placenta.163 In vitro studies have shown that the combination 

of TNFα and IFNγ inhibit first trimester EVT invasion 

due to increased apoptosis and reduced proliferation of 

EVT cells and reduced pro-MMP-2 secretion.164 Hypoxia/

re-oxygenation leading to placental oxidative stress is a 

potent inducer of TNFα secretion by villous explants.73 

Since there is an elevation of both of these pro-inflammatory 

cytokines in the placenta of preeclamptic patients,165,166 

they may have a role in abnormal placentation. TNFα may 

inhibit migration of EVT in the first trimester placenta via 

elevated plasminogen activator inhibitor-1167 or via activated 

macrophages.168 The sources of TNFα in preeclampsia are the 

trophoblast cells themselves due to the ischemia-reperfusion 

insult,56,169 as well as the activated maternal monocytes upon 

adhering to the syncytiotrophoblast.170,171 TNFα has also 

been shown to inhibit the subset of CD4+CD25+ regulatory 

T lymphocytes.172 The latter cells promote fetal tolerance 

during normal pregnancy, and once inhibited, will not be able 

to produce immunosuppressive cytokines that are important 

at the feto-placental interface to prevent fetal rejection.173

Preeclampsia is associated with a systemic inflammatory 

response, which is more exaggerated than what happens in 

normal pregnancy, due to aberrant cytokine expression.174 

In early onset preeclampsia, TNFα/IL-10 findings suggest 

that an imbalance in pro-inflammatory to anti-inflammatory 

cytokines ratio is associated with unfavorable pregnancy 

outcomes.175 Toll-like receptor (TLR)-4 increases production 

of TNFα.176 TLR is the main danger signaling pathway 

involved in the pathogenesis of preeclampsia.177 TLR2 and 

TLR4 single nucleotide proteins appear to alter the maternal 

susceptibility to preeclampsia.178

TNFα is a potential mediator of endothelial cell dysfunc-

tion, contributing to the systemic effects of preeclampsia.150,179 

The excess TNFα produced by the placental villous tissue 

in response to the hypoxia-reperfusion injury affects the 

 endothelial cells by reducing their viability, and upregu-

lating the expression of adhesion molecule E-selectin.56 

Excess placental production of factors, such as vascular 

endothelial growth factor receptor-1 (also known as soluble 

fms-like tyrosine kinase 1 (sFlt-1)), which bind to vascular 

endothelial growth factor and placental growth factor are 

anti-angiogenic.180,181 They deprive the systemic endothelium 

of essential survival factors, decreasing the number of 

adhesion complexes at the cytoplasmic membrane, leading 

to vascular permeability.182 However, the role of cytokines 

to this particular endothelial response to serum factors 
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is still not clear. Elevated angiotensin II type-1 receptor 

autoantibodies (AT1-AA), together with cytokines, lead to 

dysfunctional maternal vascular endothelium.183 This in turn 

leads to increased levels of circulating endothelin, reactive 

oxygen species, and increased vascular sensitivity to angio-

tensin II, together with lower levels of vasodilators, such as 

prostacyclin and nitric oxide.184 This can lead to multi-organ 

dysfunction in preeclampsia, including hemolysis, elevated 

liver enzymes and low platelets syndrome.184,185 Sex steroids 

also play a role in modulating the effect of TNFα on vascular 

function in preeclampsia. However, in rats, increased levels 

of ovarian hormones to those observed in pregnancy were 

not sufficient to induce TNFα-induced vascular changes 

observed in preeclampsia.186 Trophoblastic debris, including 

syncytiotrophoblast membrane microparticles, fetal soluble 

RNA and DNA, cytokeratin fragments and cytotrophoblast 

cells, is released into the maternal circulation by apoptotic and 

necrotic processes in elevated amounts compared to normal 

pregnancy. This debris is pro-inflammatory and, through 

the release of cytokines such as TNFα, aggravates maternal 

inflammation.187 It has been shown that placental ischemia 

leading to preeclampsia is associated with raised inflammatory 

cytokines such as TNF α, and CD4+ T helper cells.188

Currently, there is no reliable test that can be used for 

screening or to facilitate informed decision during manage-

ment of preeclampsia. Therefore, better understanding of 

the link between abnormal hemostasis and inflammation in 

preeclampsia may clarify the underlying pathophysiology, 

and help design primary preventative and therapeutic mea-

sures at an early stage.189

TNFα-inhibitors and their role  
in pregnancy
Over the past 2 decades, anti-TNFα treatment has been 

developed, including etanercept (Enbrel), a recombinant 

soluble TNF-R2, and monoclonal TNFα-antibodies, such 

as adalimumab (Humira), infliximab (Remicode) and cer-

tolizumab pegol (Cimzia). These have been licensed for use 

in the treatment of autoimmune diseases such as inflam-

matory arthritis190 and inflammatory bowel disease,191 and 

there is also research showing their possible role in the 

management of recurrent colorectal cancer.192 Because of the 

immuno-modulatory action of these biologicals, there have 

been associated increased risks of infections such as viral, 

tuberculosis and histoplasmosis, and lymphoma.193

In an LPS-induced murine model of preterm birth, the 

use of anti-TNFα treatment decreased fetal deaths and pre-

term deliveries.117 Although regulatory agencies encourage 

the participation of pregnant and breastfeeding women in 

randomized controlled trials, this subset of the population 

has universally been excluded from studies involving the 

use of anti-TNFα treatment because of unknown or potential 

risks to the fetus. Thus, strong evidence-based treatment 

recommendations during pregnancy is lacking, and TNFα 

inhibitors are listed as Class B, that is, animal reproduction 

studies have failed to demonstrate fetal risk and there are no 

well-controlled studies in pregnant women.

Since autoimmune diseases such as Crohn’s disease, 

ulcerative colitis, and rheumatoid, psoriatic, and juvenile 

idiopathic arthritis are prevalent in women of childbearing 

age, there have been a number of case reports and registries 

documenting the effect of the incidental use of anti-TNFα 

agents in women who inadvertently became pregnant while 

on treatment.194–196 Overall, conflicting results have been 

produced from these case reports and small case series, 

partly due to the different timing of when the treatment was 

taken, other concurrent medication such as methotraxate, 

and different underlying autoimmune conditions of vary-

ing severity. Occurrence of uncommon adverse pregnancy 

outcomes observed with TNFα inhibitor therapy, such as 

premature birth, miscarriage, low birth weight, hyperten-

sion, and preeclampsia appear to approximate those seen 

in women not receiving such therapy and may be due to the 

underlying autoimmune condition itself.197 While there is data 

suggesting little to no risk of congenital anomalies,197 a large 

independent review of the Food and Drug Administration 

database reports a higher number of VACTERL anomalies 

in offspring of mothers who were on TNFα-antagonists at 

some point during their pregnancy.198,199

VACTERL is a non-random association of birth defects, 

including vertebral anomalies (V), anal atresia (A), car-

diovascular anomalies (C), tracheoesophageal fistula (T), 

esophageal atresia (E), renal and/or radial anomalies (R) 

and limb defects (L). So far, the recommendations per obser-

vational studies are that women of childbearing age with 

autoimmune diseases should ideally plan to conceive when 

their disease is well controlled and while on no medication, 

and most pregnant patients can discontinue their anti-TNFα 

treatment early in pregnancy without increasing maternal 

and fetal risks.197

Anti-TNFα treatment has been shown to increase live 

birth rates in women with recurrent spontaneous abortion67 

and in a subset of patients with a history of .2 failed in-vitro 

fertilization attempts,200 with the latter study having an 

impressive 100% pregnancy and 88% take-home baby rate. 

In both of the cohort-controlled, non-randomized studies, 
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treatment was generally started a month prior to starting a 

cycle of conception, and continued until a fetal heart was 

demonstrable by ultrasound. Minimal side-effects and no 

birth defects were reported. Pretreatment with anti-TNFα 

is thought to reduce Th1/Th2 levels in CD3+ cells by 

upregulating regulatory T-cell activity in women with Th1 

driven inflammation.201 However, in both studies there could 

have been a selection bias in the choice of patients, because 

many of the patients without anti-TNFα treatment lacked 

the high qualifying ratio of Th1/Th2. The karyotype was not 

tested in the cases of recurrent miscarriage, and the maternal-

fetal genotype was unknown. There are also other factors 

controlling reproductive outcome, such as autoantibodies 

and coagulation defects, therefore using Th1/Th2 ratios 

alone may not be enough to determine who would benefit 

from anti-TNFα treatment. Also, one needs to define at what 

level is Th1/Th2 ratio considered high to merit a beneficial 

effect from anti-TNFα treatment.

Although the observational studies of Winger et al 

represent important new data in the field of reproductive 

immunology,67,200,202,203 further prospective randomized 

controlled studies are needed. Studies in mice are showing 

that targeting placental TNFα using TNFα-antagonists such 

as etanercept prevents fetal hypoxia and neuroproliferative 

defects in the fetal brain.70 Understanding the mechanism of 

action of TNFα and its receptors may lead to development of 

new drugs to decrease the pro-inflammatory effects of this 

cytokine (Figure 1).

Conclusion
There is still a lot to be learnt about the role of TNF-R1 and 

TNF-R2 in normal and complicated pregnancies. Recently, 

studies have shown that altered levels of these receptors in 

the circulation, in combination with other cytokines and/

or hormones, may play a role in predicting miscarriage in 

patients presenting with threatened miscarriage.206 Future 

clinical trials are needed to study the possible benefit of 

anti-TNF treatment in pregnancy complications.
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